vwxyzjn commited on
Commit
c614f4c
1 Parent(s): a71cb45

pushing model

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.cleanrl_model filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - Phoenix-v5
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ library_name: cleanrl
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Phoenix-v5
16
+ type: Phoenix-v5
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 29547.00 +/- 10751.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # (CleanRL) **PPO** Agent Playing **Phoenix-v5**
25
+
26
+ This is a trained model of a PPO agent playing Phoenix-v5.
27
+ The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
28
+ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.py).
29
+
30
+ ## Get Started
31
+
32
+ To use this model, please install the `cleanrl` package with the following command:
33
+
34
+ ```
35
+ pip install "cleanrl[jax,envpool,atari]"
36
+ python -m cleanrl_utils.enjoy --exp-name cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4 --env-id Phoenix-v5
37
+ ```
38
+
39
+ Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
40
+
41
+
42
+ ## Command to reproduce the training
43
+
44
+ ```bash
45
+ curl -OL https://huggingface.co/cleanrl/Phoenix-v5-cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4-seed10/raw/main/cleanba_impala_envpool_machado_atari_wrapper.py
46
+ curl -OL https://huggingface.co/cleanrl/Phoenix-v5-cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4-seed10/raw/main/pyproject.toml
47
+ curl -OL https://huggingface.co/cleanrl/Phoenix-v5-cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4-seed10/raw/main/poetry.lock
48
+ poetry install --all-extras
49
+ python cleanba_impala_envpool_machado_atari_wrapper.py --exp-name cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4 --distributed --learner-device-ids 1 --local-num-envs 30 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Phoenix-v5 --seed 10
50
+ ```
51
+
52
+ # Hyperparameters
53
+ ```python
54
+ {'actor_device_ids': [0],
55
+ 'actor_devices': ['gpu:0'],
56
+ 'anneal_lr': True,
57
+ 'async_batch_size': 30,
58
+ 'async_update': 1,
59
+ 'batch_size': 2400,
60
+ 'capture_video': False,
61
+ 'cuda': True,
62
+ 'distributed': True,
63
+ 'ent_coef': 0.01,
64
+ 'env_id': 'Phoenix-v5',
65
+ 'exp_name': 'cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4',
66
+ 'gamma': 0.99,
67
+ 'global_learner_decices': ['gpu:1', 'gpu:3', 'gpu:5', 'gpu:7'],
68
+ 'hf_entity': 'cleanrl',
69
+ 'learner_device_ids': [1],
70
+ 'learner_devices': ['gpu:1'],
71
+ 'learning_rate': 0.00025,
72
+ 'local_batch_size': 600,
73
+ 'local_minibatch_size': 300,
74
+ 'local_num_envs': 30,
75
+ 'local_rank': 0,
76
+ 'max_grad_norm': 0.5,
77
+ 'minibatch_size': 1200,
78
+ 'num_envs': 120,
79
+ 'num_minibatches': 2,
80
+ 'num_steps': 20,
81
+ 'num_updates': 20833,
82
+ 'profile': False,
83
+ 'save_model': True,
84
+ 'seed': 10,
85
+ 'target_kl': None,
86
+ 'test_actor_learner_throughput': False,
87
+ 'torch_deterministic': True,
88
+ 'total_timesteps': 50000000,
89
+ 'track': True,
90
+ 'upload_model': True,
91
+ 'vf_coef': 0.5,
92
+ 'wandb_entity': None,
93
+ 'wandb_project_name': 'cleanba',
94
+ 'world_size': 4}
95
+ ```
96
+
cleanba_impala_envpool_machado_atari_wrapper.py ADDED
@@ -0,0 +1,774 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import random
4
+ import time
5
+ import uuid
6
+ from collections import deque
7
+ from distutils.util import strtobool
8
+ from functools import partial
9
+ from typing import Sequence
10
+
11
+ os.environ[
12
+ "XLA_PYTHON_CLIENT_MEM_FRACTION"
13
+ ] = "0.6" # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
14
+ os.environ["XLA_FLAGS"] = "--xla_cpu_multi_thread_eigen=false " "intra_op_parallelism_threads=1"
15
+ import queue
16
+ import threading
17
+
18
+ import envpool
19
+ import flax
20
+ import flax.linen as nn
21
+ import gym
22
+ import jax
23
+ import jax.numpy as jnp
24
+ import numpy as np
25
+ import optax
26
+ import rlax
27
+ from flax.linen.initializers import constant, orthogonal
28
+ from flax.training.train_state import TrainState
29
+ from tensorboardX import SummaryWriter
30
+
31
+
32
+ def parse_args():
33
+ # fmt: off
34
+ parser = argparse.ArgumentParser()
35
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
36
+ help="the name of this experiment")
37
+ parser.add_argument("--seed", type=int, default=1,
38
+ help="seed of the experiment")
39
+ parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
40
