Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: afl-3.0
|
3 |
---
|
|
|
4 |
# Hotel review multi-aspect sentiment classification using T5
|
5 |
|
6 |
We fine tune a T5 pretrained model to generate multi-aspect sentiment classes. The outputs are whole sentiment, aspect, and aspect+sentiment.
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
在右側測試區輸入不同的任務文字
|
11 |
|
12 |
範例1:
|
@@ -17,7 +23,7 @@ We fine tune a T5 pretrained model to generate multi-aspect sentiment classes. T
|
|
17 |
整体情绪::位置离逢甲很近
|
18 |
|
19 |
資料集:
|
20 |
-
資料集蒐集自線上訂房網站的顧客留言10050
|
21 |
|
22 |
輸入與輸出格式:有三個種類任務分別為:
|
23 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- tw
|
4 |
+
tags:
|
5 |
+
- t5
|
6 |
license: afl-3.0
|
7 |
---
|
8 |
+
|
9 |
# Hotel review multi-aspect sentiment classification using T5
|
10 |
|
11 |
We fine tune a T5 pretrained model to generate multi-aspect sentiment classes. The outputs are whole sentiment, aspect, and aspect+sentiment.
|
12 |
|
13 |
+
T5情緒面向分類多任務,依據中文簡體孟子T5預訓練模型微調,訓練資料集只有3萬筆,做NLP研究與課程的範例模型用途。
|
14 |
|
15 |
+
# 如何測試
|
16 |
在右側測試區輸入不同的任務文字
|
17 |
|
18 |
範例1:
|
|
|
23 |
整体情绪::位置离逢甲很近
|
24 |
|
25 |
資料集:
|
26 |
+
資料集蒐集自線上訂房網站的顧客留言10050筆,整理成3項任務,總筆數變成為3倍,共有30150筆(資料由本實驗室成員YYChang蒐集)。
|
27 |
|
28 |
輸入與輸出格式:有三個種類任務分別為:
|
29 |
|