clfegg commited on
Commit
b152350
·
verified ·
1 Parent(s): 1a12da3

Delete hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs

Browse files
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/065b011b76fe98894d8975acfa28f028085fa35b DELETED
@@ -1,164 +0,0 @@
1
- ---
2
- language:
3
- - multilingual
4
- - ar
5
- - bg
6
- - ca
7
- - cs
8
- - da
9
- - de
10
- - el
11
- - en
12
- - es
13
- - et
14
- - fa
15
- - fi
16
- - fr
17
- - gl
18
- - gu
19
- - he
20
- - hi
21
- - hr
22
- - hu
23
- - hy
24
- - id
25
- - it
26
- - ja
27
- - ka
28
- - ko
29
- - ku
30
- - lt
31
- - lv
32
- - mk
33
- - mn
34
- - mr
35
- - ms
36
- - my
37
- - nb
38
- - nl
39
- - pl
40
- - pt
41
- - ro
42
- - ru
43
- - sk
44
- - sl
45
- - sq
46
- - sr
47
- - sv
48
- - th
49
- - tr
50
- - uk
51
- - ur
52
- - vi
53
- license: apache-2.0
54
- library_name: sentence-transformers
55
- tags:
56
- - sentence-transformers
57
- - feature-extraction
58
- - sentence-similarity
59
- - transformers
60
- language_bcp47:
61
- - fr-ca
62
- - pt-br
63
- - zh-cn
64
- - zh-tw
65
- pipeline_tag: sentence-similarity
66
- ---
67
-
68
- # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
69
-
70
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
71
-
72
-
73
-
74
- ## Usage (Sentence-Transformers)
75
-
76
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
77
-
78
- ```
79
- pip install -U sentence-transformers
80
- ```
81
-
82
- Then you can use the model like this:
83
-
84
- ```python
85
- from sentence_transformers import SentenceTransformer
86
- sentences = ["This is an example sentence", "Each sentence is converted"]
87
-
88
- model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
89
- embeddings = model.encode(sentences)
90
- print(embeddings)
91
- ```
92
-
93
-
94
-
95
- ## Usage (HuggingFace Transformers)
96
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
97
-
98
- ```python
99
- from transformers import AutoTokenizer, AutoModel
100
- import torch
101
-
102
-
103
- # Mean Pooling - Take attention mask into account for correct averaging
104
- def mean_pooling(model_output, attention_mask):
105
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
106
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
107
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
108
-
109
-
110
- # Sentences we want sentence embeddings for
111
- sentences = ['This is an example sentence', 'Each sentence is converted']
112
-
113
- # Load model from HuggingFace Hub
114
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
115
- model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
116
-
117
- # Tokenize sentences
118
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
119
-
120
- # Compute token embeddings
121
- with torch.no_grad():
122
- model_output = model(**encoded_input)
123
-
124
- # Perform pooling. In this case, max pooling.
125
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
126
-
127
- print("Sentence embeddings:")
128
- print(sentence_embeddings)
129
- ```
130
-
131
-
132
-
133
- ## Evaluation Results
134
-
135
-
136
-
137
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
138
-
139
-
140
-
141
- ## Full Model Architecture
142
- ```
143
- SentenceTransformer(
144
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
145
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
146
- )
147
- ```
148
-
149
- ## Citing & Authors
150
-
151
- This model was trained by [sentence-transformers](https://www.sbert.net/).
152
-
153
- If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
154
- ```bibtex
155
- @inproceedings{reimers-2019-sentence-bert,
156
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
157
- author = "Reimers, Nils and Gurevych, Iryna",
158
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
159
- month = "11",
160
- year = "2019",
161
- publisher = "Association for Computational Linguistics",
162
- url = "http://arxiv.org/abs/1908.10084",
163
- }
164
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/0da3507018a1a1c625ff93179ff60bdb9202cc6c DELETED
@@ -1 +0,0 @@
1
- {"do_lower_case": true, "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "tokenize_chinese_chars": true, "strip_accents": null, "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "old_models/paraphrase-multilingual-MiniLM-L12-v2/0_Transformer"}
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/2c3387be76557bd40970cec13153b3bbf80407865484b209e655e5e4729076b8 DELETED
The diff for this file is too large to render. See raw diff
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/2ea7ad0e45a9d1d1591782ba7e29a703d0758831 DELETED
@@ -1 +0,0 @@
1
- {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/5fd10429389515d3e5cccdeda08cae5fea1ae82e DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "max_seq_length": 128,
3
- "do_lower_case": false
4
- }
 
 
 
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/b974b349cb2d419ada11181750a733ff82f291ad DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "2.0.0",
4
- "transformers": "4.7.0",
5
- "pytorch": "1.9.0+cu102"
6
- }
7
- }
 
 
 
 
 
 
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/c06d5b49495f044e6380e68a60538be17a6bd5d1 DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "_name_or_path": "old_models/paraphrase-multilingual-MiniLM-L12-v2/0_Transformer",
3
- "architectures": [
4
- "BertModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "gradient_checkpointing": false,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.1,
10
- "hidden_size": 384,
11
- "initializer_range": 0.02,
12
- "intermediate_size": 1536,
13
- "layer_norm_eps": 1e-12,
14
- "max_position_embeddings": 512,
15
- "model_type": "bert",
16
- "num_attention_heads": 12,
17
- "num_hidden_layers": 12,
18
- "pad_token_id": 0,
19
- "position_embedding_type": "absolute",
20
- "transformers_version": "4.7.0",
21
- "type_vocab_size": 2,
22
- "use_cache": true,
23
- "vocab_size": 250037
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/d1514c3162bbe87b343f565fadc62e6c06f04f03 DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "word_embedding_dimension": 384,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false
7
- }
 
 
 
 
 
 
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b
3
- size 470641600
 
 
 
 
hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/f7640f94e81bb7f4f04daf1668850b38763a13d9 DELETED
@@ -1,14 +0,0 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
- ]