Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.95 +/- 0.34
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afc9f4722597e548cf8971c2478148903090add8e379a867fab7a6da32592006
|
3 |
+
size 109627
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -24,19 +26,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1680984936081902521,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3MPYPlg7VDz5+w4/3MPYPlg7VDz5+w4/3MPYPlg7VDz5+w4/3MPYPlg7VDz5+w4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhdCJvnrnur/FbEq/EhqqvtU7rT5dfWW/qD+pPyHygb/YaV++BG55P0gJpD83jWY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADcw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD3cw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD3cw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD3cw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.4233693 0.0129536 0.5585323]\n [0.4233693 0.0129536 0.5585323]\n [0.4233693 0.0129536 0.5585323]\n [0.4233693 0.0129536 0.5585323]]",
|
40 |
+
"desired_goal": "[[-0.269169 -1.4601891 -0.7907222 ]\n [-0.33223015 0.3383471 -0.89644414]\n [ 1.3222551 -1.0152017 -0.2181772 ]\n [ 0.97433496 1.2815332 0.90059227]]",
|
41 |
+
"observation": "[[ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]\n [ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]\n [ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]\n [ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADNuQvRD8Kb1cxxg+xq6YvADx9zyI6gY+khzSvVssvj0Q54E+3l1TPaUmnLxBlSw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.0707303 -0.04150015 0.149198 ]\n [-0.01863803 0.03026628 0.13175404]\n [-0.10259356 0.09285804 0.253716 ]\n [ 0.05160319 -0.0190614 0.16853811]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwtgysAB8r+UhpRSlIwBbJRLMowBdJRHQKfDUy31BdF1fZQoaAZoCWgPQwimDvJ6MKngv5SGlFKUaBVLMmgWR0CnwxexwAEMdX2UKGgGaAloD0MIGVQbnIh+8L+UhpRSlGgVSzJoFkdAp8LapNsWPHV9lChoBmgJaA9DCHYYk/5eiua/lIaUUpRoFUsyaBZHQKfCkSyt3fR1fZQoaAZoCWgPQwg0K9uHvOXwv5SGlFKUaBVLMmgWR0CnxNfhuO0cdX2UKGgGaAloD0MIgqlm1lLA5r+UhpRSlGgVSzJoFkdAp8Sb6vaDf3V9lChoBmgJaA9DCAWnPpC88+C/lIaUUpRoFUsyaBZHQKfEXjlPrOZ1fZQoaAZoCWgPQwifPCzUmmbov5SGlFKUaBVLMmgWR0CnxBQXAM2FdX2UKGgGaAloD0MImyFVFK+y7r+UhpRSlGgVSzJoFkdAp8XtqWTouHV9lChoBmgJaA9DCEbu6eqOReO/lIaUUpRoFUsyaBZHQKfFsXgLqlh1fZQoaAZoCWgPQwjgTEwXYvXsv5SGlFKUaBVLMmgWR0CnxXOLJjlQdX2UKGgGaAloD0MIBg5o6Qo29L+UhpRSlGgVSzJoFkdAp8UpDE3sHHV9lChoBmgJaA9DCAE1tWytr+i/lIaUUpRoFUsyaBZHQKfG/Q/oq1B1fZQoaAZoCWgPQwio5JzYQ7vwv5SGlFKUaBVLMmgWR0CnxsDVQQ+VdX2UKGgGaAloD0MI0h3EzhQ65r+UhpRSlGgVSzJoFkdAp8aC/TLGJnV9lChoBmgJaA9DCChk521s9uy/lIaUUpRoFUsyaBZHQKfGOKfnOjZ1fZQoaAZoCWgPQwgxJZLoZRTov5SGlFKUaBVLMmgWR0CnyAFfAsTWdX2UKGgGaAloD0MIukp319mQ2b+UhpRSlGgVSzJoFkdAp8fFAC4jKXV9lChoBmgJaA9DCJ92+Guyxuq/lIaUUpRoFUsyaBZHQKfHhuYx+KF1fZQoaAZoCWgPQwgGf7+YLdngv5SGlFKUaBVLMmgWR0CnxzyB9TgmdX2UKGgGaAloD0MIv2TjwRa71b+UhpRSlGgVSzJoFkdAp8kDqhUR4HV9lChoBmgJaA9DCEcCDTZ1HuW/lIaUUpRoFUsyaBZHQKfIx5jYqXp1fZQoaAZoCWgPQwj+Cpkrg2riv5SGlFKUaBVLMmgWR0CnyImWMS9NdX2UKGgGaAloD0MIbxEY6xuY4b+UhpRSlGgVSzJoFkdAp8g/hIe5nXV9lChoBmgJaA9DCOYEbXL4pOm/lIaUUpRoFUsyaBZHQKfKDKq4pc51fZQoaAZoCWgPQwgeG4F4XT/qv5SGlFKUaBVLMmgWR0CnydBRIjGDdX2UKGgGaAloD0MI+KkqNBBL8r+UhpRSlGgVSzJoFkdAp8mSWTot+XV9lChoBmgJaA9DCJfiqrLvium/lIaUUpRoFUsyaBZHQKfJR//echF1fZQoaAZoCWgPQwi2ZFWEm4zcv5SGlFKUaBVLMmgWR0CnyxOdoWYXdX2UKGgGaAloD0MIXMZNDTQf4r+UhpRSlGgVSzJoFkdAp8rXFLnLaHV9lChoBmgJaA9DCH78pUV90vi/lIaUUpRoFUsyaBZHQKfKmS00FbF1fZQoaAZoCWgPQwhq+uyA64rfv5SGlFKUaBVLMmgWR0Cnyk7X6InCdX2UKGgGaAloD0MIdopVgzC367+UhpRSlGgVSzJoFkdAp8xODnNgSnV9lChoBmgJaA9DCMBAECBDR+u/lIaUUpRoFUsyaBZHQKfMEuCf6Gh1fZQoaAZoCWgPQwiRtvEnKhviv5SGlFKUaBVLMmgWR0Cny9UIcBEKdX2UKGgGaAloD0MIntFWJZG98r+UhpRSlGgVSzJoFkdAp8uK3EyckXV9lChoBmgJaA9DCHcP0H05s+a/lIaUUpRoFUsyaBZHQKfNlf6XSjR1fZQoaAZoCWgPQwinQdE8gEXsv5SGlFKUaBVLMmgWR0CnzVqfFrEcdX2UKGgGaAloD0MI3uaNk8I8/L+UhpRSlGgVSzJoFkdAp80csOG0u3V9lChoBmgJaA9DCEjF/x1Roe+/lIaUUpRoFUsyaBZHQKfM0m9g4Ot1fZQoaAZoCWgPQwjzrQ/rjVrqv5SGlFKUaBVLMmgWR0CnzpgCOmzjdX2UKGgGaAloD0MIgZauYBtx6r+UhpRSlGgVSzJoFkdAp85bslb/wXV9lChoBmgJaA9DCCtqMA3DR+O/lIaUUpRoFUsyaBZHQKfOHcC5mRN1fZQoaAZoCWgPQwg82jhiLb7rv5SGlFKUaBVLMmgWR0CnzdObZvkzdX2UKGgGaAloD0MIlPYGX5jM+b+UhpRSlGgVSzJoFkdAp8+mCROk+HV9lChoBmgJaA9DCMQLIlLTLue/lIaUUpRoFUsyaBZHQKfPaY5T6zp1fZQoaAZoCWgPQwhmogip29nav5SGlFKUaBVLMmgWR0CnzyuQ6p5vdX2UKGgGaAloD0MI8l1KXTIO57+UhpRSlGgVSzJoFkdAp87hOafBe3V9lChoBmgJaA9DCFtgj4mU5uO/lIaUUpRoFUsyaBZHQKfQrjWCmMx1fZQoaAZoCWgPQwgJVP8gkuH3v5SGlFKUaBVLMmgWR0Cn0HH+yZ8bdX2UKGgGaAloD0MI/d07akyI6r+UhpRSlGgVSzJoFkdAp9Az39JjD3V9lChoBmgJaA9DCMzQeCKI89+/lIaUUpRoFUsyaBZHQKfP6XkYGdJ1fZQoaAZoCWgPQwgyOiAJ+3bwv5SGlFKUaBVLMmgWR0Cn0dO7YkE+dX2UKGgGaAloD0MIUYL+Qo+Y57+UhpRSlGgVSzJoFkdAp9GXjENvwXV9lChoBmgJaA9DCPDce7jkuOG/lIaUUpRoFUsyaBZHQKfRWYVIqb11fZQoaAZoCWgPQwjVz5uKVBjgv5SGlFKUaBVLMmgWR0Cn0Q8+A3DOdX2UKGgGaAloD0MIq1rSUQ5my7+UhpRSlGgVSzJoFkdAp9LYc5sCT3V9lChoBmgJaA9DCOEKKNTTx/G/lIaUUpRoFUsyaBZHQKfSnEsrd311fZQoaAZoCWgPQwgMzXUaaSnnv5SGlFKUaBVLMmgWR0Cn0l5ML4N7dX2UKGgGaAloD0MIyF9a1Cd587+UhpRSlGgVSzJoFkdAp9IUJ6Y3N3V9lChoBmgJaA9DCNvC81KxMdC/lIaUUpRoFUsyaBZHQKfT3LDhtLt1fZQoaAZoCWgPQwh5knTN5Bvjv5SGlFKUaBVLMmgWR0Cn06Bj4HopdX2UKGgGaAloD0MIK0t0lllE8L+UhpRSlGgVSzJoFkdAp9NiS/0ulHV9lChoBmgJaA9DCH7Er1jDxe2/lIaUUpRoFUsyaBZHQKfTGAAAAAB1fZQoaAZoCWgPQwjUDn9N1qjrv5SGlFKUaBVLMmgWR0Cn1Ogdn004dX2UKGgGaAloD0MIYTPABdky4L+UhpRSlGgVSzJoFkdAp9SrvJA+p3V9lChoBmgJaA9DCOKuXkVGB+e/lIaUUpRoFUsyaBZHQKfUba6BiCt1fZQoaAZoCWgPQwj4cMlxp/Tiv5SGlFKUaBVLMmgWR0Cn1CM/6frbdX2UKGgGaAloD0MIJICbxYuF7L+UhpRSlGgVSzJoFkdAp9X9jLB9C3V9lChoBmgJaA9DCPePhegQuO+/lIaUUpRoFUsyaBZHQKfVwWqtHQR1fZQoaAZoCWgPQwixFp8CYLzxv5SGlFKUaBVLMmgWR0Cn1YOGj9GadX2UKGgGaAloD0MIfzScMjcf8L+UhpRSlGgVSzJoFkdAp9U5RuTA33V9lChoBmgJaA9DCKispuuJLvC/lIaUUpRoFUsyaBZHQKfXDceKba11fZQoaAZoCWgPQwiT/fM0YJDtv5SGlFKUaBVLMmgWR0Cn1tF2vB8AdX2UKGgGaAloD0MIzt2ul6YI3r+UhpRSlGgVSzJoFkdAp9aTxLCemXV9lChoBmgJaA9DCBb7y+7Jw9m/lIaUUpRoFUsyaBZHQKfWSe5Fw1l1fZQoaAZoCWgPQwiHF0Skpp34v5SGlFKUaBVLMmgWR0Cn2BvTPSlWdX2UKGgGaAloD0MIamgDsAER6b+UhpRSlGgVSzJoFkdAp9ffS8an8HV9lChoBmgJaA9DCHtpigCn9/q/lIaUUpRoFUsyaBZHQKfXoUt7KJV1fZQoaAZoCWgPQwgJiEm4kEflv5SGlFKUaBVLMmgWR0Cn11cPvrnldX2UKGgGaAloD0MIIlUUr7K267+UhpRSlGgVSzJoFkdAp9nAlWwNb3V9lChoBmgJaA9DCB+7C5QUGPO/lIaUUpRoFUsyaBZHQKfZhS1E3Kl1fZQoaAZoCWgPQwiMZ9DQPwH1v5SGlFKUaBVLMmgWR0Cn2Uf7aZhKdX2UKGgGaAloD0MIppvEILBy4L+UhpRSlGgVSzJoFkdAp9j+iFj/dnV9lChoBmgJaA9DCM0eaAWGrPa/lIaUUpRoFUsyaBZHQKfbZr6ciGF1fZQoaAZoCWgPQwgp6PaSxmjcv5SGlFKUaBVLMmgWR0Cn2ys98qnWdX2UKGgGaAloD0MIeVioNc076b+UhpRSlGgVSzJoFkdAp9rtx82Ji3V9lChoBmgJaA9DCIQpyqXxS/m/lIaUUpRoFUsyaBZHQKfapGz8gp11fZQoaAZoCWgPQwiBy2PNyCDwv5SGlFKUaBVLMmgWR0Cn3UDtG/etdX2UKGgGaAloD0MIlIYahSQz5b+UhpRSlGgVSzJoFkdAp90FSIgvDnV9lChoBmgJaA9DCGjMJOoFX/2/lIaUUpRoFUsyaBZHQKfcyDBdld11fZQoaAZoCWgPQwglsaTcfY70v5SGlFKUaBVLMmgWR0Cn3IBbwBo3dX2UKGgGaAloD0MIGuHtQQjIv7+UhpRSlGgVSzJoFkdAp97/j+717XV9lChoBmgJaA9DCDcXf9sTpOy/lIaUUpRoFUsyaBZHQKfew9PDYRN1fZQoaAZoCWgPQwhWKxN+qZ/gv5SGlFKUaBVLMmgWR0Cn3oaBqbjMdX2UKGgGaAloD0MI4Nv0Zz/S4b+UhpRSlGgVSzJoFkdAp948+A3DN3V9lChoBmgJaA9DCFrXaDnQQ/S/lIaUUpRoFUsyaBZHQKfg5PZ7HAB1fZQoaAZoCWgPQwgtBaT9D7Dfv5SGlFKUaBVLMmgWR0Cn4KmI9C/odX2UKGgGaAloD0MIniXICKhw37+UhpRSlGgVSzJoFkdAp+Bscjqv/3V9lChoBmgJaA9DCHE6yVaX0/C/lIaUUpRoFUsyaBZHQKfgIwwj+rF1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e80225ec5e8dc2553e85e5d309195d4f66371bb835e82cb57dfa3ad6ed9d68cb
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f80e82404bc0b40f4ff43421881c4f0815d7417c9f0a8f6d9e0f02f8e6ca6e0c
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fba9dbb91f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba9dbb7e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680981136924972598, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4wTLPvp9hztGJg8/4wTLPvp9hztGJg8/4wTLPvp9hztGJg8/4wTLPvp9hztGJg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAt1HP7Iquj8kaiq/APOxP2QDfb/3rNo9AtQmPkNfQ74BD8o/305lv2cL1j9xFJ0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADjBMs++n2HO0YmDz8aSTE8MmeeuZ77UjzjBMs++n2HO0YmDz8aSTE8MmeeuZ77UjzjBMs++n2HO0YmDz8aSTE8MmeeuZ77UjzjBMs++n2HO0YmDz8aSTE8MmeeuZ77UjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39652166 0.00413489 0.55917776]\n [0.39652166 0.00413489 0.55917776]\n [0.39652166 0.00413489 0.55917776]\n [0.39652166 0.00413489 0.55917776]]", "desired_goal": "[[ 