clementWizard
commited on
Commit
•
7677a6d
1
Parent(s):
19728fa
End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1721891769.josh-desktop.30569.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layout-lm
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layout-lm
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6696
|
21 |
+
- Answer: {'precision': 0.7092896174863388, 'recall': 0.8022249690976514, 'f1': 0.7529002320185615, 'number': 809}
|
22 |
+
- Header: {'precision': 0.26618705035971224, 'recall': 0.31092436974789917, 'f1': 0.2868217054263566, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7170
|
25 |
+
- Overall Recall: 0.7842
|
26 |
+
- Overall F1: 0.7491
|
27 |
+
- Overall Accuracy: 0.8090
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7756 | 1.0 | 10 | 1.5443 | {'precision': 0.022977022977022976, 'recall': 0.02843016069221261, 'f1': 0.025414364640883976, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18486486486486486, 'recall': 0.16056338028169015, 'f1': 0.17185929648241205, 'number': 1065} | 0.1007 | 0.0973 | 0.0990 | 0.3934 |
|
60 |
+
| 1.4156 | 2.0 | 20 | 1.2218 | {'precision': 0.2844311377245509, 'recall': 0.3522867737948084, 'f1': 0.3147432357813363, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4658151765589782, 'recall': 0.5821596244131455, 'f1': 0.5175292153589315, 'number': 1065} | 0.3879 | 0.4541 | 0.4184 | 0.5974 |
|
61 |
+
| 1.0947 | 3.0 | 30 | 0.9351 | {'precision': 0.45348837209302323, 'recall': 0.5784919653893696, 'f1': 0.5084193373166758, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5731800766283525, 'recall': 0.7023474178403756, 'f1': 0.6312236286919831, 'number': 1065} | 0.5155 | 0.6101 | 0.5588 | 0.7042 |
|
62 |
+
| 0.8401 | 4.0 | 40 | 0.8011 | {'precision': 0.5671361502347417, 'recall': 0.7466007416563659, 'f1': 0.6446104589114193, 'number': 809} | {'precision': 0.03636363636363636, 'recall': 0.01680672268907563, 'f1': 0.022988505747126436, 'number': 119} | {'precision': 0.6641285956006768, 'recall': 0.7370892018779343, 'f1': 0.6987093902981754, 'number': 1065} | 0.6043 | 0.6979 | 0.6477 | 0.7447 |
|
63 |
+
| 0.6784 | 5.0 | 50 | 0.7088 | {'precision': 0.6298568507157464, 'recall': 0.761433868974042, 'f1': 0.689423614997202, 'number': 809} | {'precision': 0.13333333333333333, 'recall': 0.08403361344537816, 'f1': 0.10309278350515463, 'number': 119} | {'precision': 0.6869009584664537, 'recall': 0.8075117370892019, 'f1': 0.7423392317652138, 'number': 1065} | 0.6447 | 0.7456 | 0.6915 | 0.7832 |
|
64 |
+
| 0.5803 | 6.0 | 60 | 0.6837 | {'precision': 0.632512315270936, 'recall': 0.7935723114956736, 'f1': 0.7039473684210525, 'number': 809} | {'precision': 0.17, 'recall': 0.14285714285714285, 'f1': 0.15525114155251143, 'number': 119} | {'precision': 0.7255244755244755, 'recall': 0.7793427230046949, 'f1': 0.7514712539610684, 'number': 1065} | 0.6591 | 0.7471 | 0.7004 | 0.7899 |
|
65 |
+
| 0.5058 | 7.0 | 70 | 0.6616 | {'precision': 0.6632337796086509, 'recall': 0.796044499381953, 'f1': 0.7235955056179776, 'number': 809} | {'precision': 0.22935779816513763, 'recall': 0.21008403361344538, 'f1': 0.2192982456140351, 'number': 119} | {'precision': 0.7556917688266199, 'recall': 0.8103286384976526, 'f1': 0.7820570910738559, 'number': 1065} | 0.6895 | 0.7687 | 0.7269 | 0.8049 |
|
66 |
+
