pushing model
Browse files- README.md +4 -3
- cleanba_ppo_envpool_impala_atari_wrapper.cleanrl_model +2 -2
- cleanba_ppo_envpool_impala_atari_wrapper.py +56 -9
- events.out.tfevents.1676611831.ip-26-0-130-181.1151330.0 → events.out.tfevents.1678210197.ip-26-0-141-70 +2 -2
- poetry.lock +0 -0
- pyproject.toml +18 -162
- replay.mp4 +0 -0
- videos/Tutankham-v5__cleanba_ppo_envpool_impala_atari_wrapper__1__8e9eb61e-29b5-4771-b9d3-bd644ea96b7a-eval/0.mp4 +0 -0
- videos/Tutankham-v5__cleanba_ppo_envpool_impala_atari_wrapper__1__f396779d-340e-4192-8178-86eb90315d3f-eval/0.mp4 +0 -0
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: Tutankham-v5
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
@@ -46,7 +46,7 @@ curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_
|
|
46 |
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
|
47 |
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
|
48 |
poetry install --all-extras
|
49 |
-
python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 1
|
50 |
```
|
51 |
|
52 |
# Hyperparameters
|
@@ -59,6 +59,7 @@ python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-devic
|
|
59 |
'batch_size': 15360,
|
60 |
'capture_video': False,
|
61 |
'clip_coef': 0.1,
|
|
|
62 |
'cuda': True,
|
63 |
'distributed': True,
|
64 |
'ent_coef': 0.01,
|
@@ -99,7 +100,7 @@ python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-devic
|
|
99 |
'upload_model': True,
|
100 |
'vf_coef': 0.5,
|
101 |
'wandb_entity': None,
|
102 |
-
'wandb_project_name': '
|
103 |
'world_size': 2}
|
104 |
```
|
105 |
|
|
|
16 |
type: Tutankham-v5
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 279.00 +/- 39.06
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
46 |
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
|
47 |
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
|
48 |
poetry install --all-extras
|
49 |
+
python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 1
|
50 |
```
|
51 |
|
52 |
# Hyperparameters
|
|
|
59 |
'batch_size': 15360,
|
60 |
'capture_video': False,
|
61 |
'clip_coef': 0.1,
|
62 |
+
'concurrency': True,
|
63 |
'cuda': True,
|
64 |
'distributed': True,
|
65 |
'ent_coef': 0.01,
|
|
|
100 |
'upload_model': True,
|
101 |
'vf_coef': 0.5,
|
102 |
'wandb_entity': None,
|
103 |
+
'wandb_project_name': 'cleanba',
|
104 |
'world_size': 2}
|
105 |
```
|
106 |
|
cleanba_ppo_envpool_impala_atari_wrapper.cleanrl_model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5aecff440c81fc86e2089d9539106bf0e9a7afe02d9551bb9fad02d731f4170e
|
3 |
+
size 4368279
|
cleanba_ppo_envpool_impala_atari_wrapper.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_async_jax_scan_impalanet_machadopy
|
2 |
import argparse
|
3 |
import os
|
4 |
import random
|
@@ -26,7 +25,7 @@ import numpy as np
|
|
26 |
import optax
|
27 |
from flax.linen.initializers import constant, orthogonal
|
28 |
from flax.training.train_state import TrainState
|
29 |
-
from
|
30 |
|
31 |
|
32 |
def parse_args():
|
@@ -47,7 +46,7 @@ def parse_args():
|
|
47 |
parser.add_argument("--wandb-entity", type=str, default=None,
|
48 |
help="the entity (team) of wandb's project")
|
49 |
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
50 |
-
help="
|
51 |
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
52 |
help="whether to save model into the `runs/{run_name}` folder")
|
53 |
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
@@ -97,6 +96,8 @@ def parse_args():
|
|
97 |
