kinalmehta's picture
pushing model
8b9b439
raw
history blame
14.2 kB
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/c51/#c51_atari_jaxpy
import argparse
import os
import random
import time
from distutils.util import strtobool
os.environ[
"XLA_PYTHON_CLIENT_MEM_FRACTION"
] = "0.7" # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
import flax
import flax.linen as nn
import gym
import jax
import jax.numpy as jnp
import numpy as np
import optax
from flax.training.train_state import TrainState
from stable_baselines3.common.atari_wrappers import (
ClipRewardEnv,
EpisodicLifeEnv,
FireResetEnv,
MaxAndSkipEnv,
NoopResetEnv,
)
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to capture videos of the agent performances (check out `videos` folder)")
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to save model into the `runs/{run_name}` folder")
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to upload the saved model to huggingface")
parser.add_argument("--hf-entity", type=str, default="",
help="the user or org name of the model repository from the Hugging Face Hub")
# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=10000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--n-atoms", type=int, default=51,
help="the number of atoms")
parser.add_argument("--v-min", type=float, default=-10,
help="the number of atoms")
parser.add_argument("--v-max", type=float, default=10,
help="the number of atoms")
parser.add_argument("--buffer-size", type=int, default=1000000,
help="the replay memory buffer size")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--target-network-frequency", type=int, default=10000,
help="the timesteps it takes to update the target network")
parser.add_argument("--batch-size", type=int, default=32,
help="the batch size of sample from the reply memory")
parser.add_argument("--start-e", type=float, default=1,
help="the starting epsilon for exploration")
parser.add_argument("--end-e", type=float, default=0.01,
help="the ending epsilon for exploration")
parser.add_argument("--exploration-fraction", type=float, default=0.1,
help="the fraction of `total-timesteps` it takes from start-e to go end-e")
parser.add_argument("--learning-starts", type=int, default=80000,
help="timestep to start learning")
parser.add_argument("--train-frequency", type=int, default=4,
help="the frequency of training")
args = parser.parse_args()
# fmt: on
return args
def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = ClipRewardEnv(env)
env = gym.wrappers.ResizeObservation(env, (84, 84))
env = gym.wrappers.GrayScaleObservation(env)
env = gym.wrappers.FrameStack(env, 4)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
# ALGO LOGIC: initialize agent here:
class QNetwork(nn.Module):
action_dim: int
n_atoms: int
@nn.compact
def __call__(self, x):
x = jnp.transpose(x, (0, 2, 3, 1))
x = x / (255.0)
x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x)
x = nn.relu(x)
x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x)
x = nn.relu(x)
x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x)
x = nn.relu(x)
x = x.reshape((x.shape[0], -1))
x = nn.Dense(512)(x)
x = nn.relu(x)
x = nn.Dense(self.action_dim * self.n_atoms)(x)
x = x.reshape((x.shape[0], self.action_dim, self.n_atoms))
x = nn.softmax(x, axis=-1) # pmfs
return x
class TrainState(TrainState):
target_params: flax.core.FrozenDict
atoms: jnp.ndarray
def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
slope = (end_e - start_e) / duration
return max(slope * t + start_e, end_e)
if __name__ == "__main__":
args = parse_args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
key = jax.random.PRNGKey(args.seed)
key, q_key = jax.random.split(key, 2)
# env setup
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
obs = envs.reset()
q_network = QNetwork(action_dim=envs.single_action_space.n, n_atoms=args.n_atoms)
q_state = TrainState.create(
apply_fn=q_network.apply,
params=q_network.init(q_key, obs),
target_params=q_network.init(q_key, obs),
# directly using jnp.linspace leads to numerical errors
atoms=jnp.asarray(np.linspace(args.v_min, args.v_max, num=args.n_atoms)),
tx=optax.adam(learning_rate=args.learning_rate, eps=0.01 / args.batch_size),
)
q_network.apply = jax.jit(q_network.apply)
# This step is not necessary as init called on same observation and key will always lead to same initializations
q_state = q_state.replace(target_params=optax.incremental_update(q_state.params, q_state.target_params, 1))