0.78071606 1.454428 -0.6656821 ]\n [ 1.3902283 -0.988333 0.10677522]\n [ 0.16291812 -0.19079308 1.5785829 ]\n [-0.8957347 1.672223 1.2271863 ]]", "observation": "[[ 3.9652166e-01 4.1348906e-03 5.5917776e-01 1.0820651e-02\n -3.0212995e-04 1.2877373e-02]\n [ 3.9652166e-01 4.1348906e-03 5.5917776e-01 1.0820651e-02\n -3.0212995e-04 1.2877373e-02]\n [ 3.9652166e-01 4.1348906e-03 5.5917776e-01 1.0820651e-02\n -3.0212995e-04 1.2877373e-02]\n [ 3.9652166e-01 4.1348906e-03 5.5917776e-01 1.0820651e-02\n -3.0212995e-04 1.2877373e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh1deuz7Cer3maCQ+DC4JvtcVWD0wR408ZIi/vSikDT0603A9qvK/PSZ6AD1I1Vg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00339267 -0.0612204 0.1605564 ]\n [-0.13396472 0.0527552 0.01724586]\n [-0.09352186 0.03458038 0.05879519]\n [ 0.09372456 0.03136649 0.05293778]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG9e/6zNXE8CUhpRSlIwBbJRLMowBdJRHQKfzz/RVp9J1fZQoaAZoCWgPQwieYP91bmodwJSGlFKUaBVLMmgWR0Cn85NP557gdX2UKGgGaAloD0MI3nGKjuSCGcCUhpRSlGgVSzJoFkdAp/NYj0L+gnV9lChoBmgJaA9DCK8l5IOe1SfAlIaUUpRoFUsyaBZHQKfzGCDEm6Z1fZQoaAZoCWgPQwgQQGoTJ+ccwJSGlFKUaBVLMmgWR0Cn9PT9KmKqdX2UKGgGaAloD0MIHNDSFWwjEMCUhpRSlGgVSzJoFkdAp/S5ZfUnX3V9lChoBmgJaA9DCFFrmnecYhnAlIaUUpRoFUsyaBZHQKf0fngYP5J1fZQoaAZoCWgPQwioqWVrfQEYwJSGlFKUaBVLMmgWR0Cn9D3c580DdX2UKGgGaAloD0MIrdug9luLGsCUhpRSlGgVSzJoFkdAp/YohdMTOHV9lChoBmgJaA9DCAXhCijUYyDAlIaUUpRoFUsyaBZHQKf17EBsANp1fZQoaAZoCWgPQwjLFHMQdLwiwJSGlFKUaBVLMmgWR0Cn9bFvqC6IdX2UKGgGaAloD0MIxciSOZY3BMCUhpRSlGgVSzJoFkdAp/Vx+lTFVHV9lChoBmgJaA9DCLnH0ocuKB3AlIaUUpRoFUsyaBZHQKf3QwJPZZl1fZQoaAZoCWgPQwitodReRMsXwJSGlFKUaBVLMmgWR0Cn9wbmEGqxdX2UKGgGaAloD0MIDi4dc54BGsCUhpRSlGgVSzJoFkdAp/bMOoYNzHV9lChoBmgJaA9DCIJ0sWmlMBTAlIaUUpRoFUsyaBZHQKf2i83dbgV1fZQoaAZoCWgPQwi8r8qFyr8dwJSGlFKUaBVLMmgWR0Cn+HApazNVdX2UKGgGaAloD0MIsp5afXUVC8CUhpRSlGgVSzJoFkdAp/g0e0XxfHV9lChoBmgJaA9DCJLmj2ltehnAlIaUUpRoFUsyaBZHQKf3+gkC3gF1fZQoaAZoCWgPQwhn170ViZkdwJSGlFKUaBVLMmgWR0Cn97lyJbdKdX2UKGgGaAloD0MIu7ThsDRQHsCUhpRSlGgVSzJoFkdAp/mV2icoY3V9lChoBmgJaA9DCCpUNxd/EyHAlIaUUpRoFUsyaBZHQKf5WTnJT2p1fZQoaAZoCWgPQwhtdM5PcYwmwJSGlFKUaBVLMmgWR0Cn+R6F/QSjdX2UKGgGaAloD0MIXI5XIHpiG8CUhpRSlGgVSzJoFkdAp/jfPomoi3V9lChoBmgJaA9DCNu/stKkXCbAlIaUUpRoFUsyaBZHQKf6r16mfoR1fZQoaAZoCWgPQwjQCgxZ3fokwJSGlFKUaBVLMmgWR0Cn+nL2xptadX2UKGgGaAloD0MIYr8n1qkCIcCUhpRSlGgVSzJoFkdAp/o37pFCs3V9lChoBmgJaA9DCIPb2sLz0iHAlIaUUpRoFUsyaBZHQKf59z5oGpx1fZQoaAZoCWgPQwiMvKyJBfYkwJSGlFKUaBVLMmgWR0Cn+9pPAO8TdX2UKGgGaAloD0MIyT7IsmBCHMCUhpRSlGgVSzJoFkdAp/ueFN+LFXV9lChoBmgJaA9DCIXrUbgehSfAlIaUUpRoFUsyaBZHQKf7Y2TgVGl1fZQoaAZoCWgPQwgXu31WmdkawJSGlFKUaBVLMmgWR0Cn+yLe67NCdX2UKGgGaAloD0MI+7DeqBUOJMCUhpRSlGgVSzJoFkdAp/ztnqVyFXV9lChoBmgJaA9DCNeKNse53RjAlIaUUpRoFUsyaBZHQKf8sNrj5sV1fZQoaAZoCWgPQwiMTMCvkWwgwJSGlFKUaBVLMmgWR0Cn/HX84xUOdX2UKGgGaAloD0MI7GrylNXsJMCUhpRSlGgVSzJoFkdAp/w1TYNAknV9lChoBmgJaA9DCO1mRj8aXhXAlIaUUpRoFUsyaBZHQKf+h5nlGPR1fZQoaAZoCWgPQwiiluZWCHsgwJSGlFKUaBVLMmgWR0Cn/kuloDgZdX2UKGgGaAloD0MIn8coz7wMGsCUhpRSlGgVSzJoFkdAp/4RH9WIXXV9lChoBmgJaA9DCA1RhT/DuwvAlIaUUpRoFUsyaBZHQKf90h0Qsf91fZQoaAZoCWgPQwiAme/gJ14bwJSGlFKUaBVLMmgWR0CoADcTrVvudX2UKGgGaAloD0MIiuYBLPJrJMCUhpRSlGgVSzJoFkdAp//7PjXFtXV9lChoBmgJaA9DCBX/d0SFShzAlIaUUpRoFUsyaBZHQKf/wOWjXWh1fZQoaAZoCWgPQwhZTkLpC7EhwJSGlFKUaBVLMmgWR0Cn/4ELYwqRdX2UKGgGaAloD0MINEsC1NSiHsCUhpRSlGgVSzJoFkdAqAHzdi2Dx3V9lChoBmgJaA9DCGUaTS7GsBzAlIaUUpRoFUsyaBZHQKgBuI5YHPh1fZQoaAZoCWgPQwjZsKayKAwawJSGlFKUaBVLMmgWR0CoAX5wn6VMdX2UKGgGaAloD0MI7s9FQ8brIMCUhpRSlGgVSzJoFkdAqAE+ykbgj3V9lChoBmgJaA9DCHwm++dpAB3AlIaUUpRoFUsyaBZHQKgDwx4Y77t1fZQoaAZoCWgPQwgGE38UdSYiwJSGlFKUaBVLMmgWR0CoA4dPUKAsdX2UKGgGaAloD0MIlrGhm/0hG8CUhpRSlGgVSzJoFkdAqANNM495hXV9lChoBmgJaA9DCBSVDWsqYyTAlIaUUpRoFUsyaBZHQKgDDXDFZPl1fZQoaAZoCWgPQwh9zt2ul0YbwJSGlFKUaBVLMmgWR0CoBZgeJYT1dX2UKGgGaAloD0MI0erkDMUlIMCUhpRSlGgVSzJoFkdAqAVdkrf+CXV9lChoBmgJaA9DCPwZ3qzB6xfAlIaUUpRoFUsyaBZHQKgFJCwbEP11fZQoaAZoCWgPQwg7x4Ds9d4cwJSGlFKUaBVLMmgWR0CoBOVb7j1gdX2UKGgGaAloD0MILXdmguEMGcCUhpRSlGgVSzJoFkdAqAdZiobXH3V9lChoBmgJaA9DCOWXwRiRqBfAlIaUUpRoFUsyaBZHQKgHHeTFERd1fZQoaAZoCWgPQwjlYDYBhoUawJSGlFKUaBVLMmgWR0CoBuQFs54odX2UKGgGaAloD0MIPs3Ji0xgH8CUhpRSlGgVSzJoFkdAqAaj0Fr2x3V9lChoBmgJaA9DCAzKNJpc9CDAlIaUUpRoFUsyaBZHQKgIjZq20At1fZQoaAZoCWgPQwi1/MBVnrAdwJSGlFKUaBVLMmgWR0CoCFEMkQf7dX2UKGgGaAloD0MIujE9YYknIcCUhpRSlGgVSzJoFkdAqAgWaF23a3V9lChoBmgJaA9DCN481SE3wx7AlIaUUpRoFUsyaBZHQKgH1bJwKjV1fZQoaAZoCWgPQwijHqLRHcQZwJSGlFKUaBVLMmgWR0CoCbkzwc5sdX2UKGgGaAloD0MIzv5AuW1vFcCUhpRSlGgVSzJoFkdAqAl86DGtIXV9lChoBmgJaA9DCJJ3DmWoShLAlIaUUpRoFUsyaBZHQKgJQtDD0lJ1fZQoaAZoCWgPQwgpCYm0jb8cwJSGlFKUaBVLMmgWR0CoCQLxy4nXdX2UKGgGaAloD0MIQN1AgXfyGMCUhpRSlGgVSzJoFkdAqAq7s6aLGnV9lChoBmgJaA9DCIZ1492R4SHAlIaUUpRoFUsyaBZHQKgKfwXqJMx1fZQoaAZoCWgPQwijWG5pNQQWwJSGlFKUaBVLMmgWR0CoCkRvm5lOdX2UKGgGaAloD0MI9u/6zFk/HMCUhpRSlGgVSzJoFkdAqAoDjJdSl3V9lChoBmgJaA9DCJAWZwxzghjAlIaUUpRoFUsyaBZHQKgLv8ZUDMh1fZQoaAZoCWgPQwgZV1wclQsXwJSGlFKUaBVLMmgWR0CoC4Mfq5bydX2UKGgGaAloD0MILlkV4SYzGMCUhpRSlGgVSzJoFkdAqAtIggX/HnV9lChoBmgJaA9DCKnBNAwfoSDAlIaUUpRoFUsyaBZHQKgLB83Mpw11fZQoaAZoCWgPQwgkDtlAusgswJSGlFKUaBVLMmgWR0CoDNNapxWDdX2UKGgGaAloD0MITzv8NVkzHsCUhpRSlGgVSzJoFkdAqAyWyVv/BHV9lChoBmgJaA9DCAZmhSLdrxrAlIaUUpRoFUsyaBZHQKgMXEjPfKp1fZQoaAZoCWgPQwjc8Sa/RacXwJSGlFKUaBVLMmgWR0CoDBwsPJ7tdX2UKGgGaAloD0MIRfZBlgUDGsCUhpRSlGgVSzJoFkdAqA3vcDbJwXV9lChoBmgJaA9DCMZrXtVZ7SHAlIaUUpRoFUsyaBZHQKgNsqsEJSl1fZQoaAZoCWgPQwgwhJz3/8ERwJSGlFKUaBVLMmgWR0CoDXgXdj5LdX2UKGgGaAloD0MI740hADimIMCUhpRSlGgVSzJoFkdAqA033ai9I3V9lChoBmgJaA9DCOAvZktW9RnAlIaUUpRoFUsyaBZHQKgO8HlfZ291