help="the device ids that learner workers will use")
|
98 |
parser.add_argument("--distributed", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
99 |
help="whether to use `jax.distirbuted`")
|
|
|
|
|
100 |
parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
101 |
help="whether to call block_until_ready() for profiling")
|
102 |
parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
@@ -213,7 +214,7 @@ class AgentParams:
|
|
213 |
|
214 |
@partial(jax.jit, static_argnums=(3))
|
215 |
def get_action_and_value(
|
216 |
-
params:
|
217 |
next_obs: np.ndarray,
|
218 |
key: jax.random.PRNGKey,
|
219 |
action_dim: int,
|
@@ -281,6 +282,20 @@ def prepare_data(
|
|
281 |
return b_obs, b_actions, b_logprobs, b_advantages, b_returns
|
282 |
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
def rollout(
|
285 |
key: jax.random.PRNGKey,
|
286 |
args,
|
@@ -289,7 +304,7 @@ def rollout(
|
|
289 |
writer,
|
290 |
learner_devices,
|
291 |
):
|
292 |
-
envs = make_env(args.env_id, args.seed, args.local_num_envs, args.async_batch_size)()
|
293 |
len_actor_device_ids = len(args.actor_device_ids)
|
294 |
global_step = 0
|
295 |
# TRY NOT TO MODIFY: start the game
|
@@ -332,9 +347,13 @@ def rollout(
|
|
332 |
# concurrently with the learning process. It also ensures the actor's policy version is only 1 step
|
333 |
# behind the learner's policy version
|
334 |
params_queue_get_time_start = time.time()
|
335 |
-
if
|
336 |
params = params_queue.get()
|
337 |
actor_policy_version += 1
|
|
|
|
|
|
|
|
|
338 |
params_queue_get_time.append(time.time() - params_queue_get_time_start)
|
339 |
writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
|
340 |
rollout_time_start = time.time()
|
@@ -397,18 +416,29 @@ def rollout(
|
|
397 |
writer.add_scalar("stats/inference_time", inference_time, global_step)
|
398 |
writer.add_scalar("stats/storage_time", storage_time, global_step)
|
399 |
writer.add_scalar("stats/env_send_time", env_send_time, global_step)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
payload = (
|
402 |
global_step,
|
403 |
actor_policy_version,
|
404 |
update,
|
405 |
obs,
|
406 |
-
dones,
|
407 |
values,
|
408 |
actions,
|
409 |
logprobs,
|
|
|
410 |
env_ids,
|
411 |
rewards,
|
|
|
412 |
)
|
413 |
if update == 1 or not args.test_actor_learner_throughput:
|
414 |
rollout_queue_put_time_start = time.time()
|
@@ -717,15 +747,21 @@ if __name__ == "__main__":
|
|
717 |
actor_policy_version,
|
718 |
update,
|
719 |
obs,
|
720 |
-
dones,
|
721 |
values,
|
722 |
actions,
|
723 |
logprobs,
|
|
|
724 |
env_ids,
|
725 |
rewards,
|
|
|
726 |
) = rollout_queue.get()
|
727 |
rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
|
728 |
writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
|
|
|
|
|
|
|
|
|
|
|
729 |
|
730 |
data_transfer_time_start = time.time()
|
731 |
b_obs, b_actions, b_logprobs, b_advantages, b_returns = prepare_data(
|
@@ -780,11 +816,22 @@ if __name__ == "__main__":
|
|
780 |
break
|
781 |
|
782 |
if args.save_model and args.local_rank == 0:
|
|
|
|
|
783 |
agent_state = flax.jax_utils.unreplicate(agent_state)
|
784 |
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
|
785 |
with open(model_path, "wb") as f:
|
786 |
f.write(
|
787 |
-
flax.serialization.to_bytes(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
788 |
)
|
789 |
print(f"model saved to {model_path}")
|
790 |
from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
|
|
|