+ help="if toggled, `torch.backends.cudnn.deterministic=False`")
41
+ parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
42
+ help="if toggled, cuda will be enabled by default")
43
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
44
+ help="if toggled, this experiment will be tracked with Weights and Biases")
45
+ parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
46
+ help="the wandb's project name")
47
+ parser.add_argument("--wandb-entity", type=str, default=None,
48
+ help="the entity (team) of wandb's project")
49
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
50
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
51
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
52
+ help="whether to save model into the `runs/{run_name}` folder")
53
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
54
+ help="whether to upload the saved model to huggingface")
55
+ parser.add_argument("--hf-entity", type=str, default="",
56
+ help="the user or org name of the model repository from the Hugging Face Hub")
57
+
58
+ # Algorithm specific arguments
59
+ parser.add_argument("--env-id", type=str, default="Breakout-v5",
60
+ help="the id of the environment")
61
+ parser.add_argument("--total-timesteps", type=int, default=50000000,
62
+ help="total timesteps of the experiments")
63
+ parser.add_argument("--learning-rate", type=float, default=2.5e-4,
64
+ help="the learning rate of the optimizer")
65
+ parser.add_argument("--local-num-envs", type=int, default=60,
66
+ help="the number of parallel game environments")
67
+ parser.add_argument("--num-steps", type=int, default=20,
68
+ help="the number of steps to run in each environment per policy rollout")
69
+ parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
70
+ help="Toggle learning rate annealing for policy and value networks")
71
+ parser.add_argument("--gamma", type=float, default=0.99,
72
+ help="the discount factor gamma")
73
+ parser.add_argument("--num-minibatches", type=int, default=2,
74
+ help="the number of mini-batches")
75
+ parser.add_argument("--ent-coef", type=float, default=0.01,
76
+ help="coefficient of the entropy")
77
+ parser.add_argument("--vf-coef", type=float, default=0.5,
78
+ help="coefficient of the value function")
79
+ parser.add_argument("--max-grad-norm", type=float, default=0.5,
80
+ help="the maximum norm for the gradient clipping")
81
+ parser.add_argument("--target-kl", type=float, default=None,
82
+ help="the target KL divergence threshold")
83
+
84
+ parser.add_argument("--actor-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
85
+ help="the device ids that actor workers will use (currently only support 1 device)")
86
+ parser.add_argument("--learner-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
87
+ help="the device ids that learner workers will use")
88
+ parser.add_argument("--distributed", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
89
+ help="whether to use `jax.distirbuted`")
90
+ parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
91
+ help="whether to call block_until_ready() for profiling")
92
+ parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
93
+ help="whether to test actor-learner throughput by removing the actor-learner communication")
94
+ args = parser.parse_args()
95
+ args.async_batch_size = args.local_num_envs # local_num_envs must be equal to async_batch_size due to limitation of `rlax`
96
+ args.local_batch_size = int(args.local_num_envs * args.num_steps)
97
+ args.local_minibatch_size = int(args.local_batch_size // args.num_minibatches)
98
+ args.num_updates = args.total_timesteps // args.local_batch_size
99
+ args.async_update = int(args.local_num_envs / args.async_batch_size)
100
+ assert len(args.actor_device_ids) == 1, "only 1 actor_device_ids is supported now"
101
+ # fmt: on
102
+ return args
103
+
104
+
105
+ ATARI_MAX_FRAMES = int(
106
+ 108000 / 4
107
+ ) # 108000 is the max number of frames in an Atari game, divided by 4 to account for frame skipping
108
+
109
+
110
+ def make_env(env_id, seed, num_envs, async_batch_size=1):
111
+ def thunk():
112
+ envs = envpool.make(
113
+ env_id,
114
+ env_type="gym",
115
+ num_envs=num_envs,
116
+ batch_size=async_batch_size,
117
+ episodic_life=False, # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 6
118
+ repeat_action_probability=0.25, # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 12
119
+ noop_max=1, # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 12 (no-op is deprecated in favor of sticky action, right?)