rb = ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
"cpu",
optimize_memory_usage=True,
handle_timeout_termination=True,
)
@jax.jit
def update(q_state, observations, actions, next_observations, rewards, dones):
next_pmfs = q_network.apply(q_state.target_params, next_observations) # (batch_size, num_actions, num_atoms)
next_vals = (next_pmfs * q_state.atoms).sum(axis=-1) # (batch_size, num_actions)
next_action = jnp.argmax(next_vals, axis=-1) # (batch_size,)
next_pmfs = next_pmfs[np.arange(next_pmfs.shape[0]), next_action]
next_atoms = rewards + args.gamma * q_state.atoms * (1 - dones)
# projection
delta_z = q_state.atoms[1] - q_state.atoms[0]
tz = jnp.clip(next_atoms, a_min=(args.v_min), a_max=(args.v_max))
b = (tz - args.v_min) / delta_z
l = jnp.clip(jnp.floor(b), a_min=0, a_max=args.n_atoms - 1)
u = jnp.clip(jnp.ceil(b), a_min=0, a_max=args.n_atoms - 1)
# (l == u).astype(jnp.float) handles the case where bj is exactly an integer
# example bj = 1, then the upper ceiling should be uj= 2, and lj= 1
d_m_l = (u + (l == u).astype(jnp.float32) - b) * next_pmfs
d_m_u = (b - l) * next_pmfs
target_pmfs = jnp.zeros_like(next_pmfs)
def project_to_bins(i, val):
val = val.at[i, l[i].astype(jnp.int32)].add(d_m_l[i])
val = val.at[i, u[i].astype(jnp.int32)].add(d_m_u[i])
return val
target_pmfs = jax.lax.fori_loop(0, target_pmfs.shape[0], project_to_bins, target_pmfs)
def loss(q_params, observations, actions, target_pmfs):
pmfs = q_network.apply(q_params, observations)
old_pmfs = pmfs[np.arange(pmfs.shape[0]), actions.squeeze()]
old_pmfs_l = jnp.clip(old_pmfs, a_min=1e-5, a_max=1 - 1e-5)
loss = (-(target_pmfs * jnp.log(old_pmfs_l)).sum(-1)).mean()
return loss, (old_pmfs * q_state.atoms).sum(-1)
(loss_value, old_values), grads = jax.value_and_grad(loss, has_aux=True)(
q_state.params, observations, actions, target_pmfs
)
q_state = q_state.apply_gradients(grads=grads)
return loss_value, old_values, q_state
@jax.jit
def get_action(q_state, obs):
pmfs = q_network.apply(q_state.params, obs)
q_vals = (pmfs * q_state.atoms).sum(axis=-1)
actions = q_vals.argmax(axis=-1)
return actions
start_time = time.time()
# TRY NOT TO MODIFY: start the game
obs = envs.reset()
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
if random.random() < epsilon:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
actions = get_action(q_state, obs)
actions = jax.device_get(actions)
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, dones, infos = envs.step(actions)
# TRY NOT TO MODIFY: record rewards for plotting purposes
for info in infos:
if "episode" in info.keys():
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
writer.add_scalar("charts/epsilon", epsilon, global_step)
break
# TRY NOT TO MODIFY: save data to reply buffer; handle `terminal_observation`
real_next_obs = next_obs.copy()
for idx, d in enumerate(dones):
if d:
real_next_obs[idx] = infos[idx]["terminal_observation"]
rb.add(obs, real_next_obs, actions, rewards, dones, infos)
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
# ALGO LOGIC: training.
if global_step > args.learning_starts and global_step % args.train_frequency == 0:
data = rb.sample(args.batch_size)
loss, old_val, q_state = update(
q_state,
data.observations.numpy(),
data.actions.numpy(),
data.next_observations.numpy(),
data.rewards.numpy(),
data.dones.numpy(),
)
if global_step % 100 == 0:
writer.add_scalar("losses/loss", jax.device_get(loss), global_step)
writer.add_scalar("losses/q_values", jax.device_get(old_val.mean()), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
# update the target network
if global_step % args.target_network_frequency == 0:
q_state = q_state.replace(target_params=optax.incremental_update(q_state.params, q_state.target_params, 1))
if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
model_data = {
"model_weights": q_state.params,
"args": vars(args),
}
with open(model_path, "wb") as f:
f.write(flax.serialization.to_bytes(model_data))
print(f"model saved to {model_path}")
from cleanrl_utils.evals.c51_jax_eval import evaluate
episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=QNetwork,
epsilon=0.05,
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)
if args.upload_model:
from cleanrl_utils.huggingface import push_to_hub
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, episodic_returns, repo_id, "C51", f"runs/{run_name}", f"videos/{run_name}-eval")
envs.close()
writer.close()