| 0.4504 | 8.0 | 80 | 0.6497 | {'precision': 0.6694045174537988, 'recall': 0.8059332509270705, 'f1': 0.7313516545148627, 'number': 809} | {'precision': 0.24778761061946902, 'recall': 0.23529411764705882, 'f1': 0.2413793103448276, 'number': 119} | {'precision': 0.7757255936675461, 'recall': 0.828169014084507, 'f1': 0.8010899182561309, 'number': 1065} | 0.7023 | 0.7837 | 0.7408 | 0.8126 |
|
67 |
+
| 0.4046 | 9.0 | 90 | 0.6455 | {'precision': 0.6864406779661016, 'recall': 0.8009888751545118, 'f1': 0.7393040501996578, 'number': 809} | {'precision': 0.25396825396825395, 'recall': 0.2689075630252101, 'f1': 0.2612244897959184, 'number': 119} | {'precision': 0.7812223206377326, 'recall': 0.828169014084507, 'f1': 0.8040109389243391, 'number': 1065} | 0.7103 | 0.7837 | 0.7452 | 0.8152 |
|
68 |
+
| 0.3936 | 10.0 | 100 | 0.6659 | {'precision': 0.6867088607594937, 'recall': 0.8046971569839307, 'f1': 0.7410358565737052, 'number': 809} | {'precision': 0.24193548387096775, 'recall': 0.25210084033613445, 'f1': 0.2469135802469136, 'number': 119} | {'precision': 0.7786811201445348, 'recall': 0.8093896713615023, 'f1': 0.7937384898710865, 'number': 1065} | 0.7081 | 0.7742 | 0.7397 | 0.8078 |
|
69 |
+
| 0.3364 | 11.0 | 110 | 0.6591 | {'precision': 0.6890308839190629, 'recall': 0.799752781211372, 'f1': 0.7402745995423341, 'number': 809} | {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} | {'precision': 0.7735682819383259, 'recall': 0.8244131455399061, 'f1': 0.7981818181818181, 'number': 1065} | 0.7084 | 0.7837 | 0.7442 | 0.8115 |
|
70 |
+
| 0.3265 | 12.0 | 120 | 0.6682 | {'precision': 0.6912393162393162, 'recall': 0.799752781211372, 'f1': 0.7415472779369628, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.3025210084033613, 'f1': 0.28346456692913385, 'number': 119} | {'precision': 0.7784697508896797, 'recall': 0.8215962441314554, 'f1': 0.7994518044769301, 'number': 1065} | 0.7098 | 0.7817 | 0.7440 | 0.8077 |
|
71 |
+
| 0.3079 | 13.0 | 130 | 0.6711 | {'precision': 0.7035830618892508, 'recall': 0.8009888751545118, 'f1': 0.7491329479768787, 'number': 809} | {'precision': 0.26717557251908397, 'recall': 0.29411764705882354, 'f1': 0.28, 'number': 119} | {'precision': 0.7762114537444934, 'recall': 0.8272300469483568, 'f1': 0.8009090909090909, 'number': 1065} | 0.7151 | 0.7847 | 0.7483 | 0.8090 |
|
72 |
+
| 0.2868 | 14.0 | 140 | 0.6677 | {'precision': 0.704225352112676, 'recall': 0.8034610630407911, 'f1': 0.7505773672055426, 'number': 809} | {'precision': 0.2835820895522388, 'recall': 0.31932773109243695, 'f1': 0.30039525691699603, 'number': 119} | {'precision': 0.7804444444444445, 'recall': 0.8244131455399061, 'f1': 0.8018264840182647, 'number': 1065} | 0.7177 | 0.7858 | 0.7502 | 0.8111 |
|
73 |
+
| 0.2863 | 15.0 | 150 | 0.6696 | {'precision': 0.7092896174863388, 'recall': 0.8022249690976514, 'f1': 0.7529002320185615, 'number': 809} | {'precision': 0.26618705035971224, 'recall': 0.31092436974789917, 'f1': 0.2868217054263566, 'number': 119} | {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} | 0.7170 | 0.7842 | 0.7491 | 0.8090 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.43.2
|
79 |
+
- Pytorch 2.3.1+cu121
|
80 |
+
- Datasets 2.20.0
|
81 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1721891769.josh-desktop.30569.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84955c4382e2893fcdfac7b0d510a91872d50e810557e62b8e8d0cf0ceae4560
|
3 |
+
size 16060
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d7f3946c1b6e3ef809a0cf3ceb751a84d1f144149ab5140ae913cb9f8458b77
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|