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import random
|
|
|
25 |
import optax
|
26 |
from flax.linen.initializers import constant, orthogonal
|
27 |
from flax.training.train_state import TrainState
|
28 |
+
from tensorboardX import SummaryWriter
|
29 |
|
30 |
|
31 |
def parse_args():
|
|
|
46 |
parser.add_argument("--wandb-entity", type=str, default=None,
|
47 |
help="the entity (team) of wandb's project")
|
48 |
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
49 |
+
help="whether to capture videos of the agent performances (check out `videos` folder)")
|
50 |
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
51 |
help="whether to save model into the `runs/{run_name}` folder")
|
52 |
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
|
|
96 |
help="the device ids that learner workers will use")
|
97 |
parser.add_argument("--distributed", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
98 |
help="whether to use `jax.distirbuted`")
|
99 |
+
parser.add_argument("--concurrency", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
100 |
+
help="whether to run the actor and learner concurrently")
|
101 |
parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
102 |
help="whether to call block_until_ready() for profiling")
|
103 |
parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
|
|
214 |
|
215 |
@partial(jax.jit, static_argnums=(3))
|
216 |
def get_action_and_value(
|
217 |
+
params: flax.core.FrozenDict,
|
218 |
next_obs: np.ndarray,
|
219 |
key: jax.random.PRNGKey,
|
220 |
action_dim: int,
|
|
|
282 |
return b_obs, b_actions, b_logprobs, b_advantages, b_returns
|
283 |
|
284 |
|
285 |
+
@jax.jit
|
286 |
+
def make_bulk_array(
|
287 |
+
obs: list,
|
288 |
+
values: list,
|
289 |
+
actions: list,
|
290 |
+
logprobs: list,
|
291 |
+
):
|
292 |
+
obs = jnp.asarray(obs)
|
293 |
+
values = jnp.asarray(values)
|
294 |
+
actions = jnp.asarray(actions)
|
295 |
+
logprobs = jnp.asarray(logprobs)
|
296 |
+
return obs, values, actions, logprobs
|
297 |
+
|
298 |
+
|
299 |
def rollout(
|
300 |
key: jax.random.PRNGKey,
|
301 |
args,
|
|
|
304 |
writer,
|
305 |
learner_devices,
|
306 |
):
|
307 |
+
envs = make_env(args.env_id, args.seed + jax.process_index(), args.local_num_envs, args.async_batch_size)()
|
308 |
len_actor_device_ids = len(args.actor_device_ids)
|
309 |
global_step = 0
|
310 |
# TRY NOT TO MODIFY: start the game
|
|
|
347 |
# concurrently with the learning process. It also ensures the actor's policy version is only 1 step
|
348 |
# behind the learner's policy version
|
349 |
params_queue_get_time_start = time.time()
|
350 |
+
if not args.concurrency:
|
351 |
params = params_queue.get()
|
352 |
actor_policy_version += 1
|
353 |
+
else:
|
354 |
+
if update != 2:
|
355 |
+
params = params_queue.get()
|
356 |
+
actor_policy_version += 1
|
357 |
params_queue_get_time.append(time.time() - params_queue_get_time_start)
|
358 |
writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
|
359 |
rollout_time_start = time.time()
|
|
|
416 |
writer.add_scalar("stats/inference_time", inference_time, global_step)
|
417 |
writer.add_scalar("stats/storage_time", storage_time, global_step)
|
418 |
writer.add_scalar("stats/env_send_time", env_send_time, global_step)
|
419 |
+
# `make_bulk_array` is actually important. It accumulates the data from the lists
|
420 |
+
# into single bulk arrays, which later makes transferring the data to the learner's
|
421 |
+