fZQoaAZoCWgPQwgoKbAAppwSwJSGlFKUaBVLMmgWR0CoDrPGhmGudX2UKGgGaAloD0MIw7mGGRrPGcCUhpRSlGgVSzJoFkdAqA55xT850nV9lChoBmgJaA9DCAowLH++XRvAlIaUUpRoFUsyaBZHQKgOORcu8K51fZQoaAZoCWgPQwgNx/MZUK8dwJSGlFKUaBVLMmgWR0CoD/ARsdkrdX2UKGgGaAloD0MIjUP9Lmz9F8CUhpRSlGgVSzJoFkdAqA+zpJPIn3V9lChoBmgJaA9DCAR0X85sBx3AlIaUUpRoFUsyaBZHQKgPeNuLrHF1fZQoaAZoCWgPQwjT3uALkyEiwJSGlFKUaBVLMmgWR0CoDzgmZ3LWdX2UKGgGaAloD0MIoE/kSdIFFsCUhpRSlGgVSzJoFkdAqBDo3eenRHV9lChoBmgJaA9DCI24ADRKJxfAlIaUUpRoFUsyaBZHQKgQrB2OhkB1fZQoaAZoCWgPQwgaprbUQSYwwJSGlFKUaBVLMmgWR0CoEHFd9lVcdX2UKGgGaAloD0MICMiXUMHRH8CUhpRSlGgVSzJoFkdAqBAwlD4QBnV9lChoBmgJaA9DCC3qk9xhYxbAlIaUUpRoFUsyaBZHQKgR6kWykbh1fZQoaAZoCWgPQwhsdw/QfVkbwJSGlFKUaBVLMmgWR0CoEa34bjtHdX2UKGgGaAloD0MI5ZfBGJHoG8CUhpRSlGgVSzJoFkdAqBFzDhtLtnV9lChoBmgJaA9DCD6T/fM00BrAlIaUUpRoFUsyaBZHQKgRMr6LwWp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fba9dbb91f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba9dbb7e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680984936081902521, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3MPYPlg7VDz5+w4/3MPYPlg7VDz5+w4/3MPYPlg7VDz5+w4/3MPYPlg7VDz5+w4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhdCJvnrnur/FbEq/EhqqvtU7rT5dfWW/qD+pPyHygb/YaV++BG55P0gJpD83jWY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADcw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD3cw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD3cw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD3cw9g+WDtUPPn7Dj9kCTA92K9cuWnqMD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4233693 0.0129536 0.5585323]\n [0.4233693 0.0129536 0.5585323]\n [0.4233693 0.0129536 0.5585323]\n [0.4233693 0.0129536 0.5585323]]", "desired_goal": "[[-0.269169 -1.4601891 -0.7907222 ]\n [-0.33223015 0.3383471 -0.89644414]\n [ 1.3222551 -1.0152017 -0.2181772 ]\n [ 0.97433496 1.2815332 0.90059227]]", "observation": "[[ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]\n [ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]\n [ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]\n [ 4.2336929e-01 1.2953602e-02 5.5853230e-01 4.2977706e-02\n -2.1046342e-04 4.3192301e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADNuQvRD8Kb1cxxg+xq6YvADx9zyI6gY+khzSvVssvj0Q54E+3l1TPaUmnLxBlSw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0707303 -0.04150015 0.149198 ]\n [-0.01863803 0.03026628 0.13175404]\n [-0.10259356 0.09285804 0.253716 ]\n [ 0.05160319 -0.0190614 