Delete hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs
Browse files- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/065b011b76fe98894d8975acfa28f028085fa35b +0 -164
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/0da3507018a1a1c625ff93179ff60bdb9202cc6c +0 -1
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/2c3387be76557bd40970cec13153b3bbf80407865484b209e655e5e4729076b8 +0 -0
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/2ea7ad0e45a9d1d1591782ba7e29a703d0758831 +0 -1
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/5fd10429389515d3e5cccdeda08cae5fea1ae82e +0 -4
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/b974b349cb2d419ada11181750a733ff82f291ad +0 -7
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/c06d5b49495f044e6380e68a60538be17a6bd5d1 +0 -24
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/d1514c3162bbe87b343f565fadc62e6c06f04f03 +0 -7
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b +0 -3
- hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/f7640f94e81bb7f4f04daf1668850b38763a13d9 +0 -14
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/065b011b76fe98894d8975acfa28f028085fa35b
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- multilingual
|
4 |
-
- ar
|
5 |
-
- bg
|
6 |
-
- ca
|
7 |
-
- cs
|
8 |
-
- da
|
9 |
-
- de
|
10 |
-
- el
|
11 |
-
- en
|
12 |
-
- es
|
13 |
-
- et
|
14 |
-
- fa
|
15 |
-
- fi
|
16 |
-
- fr
|
17 |
-
- gl
|
18 |
-
- gu
|
19 |
-
- he
|
20 |
-
- hi
|
21 |
-
- hr
|
22 |
-
- hu
|
23 |
-
- hy
|
24 |
-
- id
|
25 |
-
- it
|
26 |
-
- ja
|
27 |
-
- ka
|
28 |
-
- ko
|
29 |
-
- ku
|
30 |
-
- lt
|
31 |
-
- lv
|
32 |
-
- mk
|
33 |
-
- mn
|
34 |
-
- mr
|
35 |
-
- ms
|
36 |
-
- my
|
37 |
-
- nb
|
38 |
-
- nl
|
39 |
-
- pl
|
40 |
-
- pt
|
41 |
-
- ro
|
42 |
-
- ru
|
43 |
-
- sk
|
44 |
-
- sl
|
45 |
-
- sq
|
46 |
-
- sr
|
47 |
-
- sv
|
48 |
-
- th
|
49 |
-
- tr
|
50 |
-
- uk
|
51 |
-
- ur
|
52 |
-
- vi
|
53 |
-
license: apache-2.0
|
54 |
-
library_name: sentence-transformers
|
55 |
-
tags:
|
56 |
-
- sentence-transformers
|
57 |
-
- feature-extraction
|
58 |
-
- sentence-similarity
|
59 |
-
- transformers
|
60 |
-
language_bcp47:
|
61 |
-
- fr-ca
|
62 |
-
- pt-br
|
63 |
-
- zh-cn
|
64 |
-
- zh-tw
|
65 |
-
pipeline_tag: sentence-similarity
|
66 |
-
---
|
67 |
-
|
68 |
-
# sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
69 |
-
|
70 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
## Usage (Sentence-Transformers)
|
75 |
-
|
76 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
77 |
-
|
78 |
-
```
|
79 |
-
pip install -U sentence-transformers
|
80 |
-
```
|
81 |
-
|
82 |
-
Then you can use the model like this:
|
83 |
-
|
84 |
-
```python
|
85 |
-
from sentence_transformers import SentenceTransformer
|
86 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
87 |
-
|
88 |
-
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
89 |
-
embeddings = model.encode(sentences)
|
90 |
-
print(embeddings)
|
91 |
-
```
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
## Usage (HuggingFace Transformers)
|
96 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
97 |
-
|
98 |
-
```python
|
99 |
-
from transformers import AutoTokenizer, AutoModel
|
100 |
-
import torch
|
101 |
-
|
102 |
-
|
103 |
-
# Mean Pooling - Take attention mask into account for correct averaging
|
104 |
-
def mean_pooling(model_output, attention_mask):
|
105 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
106 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
107 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
108 |
-
|
109 |
-
|
110 |
-
# Sentences we want sentence embeddings for
|
111 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
112 |
-
|
113 |
-
# Load model from HuggingFace Hub
|
114 |
-
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
115 |
-
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
116 |
-
|
117 |
-
# Tokenize sentences
|
118 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
119 |
-
|
120 |
-
# Compute token embeddings
|
121 |
-
with torch.no_grad():
|
122 |
-
model_output = model(**encoded_input)