# device slightly faster. See https://wandb.ai/costa-huang/cleanRL/reports/data-transfer-optimization--VmlldzozNjU5MTg1
|
422 |
+
if args.learner_device_ids[0] != args.actor_device_ids[0]:
|
423 |
+
obs, values, actions, logprobs = make_bulk_array(
|
424 |
+
obs,
|
425 |
+
values,
|
426 |
+
actions,
|
427 |
+
logprobs,
|
428 |
+
)
|
429 |
|
430 |
payload = (
|
431 |
global_step,
|
432 |
actor_policy_version,
|
433 |
update,
|
434 |
obs,
|
|
|
435 |
values,
|
436 |
actions,
|
437 |
logprobs,
|
438 |
+
dones,
|
439 |
env_ids,
|
440 |
rewards,
|
441 |
+
np.mean(params_queue_get_time),
|
442 |
)
|
443 |
if update == 1 or not args.test_actor_learner_throughput:
|
444 |
rollout_queue_put_time_start = time.time()
|
|
|
747 |
actor_policy_version,
|
748 |
update,
|
749 |
obs,
|
|
|
750 |
values,
|
751 |
actions,
|
752 |
logprobs,
|
753 |
+
dones,
|
754 |
env_ids,
|
755 |
rewards,
|
756 |
+
avg_params_queue_get_time,
|
757 |
) = rollout_queue.get()
|
758 |
rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
|
759 |
writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
|
760 |
+
writer.add_scalar(
|
761 |
+
"stats/rollout_params_queue_get_time_diff",
|
762 |
+
np.mean(rollout_queue_get_time) - avg_params_queue_get_time,
|
763 |
+
global_step,
|
764 |
+
)
|
765 |
|
766 |
data_transfer_time_start = time.time()
|
767 |
b_obs, b_actions, b_logprobs, b_advantages, b_returns = prepare_data(
|
|
|
816 |
break
|
817 |
|
818 |
if args.save_model and args.local_rank == 0:
|
819 |
+
if args.distributed:
|
820 |
+
jax.distributed.shutdown()
|
821 |
agent_state = flax.jax_utils.unreplicate(agent_state)
|
822 |
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
|
823 |
with open(model_path, "wb") as f:
|
824 |
f.write(
|
825 |
+
flax.serialization.to_bytes(
|
826 |
+
[
|
827 |
+
vars(args),
|
828 |
+
[
|
829 |
+
agent_state.params.network_params,
|
830 |
+
agent_state.params.actor_params,
|
831 |
+
agent_state.params.critic_params,
|
832 |
+
],
|
833 |
+
]
|
834 |
+
)
|
835 |
)
|
836 |
print(f"model saved to {model_path}")
|
837 |
from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
|
events.out.tfevents.1676611831.ip-26-0-130-181.1151330.0 → events.out.tfevents.1678210197.ip-26-0-141-70
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb9ad8c93aacb46dbf269fe778fb9847e7547f373457f24781dfb5729f52b5d
|
3 |
+
size 5017750
|
poetry.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
CHANGED
@@ -1,178 +1,34 @@
|
|
1 |
[tool.poetry]
|
2 |
-
name = "
|
3 |
-
version = "
|
4 |
-
description = "
|
5 |
authors = ["Costa Huang <costa.huang@outlook.com>"]
|
|
|
6 |
packages = [
|
7 |
-
{ include = "
|
8 |
{ include = "cleanrl_utils" },
|
9 |
]
|
10 |
-
keywords = ["reinforcement", "machine", "learning", "research"]
|
11 |
-
license="MIT"
|
12 |
-
readme = "README.md"
|
13 |
|
14 |
[tool.poetry.dependencies]
|
15 |
-
python = "
|
16 |
-
tensorboard = "^2.
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
gym = "0.23.1"
|
19 |
-
|
20 |
-
stable-baselines3 = "1.2.0"
|
21 |
-
gymnasium = "^0.26.3"
|
22 |
moviepy = "^1.0.3"
|
23 |
-
pygame = "2.1.0"
|
24 |
-
huggingface-hub = "^0.11.1"
|
25 |
|
26 |
-
ale-py = {version = "0.7.4", optional = true}
|
27 |
-
AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
|
28 |
-
opencv-python = {version = "^4.6.0.66", optional = true}
|
29 |
-
pybullet = {version = "3.1.8", optional = true}
|
30 |
-
procgen = {version = "^0.10.7", optional = true}
|
31 |
