Update README.md
Browse files
README.md
CHANGED
@@ -30,4 +30,30 @@ Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/clim
|
|
30 |
institution={Available at SSRN 3998435},
|
31 |
year={2023}
|
32 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
|
|
30 |
institution={Available at SSRN 3998435},
|
31 |
year={2023}
|
32 |
}
|
33 |
+
```
|
34 |
+
|
35 |
+
## How to Get Started With the Model
|
36 |
+
|
37 |
+
You can use the model with a pipeline for text classification:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
41 |
+
from transformers.pipelines.pt_utils import KeyDataset
|
42 |
+
import datasets
|
43 |
+
from tqdm.auto import tqdm
|
44 |
+
|
45 |
+
dataset_name = "climatebert/climate_specificity"
|
46 |
+
model_name = "climatebert/distilroberta-base-climate-specificity"
|
47 |
+
|
48 |
+
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
|
49 |
+
dataset = datasets.load_dataset(dataset_name, split="test")
|
50 |
+
|
51 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
|
53 |
+
|
54 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
|
55 |
+
|
56 |
+
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
|
57 |
+
for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
|
58 |
+
print(out)
|
59 |
```
|