|
123 |
-
|
124 |
-
# Perform pooling. In this case, max pooling.
|
125 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
126 |
-
|
127 |
-
print("Sentence embeddings:")
|
128 |
-
print(sentence_embeddings)
|
129 |
-
```
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
## Evaluation Results
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
## Full Model Architecture
|
142 |
-
```
|
143 |
-
SentenceTransformer(
|
144 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
145 |
-
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
146 |
-
)
|
147 |
-
```
|
148 |
-
|
149 |
-
## Citing & Authors
|
150 |
-
|
151 |
-
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
152 |
-
|
153 |
-
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
154 |
-
```bibtex
|
155 |
-
@inproceedings{reimers-2019-sentence-bert,
|
156 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
157 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
158 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
159 |
-
month = "11",
|
160 |
-
year = "2019",
|
161 |
-
publisher = "Association for Computational Linguistics",
|
162 |
-
url = "http://arxiv.org/abs/1908.10084",
|
163 |
-
}
|
164 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/0da3507018a1a1c625ff93179ff60bdb9202cc6c
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"do_lower_case": true, "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "tokenize_chinese_chars": true, "strip_accents": null, "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "old_models/paraphrase-multilingual-MiniLM-L12-v2/0_Transformer"}
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/2c3387be76557bd40970cec13153b3bbf80407865484b209e655e5e4729076b8
DELETED
The diff for this file is too large to render.
See raw diff
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/2ea7ad0e45a9d1d1591782ba7e29a703d0758831
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/5fd10429389515d3e5cccdeda08cae5fea1ae82e
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 128,
|
3 |
-
"do_lower_case": false
|
4 |
-
}
|
|
|
|
|
|
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/b974b349cb2d419ada11181750a733ff82f291ad
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "2.0.0",
|
4 |
-
"transformers": "4.7.0",
|
5 |
-
"pytorch": "1.9.0+cu102"
|
6 |
-
}
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/c06d5b49495f044e6380e68a60538be17a6bd5d1
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "old_models/paraphrase-multilingual-MiniLM-L12-v2/0_Transformer",
|
3 |
-
"architectures": [
|
4 |
-
"BertModel"
|
5 |
-
],
|
6 |
-
"attention_probs_dropout_prob": 0.1,
|
7 |
-
"gradient_checkpointing": false,
|
8 |
-
"hidden_act": "gelu",
|
9 |
-
"hidden_dropout_prob": 0.1,
|
10 |
-
"hidden_size": 384,
|
11 |
-
"initializer_range": 0.02,
|
12 |
-
"intermediate_size": 1536,
|
13 |
-
"layer_norm_eps": 1e-12,
|
14 |
-
"max_position_embeddings": 512,
|
15 |
-
"model_type": "bert",
|
16 |
-
"num_attention_heads": 12,
|
17 |
-
"num_hidden_layers": 12,
|
18 |
-
"pad_token_id": 0,
|
19 |
-
"position_embedding_type": "absolute",
|
20 |
-
"transformers_version": "4.7.0",
|
21 |
-
"type_vocab_size": 2,
|
22 |
-
"use_cache": true,
|
23 |
-
"vocab_size": 250037
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/d1514c3162bbe87b343f565fadc62e6c06f04f03
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"word_embedding_dimension": 384,
|
3 |
-
"pooling_mode_cls_token": false,
|
4 |
-
"pooling_mode_mean_tokens": true,
|
5 |
-
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b
|
3 |
-
size 470641600
|
|
|
|
|
|
|
|
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/f7640f94e81bb7f4f04daf1668850b38763a13d9
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "1_Pooling",
|
12 |
-
"type": "sentence_transformers.models.Pooling"
|
13 |
-
}
|
14 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|