-
pytest = {version = "^7.1.3", optional = true}
|
32 |
-
mujoco = {version = "^2.2", optional = true}
|
33 |
-
imageio = {version = "^2.14.1", optional = true}
|
34 |
-
free-mujoco-py = {version = "^2.1.6", optional = true}
|
35 |
-
mkdocs-material = {version = "^8.4.3", optional = true}
|
36 |
-
markdown-include = {version = "^0.7.0", optional = true}
|
37 |
-
jax = {version = "^0.3.17", optional = true}
|
38 |
-
jaxlib = {version = "^0.3.15", optional = true}
|
39 |
-
flax = {version = "^0.6.0", optional = true}
|
40 |
-
optuna = {version = "^3.0.1", optional = true}
|
41 |
-
optuna-dashboard = {version = "^0.7.2", optional = true}
|
42 |
-
rich = {version = "<12.0", optional = true}
|
43 |
-
envpool = {version = "^0.8.1", optional = true}
|
44 |
-
PettingZoo = {version = "1.18.1", optional = true}
|
45 |
-
SuperSuit = {version = "3.4.0", optional = true}
|
46 |
-
multi-agent-ale-py = {version = "0.1.11", optional = true}
|
47 |
-
boto3 = {version = "^1.24.70", optional = true}
|
48 |
-
awscli = {version = "^1.25.71", optional = true}
|
49 |
-
shimmy = {version = "^0.1.0", optional = true}
|
50 |
-
dm-control = {version = "^1.0.8", optional = true}
|
51 |
|
52 |
[tool.poetry.group.dev.dependencies]
|
53 |
-
pre-commit = "^
|
54 |
-
|
55 |
-
[tool.poetry.group.atari]
|
56 |
-
optional = true
|
57 |
-
[tool.poetry.group.atari.dependencies]
|
58 |
-
ale-py = "0.7.4"
|
59 |
-
AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
|
60 |
-
opencv-python = "^4.6.0.66"
|
61 |
-
|
62 |
-
[tool.poetry.group.pybullet]
|
63 |
-
optional = true
|
64 |
-
[tool.poetry.group.pybullet.dependencies]
|
65 |
-
pybullet = "3.1.8"
|
66 |
-
|
67 |
-
[tool.poetry.group.procgen]
|
68 |
-
optional = true
|
69 |
-
[tool.poetry.group.procgen.dependencies]
|
70 |
-
procgen = "^0.10.7"
|
71 |
-
|
72 |
-
[tool.poetry.group.pytest]
|
73 |
-
optional = true
|
74 |
-
[tool.poetry.group.pytest.dependencies]
|
75 |
-
pytest = "^7.1.3"
|
76 |
-
|
77 |
-
[tool.poetry.group.mujoco]
|
78 |
-
optional = true
|
79 |
-
[tool.poetry.group.mujoco.dependencies]
|
80 |
-
mujoco = "^2.2"
|
81 |
-
imageio = "^2.14.1"
|
82 |
-
|
83 |
-
[tool.poetry.group.mujoco_py]
|
84 |
-
optional = true
|
85 |
-
[tool.poetry.group.mujoco_py.dependencies]
|
86 |
-
free-mujoco-py = "^2.1.6"
|
87 |
-
|
88 |
-
[tool.poetry.group.docs]
|
89 |
-
optional = true
|
90 |
-
[tool.poetry.group.docs.dependencies]
|
91 |
-
mkdocs-material = "^8.4.3"
|
92 |
-
markdown-include = "^0.7.0"
|
93 |
-
|
94 |
-
[tool.poetry.group.jax]
|
95 |
-
optional = true
|
96 |
-
[tool.poetry.group.jax.dependencies]
|
97 |
-
jax = "^0.3.17"
|
98 |
-
jaxlib = "^0.3.15"
|
99 |
-
flax = "^0.6.0"
|
100 |
-
|
101 |
-
[tool.poetry.group.optuna]
|
102 |
-
optional = true
|
103 |
-
[tool.poetry.group.optuna.dependencies]
|
104 |
-
optuna = "^3.0.1"
|
105 |
-
optuna-dashboard = "^0.7.2"
|
106 |
-
rich = "<12.0"
|
107 |
-
|
108 |
-
[tool.poetry.group.envpool]
|
109 |
-
optional = true
|
110 |
-
[tool.poetry.group.envpool.dependencies]
|
111 |
-
envpool = "^0.8.1"
|
112 |
-
|
113 |
-
[tool.poetry.group.pettingzoo]
|
114 |
-
optional = true
|
115 |
-
[tool.poetry.group.pettingzoo.dependencies]
|
116 |
-
PettingZoo = "1.18.1"
|
117 |
-
SuperSuit = "3.4.0"
|
118 |
-
multi-agent-ale-py = "0.1.11"
|
119 |
-
|
120 |
-
[tool.poetry.group.cloud]
|
121 |
-
optional = true
|
122 |
-
[tool.poetry.group.cloud.dependencies]
|
123 |
-
boto3 = "^1.24.70"
|
124 |
-
awscli = "^1.25.71"
|
125 |