0.16853811]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwtgysAB8r+UhpRSlIwBbJRLMowBdJRHQKfDUy31BdF1fZQoaAZoCWgPQwimDvJ6MKngv5SGlFKUaBVLMmgWR0CnwxexwAEMdX2UKGgGaAloD0MIGVQbnIh+8L+UhpRSlGgVSzJoFkdAp8LapNsWPHV9lChoBmgJaA9DCHYYk/5eiua/lIaUUpRoFUsyaBZHQKfCkSyt3fR1fZQoaAZoCWgPQwg0K9uHvOXwv5SGlFKUaBVLMmgWR0CnxNfhuO0cdX2UKGgGaAloD0MIgqlm1lLA5r+UhpRSlGgVSzJoFkdAp8Sb6vaDf3V9lChoBmgJaA9DCAWnPpC88+C/lIaUUpRoFUsyaBZHQKfEXjlPrOZ1fZQoaAZoCWgPQwifPCzUmmbov5SGlFKUaBVLMmgWR0CnxBQXAM2FdX2UKGgGaAloD0MImyFVFK+y7r+UhpRSlGgVSzJoFkdAp8XtqWTouHV9lChoBmgJaA9DCEbu6eqOReO/lIaUUpRoFUsyaBZHQKfFsXgLqlh1fZQoaAZoCWgPQwjgTEwXYvXsv5SGlFKUaBVLMmgWR0CnxXOLJjlQdX2UKGgGaAloD0MIBg5o6Qo29L+UhpRSlGgVSzJoFkdAp8UpDE3sHHV9lChoBmgJaA9DCAE1tWytr+i/lIaUUpRoFUsyaBZHQKfG/Q/oq1B1fZQoaAZoCWgPQwio5JzYQ7vwv5SGlFKUaBVLMmgWR0CnxsDVQQ+VdX2UKGgGaAloD0MI0h3EzhQ65r+UhpRSlGgVSzJoFkdAp8aC/TLGJnV9lChoBmgJaA9DCChk521s9uy/lIaUUpRoFUsyaBZHQKfGOKfnOjZ1fZQoaAZoCWgPQwgxJZLoZRTov5SGlFKUaBVLMmgWR0CnyAFfAsTWdX2UKGgGaAloD0MIukp319mQ2b+UhpRSlGgVSzJoFkdAp8fFAC4jKXV9lChoBmgJaA9DCJ92+Guyxuq/lIaUUpRoFUsyaBZHQKfHhuYx+KF1fZQoaAZoCWgPQwgGf7+YLdngv5SGlFKUaBVLMmgWR0CnxzyB9TgmdX2UKGgGaAloD0MIv2TjwRa71b+UhpRSlGgVSzJoFkdAp8kDqhUR4HV9lChoBmgJaA9DCEcCDTZ1HuW/lIaUUpRoFUsyaBZHQKfIx5jYqXp1fZQoaAZoCWgPQwj+Cpkrg2riv5SGlFKUaBVLMmgWR0CnyImWMS9NdX2UKGgGaAloD0MIbxEY6xuY4b+UhpRSlGgVSzJoFkdAp8g/hIe5nXV9lChoBmgJaA9DCOYEbXL4pOm/lIaUUpRoFUsyaBZHQKfKDKq4pc51fZQoaAZoCWgPQwgeG4F4XT/qv5SGlFKUaBVLMmgWR0CnydBRIjGDdX2UKGgGaAloD0MI+KkqNBBL8r+UhpRSlGgVSzJoFkdAp8mSWTot+XV9lChoBmgJaA9DCJfiqrLvium/lIaUUpRoFUsyaBZHQKfJR//echF1fZQoaAZoCWgPQwi2ZFWEm4zcv5SGlFKUaBVLMmgWR0CnyxOdoWYXdX2UKGgGaAloD0MIXMZNDTQf4r+UhpRSlGgVSzJoFkdAp8rXFLnLaHV9lChoBmgJaA9DCH78pUV90vi/lIaUUpRoFUsyaBZHQKfKmS00FbF1fZQoaAZoCWgPQwhq+uyA64rfv5SGlFKUaBVLMmgWR0Cnyk7X6InCdX2UKGgGaAloD0MIdopVgzC367+UhpRSlGgVSzJoFkdAp8xODnNgSnV9lChoBmgJaA9DCMBAECBDR+u/lIaUUpRoFUsyaBZHQKfMEuCf6Gh1fZQoaAZoCWgPQwiRtvEnKhviv5SGlFKUaBVLMmgWR0Cny9UIcBEKdX2UKGgGaAloD0MIntFWJZG98r+UhpRSlGgVSzJoFkdAp8uK3EyckXV9lChoBmgJaA9DCHcP0H05s+a/lIaUUpRoFUsyaBZHQKfNlf6XSjR1fZQoaAZoCWgPQwinQdE8gEXsv5SGlFKUaBVLMmgWR0CnzVqfFrEcdX2UKGgGaAloD0MI3uaNk8I8/L+UhpRSlGgVSzJoFkdAp80csOG0u3V9lChoBmgJaA9DCEjF/x1Roe+/lIaUUpRoFUsyaBZHQKfM0m9g4Ot1fZQoaAZoCWgPQwjzrQ/rjVrqv5SGlFKUaBVLMmgWR0CnzpgCOmzjdX2UKGgGaAloD0MIgZauYBtx6r+UhpRSlGgVSzJoFkdAp85bslb/wXV9lChoBmgJaA9DCCtqMA3DR+O/lIaUUpRoFUsyaBZHQKfOHcC5mRN1fZQoaAZoCWgPQwg82jhiLb7rv5SGlFKUaBVLMmgWR0CnzdObZvkzdX2UKGgGaAloD0MIlPYGX5jM+b+UhpRSlGgVSzJoFkdAp8+mCROk+HV9lChoBmgJaA9DCMQLIlLTLue/lIaUUpRoFUsyaBZHQKfPaY5T6zp1fZQoaAZoCWgPQwhmogip29nav5SGlFKUaBVLMmgWR0CnzyuQ6p5vdX2UKGgGaAloD0MI8l1KXTIO57+UhpRSlGgVSzJoFkdAp87hOafBe3V9lChoBmgJaA9DCFtgj4mU5uO/lIaUUpRoFUsyaBZHQKfQrjWCmMx1fZQoaAZoCWgPQwgJVP8gkuH3v5SGlFKUaBVLMmgWR0Cn0HH+yZ8bdX2UKGgGaAloD0MI/d07akyI6r+UhpRSlGgVSzJoFkdAp9Az39JjD3V9lChoBmgJaA9DCMzQeCKI89+/lIaUUpRoFUsyaBZHQKfP6XkYGdJ1fZQoaAZoCWgPQwgyOiAJ+3bwv5SGlFKUaBVLMmgWR0Cn0dO7YkE+dX2UKGgGaAloD0MIUYL+Qo+Y57+UhpRSlGgVSzJoFkdAp9GXjENvwXV9lChoBmgJaA9DCPDce7jkuOG/lIaUUpRoFUsyaBZHQKfRWYVIqb11fZQoaAZoCWgPQwjVz5uKVBjgv5SGlFKUaBVLMmgWR0Cn0Q8+A3DOdX2UKGgGaAloD0MIq1rSUQ5my7+UhpRSlGgVSzJoFkdAp9LYc5sCT3V9lChoBmgJaA9DCOEKKNTTx/G/lIaUUpRoFUsyaBZHQKfSnEsrd311fZQoaAZoCWgPQwgMzXUaaSnnv5SGlFKUaBVLMmgWR0Cn0l5ML4N7dX2UKGgGaAloD0MIyF9a1Cd587+UhpRSlGgVSzJoFkdAp9IUJ6Y3N3V9lChoBmgJaA9DCNvC81KxMdC/lIaUUpRoFUsyaBZHQKfT3LDhtLt1fZQoaAZoCWgPQwh5knTN5Bvjv5SGlFKUaBVLMmgWR0Cn06Bj4HopdX2UKGgGaAloD0MIK0t0lllE8L+UhpRSlGgVSzJoFkdAp9NiS/0ulHV9lChoBmgJaA9DCH7Er1jDxe2/lIaUUpRoFUsyaBZHQKfTGAAAAAB1fZQoaAZoCWgPQwjUDn9N1qjrv5SGlFKUaBVLMmgWR0Cn1Ogdn004dX2UKGgGaAloD0MIYTPABdky4L+UhpRSlGgVSzJoFkdAp9SrvJA+p3V9lChoBmgJaA9DCOKuXkVGB+e/lIaUUpRoFUsyaBZHQKfUba6BiCt1fZQoaAZoCWgPQwj4cMlxp/Tiv5SGlFKUaBVLMmgWR0Cn1CM/6frbdX2UKGgGaAloD0MIJICbxYuF7L+UhpRSlGgVSzJoFkdAp9X9jLB9C3V9lChoBmgJaA9DCPePhegQuO+/lIaUUpRoFUsyaBZHQKfVwWqtHQR1fZQoaAZoCWgPQwixFp8CYLzxv5SGlFKUaBVLMmgWR0Cn1YOGj9GadX2UKGgGaAloD0MIfzScMjcf8L+UhpRSlGgVSzJoFkdAp9U5RuTA33V9lChoBmgJaA9DCKispuuJLvC/lIaUUpRoFUsyaBZHQKfXDceKba11fZQoaAZoCWgPQwiT/fM0YJDtv5SGlFKUaBVLMmgWR0Cn1tF2vB8AdX2UKGgGaAloD0MIzt2ul6YI3r+UhpRSlGgVSzJoFkdAp9aTxLCemXV9lChoBmgJaA9DCBb7y+7Jw9m/lIaUUpRoFUsyaBZHQKfWSe5Fw1l1fZQoaAZoCWgPQwiHF0Skpp34v5SGlFKUaBVLMmgWR0Cn2BvTPSlWdX2UKGgGaAloD0MIamgDsAER6b+UhpRSlGgVSzJoFkdAp9ffS8an8HV9lChoBmgJaA9DCHtpigCn9/q/lIaUUpRoFUsyaBZHQKfXoUt7KJV1fZQoaAZoCWgPQwgJiEm4kEflv5SGlFKUaBVLMmgWR0Cn11cPvrnldX2UKGgGaAloD0MIIlUUr7K267+UhpRSlGgVSzJoFkdAp9nAlWwNb3V9lChoBmgJaA9DCB+7C5QUGPO/lIaUUpRoFUsyaBZHQKfZhS1E3Kl1fZQoaAZoCWgPQwiMZ9DQPwH1v5SGlFKUaBVLMmgWR0Cn2Uf7aZhKdX2UKGgGaAloD0MIppvEILBy4L+UhpRSlGgVSzJoFkdAp9j+iFj/dnV9lChoBmgJaA9DCM0eaAWGrPa/lIaUUpRoFUsyaBZHQKfbZr6ciGF1fZQoaAZoCWgPQwgp6PaSxmjcv5SGlFKUaBVLMmgWR0Cn2ys98qnWdX2UKGgGaAloD0MIeVioNc076b+UhpRSlGgVSzJoFkdAp9rtx82Ji3V9lChoBmgJaA9DCIQpyqXxS/m/lIaUUpRoFUsyaBZHQKfapGz8gp11fZQoaAZoCWgPQwiBy2PNyCDwv5SGlFKUaBVLMmgWR0Cn3UDtG/etdX2UKGgGaAloD0MIlIYahSQz5b+UhpRSlGgVSzJoFkdAp90FSIgvDnV9lChoBmgJaA9DCGjMJOoFX/2/lIaUUpRoFUsyaBZHQKfcyDBdld11fZQoaAZoCWgPQwglsaTcfY70v5SGlFKUaBVLMmgWR0Cn3IBbwBo3dX2UKGgGaAloD0MIGuHtQQjIv7+UhpRSlGgVSzJoFkdAp97/j+717XV9lChoBmgJaA9DCDcXf9sTpOy/lIaUUpRoFUsyaBZHQKfew9PDYRN1fZQoaAZoCWgPQwhWKxN+qZ/gv5SGlFKUaBVLMmgWR0Cn3oaBqbjMdX2UKGgGaAloD0MI4Nv0Zz/S4b+UhpRSlGgVSzJoFkdAp948+A3DN3V9lChoBmgJaA9DCFrXaDnQQ/S/lIaUUpRoFUsyaBZHQKfg5PZ7HAB1fZQoaAZoCWgPQwgtBaT9D7Dfv5SGlFKUaBVLMmgWR0Cn4KmI9C/odX2UKGgGaAloD0MIniXICKhw37+UhpRSlGgVSzJoFkdAp+Bscjqv/3V9lChoBmgJaA9DCHE6yVaX0/C/lIaUUpRoFUsyaBZHQKfgIwwj+rF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.9484167364425957, "std_reward": 0.3420355309669667, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-08T21:06:35.826566"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:491cc0ae1dd49f8343fb28ddf156b986c4fbfa82ab13e444cdd540c727840258
|
3 |
size 2381
|