-
|
126 |
-
[tool.poetry.group.isaacgym]
|
127 |
-
optional = true
|
128 |
-
[tool.poetry.group.isaacgym.dependencies]
|
129 |
-
isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry"}
|
130 |
-
isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
|
131 |
-
|
132 |
-
[tool.poetry.group.dm_control]
|
133 |
-
optional = true
|
134 |
-
[tool.poetry.group.dm_control.dependencies]
|
135 |
-
shimmy = "^0.1.0"
|
136 |
-
dm-control = "^1.0.8"
|
137 |
-
mujoco = "^2.2"
|
138 |
|
139 |
[build-system]
|
140 |
requires = ["poetry-core"]
|
141 |
build-backend = "poetry.core.masonry.api"
|
142 |
-
|
143 |
-
[tool.poetry.extras]
|
144 |
-
atari = ["ale-py", "AutoROM", "opencv-python"]
|
145 |
-
pybullet = ["pybullet"]
|
146 |
-
procgen = ["procgen"]
|
147 |
-
plot = ["pandas", "seaborn"]
|
148 |
-
pytest = ["pytest"]
|
149 |
-
mujoco = ["mujoco", "imageio"]
|
150 |
-
mujoco_py = ["free-mujoco-py"]
|
151 |
-
jax = ["jax", "jaxlib", "flax"]
|
152 |
-
docs = ["mkdocs-material", "markdown-include"]
|
153 |
-
envpool = ["envpool"]
|
154 |
-
optuna = ["optuna", "optuna-dashboard", "rich"]
|
155 |
-
pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
|
156 |
-
cloud = ["boto3", "awscli"]
|
157 |
-
dm_control = ["shimmy", "dm-control", "mujoco"]
|
158 |
-
|
159 |
-
# dependencies for algorithm variant (useful when you want to run a specific algorithm)
|
160 |
-
dqn = []
|
161 |
-
dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
|
162 |
-
dqn_jax = ["jax", "jaxlib", "flax"]
|
163 |
-
dqn_atari_jax = [
|
164 |
-
"ale-py", "AutoROM", "opencv-python", # atari
|
165 |
-
"jax", "jaxlib", "flax" # jax
|
166 |
-
]
|
167 |
-
c51 = []
|
168 |
-
c51_atari = ["ale-py", "AutoROM", "opencv-python"]
|
169 |
-
c51_jax = ["jax", "jaxlib", "flax"]
|
170 |
-
c51_atari_jax = [
|
171 |
-
"ale-py", "AutoROM", "opencv-python", # atari
|
172 |
-
"jax", "jaxlib", "flax" # jax
|
173 |
-
]
|
174 |
-
ppo_atari_envpool_xla_jax_scan = [
|
175 |
-
"ale-py", "AutoROM", "opencv-python", # atari
|
176 |
-
"jax", "jaxlib", "flax", # jax
|
177 |
-
"envpool", # envpool
|
178 |
-
]
|
|
|
1 |
[tool.poetry]
|
2 |
+
name = "cleanba"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
authors = ["Costa Huang <costa.huang@outlook.com>"]
|
6 |
+
readme = "README.md"
|
7 |
packages = [
|
8 |
+
{ include = "cleanba" },
|
9 |
{ include = "cleanrl_utils" },
|
10 |
]
|
|
|
|
|
|
|
11 |
|
12 |
[tool.poetry.dependencies]
|
13 |
+
python = "^3.8"
|
14 |
+
tensorboard = "^2.12.0"
|
15 |
+
envpool = "^0.8.1"
|
16 |
+
jax = "0.3.25"
|
17 |
+
flax = "0.6.0"
|
18 |
+
optax = "0.1.3"
|
19 |
+
huggingface-hub = "^0.12.0"
|
20 |
+
jaxlib = "0.3.25"
|
21 |
+
wandb = "^0.13.10"
|
22 |
+
tensorboardx = "^2.5.1"
|
23 |
+
chex = "0.1.5"
|
24 |
gym = "0.23.1"
|
25 |
+
opencv-python = "^4.7.0.68"
|
|
|
|
|
26 |
moviepy = "^1.0.3"
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
[tool.poetry.group.dev.dependencies]
|
30 |
+
pre-commit = "^3.0.4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
[build-system]
|
33 |
requires = ["poetry-core"]
|
34 |
build-backend = "poetry.core.masonry.api"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
videos/Tutankham-v5__cleanba_ppo_envpool_impala_atari_wrapper__1__8e9eb61e-29b5-4771-b9d3-bd644ea96b7a-eval/0.mp4
ADDED
Binary file (215 kB). View file
|
|
videos/Tutankham-v5__cleanba_ppo_envpool_impala_atari_wrapper__1__f396779d-340e-4192-8178-86eb90315d3f-eval/0.mp4
DELETED
Binary file (146 kB)
|
|