120
+ full_action_space=True, # Machado et al. 2017 (Revisitng ALE: Eval protocols) Tab. 5
121
+ max_episode_steps=ATARI_MAX_FRAMES, # Hessel et al. 2018 (Rainbow DQN), Table 3, Max frames per episode
122
+ reward_clip=True,
123
+ seed=seed,
124
+ )
125
+ envs.num_envs = num_envs
126
+ envs.single_action_space = envs.action_space
127
+ envs.single_observation_space = envs.observation_space
128
+ envs.is_vector_env = True
129
+ return envs
130
+
131
+ return thunk
132
+
133
+
134
+ class ResidualBlock(nn.Module):
135
+ channels: int
136
+
137
+ @nn.compact
138
+ def __call__(self, x):
139
+ inputs = x
140
+ x = nn.relu(x)
141
+ x = nn.Conv(
142
+ self.channels,
143
+ kernel_size=(3, 3),
144
+ )(x)
145
+ x = nn.relu(x)
146
+ x = nn.Conv(
147
+ self.channels,
148
+ kernel_size=(3, 3),
149
+ )(x)
150
+ return x + inputs
151
+
152
+
153
+ class ConvSequence(nn.Module):
154
+ channels: int
155
+
156
+ @nn.compact
157
+ def __call__(self, x):
158
+ x = nn.Conv(
159
+ self.channels,
160
+ kernel_size=(3, 3),
161
+ )(x)
162
+ x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2), padding="SAME")
163
+ x = ResidualBlock(self.channels)(x)
164
+ x = ResidualBlock(self.channels)(x)
165
+ return x
166
+
167
+
168
+ class Network(nn.Module):
169
+ channelss: Sequence[int] = (16, 32, 32)
170
+
171
+ @nn.compact
172
+ def __call__(self, x):
173
+ x = jnp.transpose(x, (0, 2, 3, 1))
174
+ x = x / (255.0)
175
+ for channels in self.channelss:
176
+ x = ConvSequence(channels)(x)
177
+ x = nn.relu(x)
178
+ x = x.reshape((x.shape[0], -1))
179
+ x = nn.Dense(256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0))(x)
180
+ x = nn.relu(x)
181
+ return x
182
+
183
+
184
+ class Critic(nn.Module):
185
+ @nn.compact
186
+ def __call__(self, x):
187
+ return nn.Dense(1, kernel_init=orthogonal(1), bias_init=constant(0.0))(x)
188
+
189
+
190
+ class Actor(nn.Module):
191
+ action_dim: int
192
+
193
+ @nn.compact
194
+ def __call__(self, x):
195
+ return nn.Dense(self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0))(x)
196
+
197
+
198
+ @flax.struct.dataclass
199
+ class AgentParams:
200
+ network_params: flax.core.FrozenDict
201
+ actor_params: flax.core.FrozenDict
202
+ critic_params: flax.core.FrozenDict
203
+
204
+
205
+ @partial(jax.jit, static_argnums=(3))
206
+ def get_action(
207
+ params: flax.core.FrozenDict,
208
+ next_obs: np.ndarray,
209
+ key: jax.random.PRNGKey,
210
+ action_dim: int,
211
+ ):
212
+ next_obs = jnp.array(next_obs)
213
+ hidden = Network().apply(params.network_params, next_obs)
214
+ logits = Actor(action_dim).apply(params.actor_params, hidden)
215
+ # sample action: Gumbel-softmax trick
216
+ # see https://stats.stackexchange.com/questions/359442/sampling-from-a-categorical-distribution
217
+ key, subkey = jax.random.split(key)
218
+ u = jax.random.uniform(subkey, shape=logits.shape)
219
+ action = jnp.argmax(logits - jnp.log(-jnp.log(u)), axis=1)
220
+ return next_obs, action, logits, key
221
+
222
+
223
+ def prepare_data(
224
+ obs: list,
225
+ dones: list,
226
+ actions: list,
227
+ logitss: list,
228
+ firststeps: list,
229
+ env_ids: list,
230
+ rewards: list,
231
+ ):
232
+ obs = jnp.asarray(obs)
233
+ dones = jnp.asarray(dones)
234
+ actions = jnp.asarray(actions)
235
+ logitss = jnp.asarray(logitss)
236
+ firststeps = jnp.asarray(firststeps)
237
+ env_ids = jnp.asarray(env_ids)
238
+ rewards = jnp.asarray(rewards)
239
+ return obs, dones, actions, logitss, firststeps, env_ids, rewards
240
+
241
+
242
+ @jax.jit
243
+ def make_bulk_array(
244
+ obs: list,
245
+ actions: list,
246
+ logitss: list,
247
+ ):
248
+ obs = jnp.asarray(obs)
249
+ actions = jnp.asarray(actions)
250
+ logitss = jnp.asarray(logitss)
251
+ return obs, actions, logitss
252
+
253
+
254
+ def rollout(
255
+ key: jax.random.PRNGKey,
256
+ args,
257
+ rollout_queue,
258
+ params_queue: queue.Queue,
259
+ writer,
260
+ learner_devices,
261
+ ):
262
+ envs = make_env(args.env_id, args.seed + jax.process_index(), args.local_num_envs, args.async_batch_size)()
263
+ len_actor_device_ids = len(args.actor_device_ids)
264
+ global_step = 0
265
+ # TRY NOT TO MODIFY: start the game
266
+ start_time = time.time()
267
+
268
+ # put data in the last index
269
+ episode_returns = np.zeros((args.local_num_envs,), dtype=np.float32)
270
+ returned_episode_returns = np.zeros((args.local_num_envs,), dtype=np.float32)
271
+ episode_lengths = np.zeros((args.local_num_envs,), dtype=np.float32)
272
+ returned_episode_lengths = np.zeros((args.local_num_envs,), dtype=np.float32)
273
+ envs.async_reset()
274
+
275
+ params_queue_get_time = deque(maxlen=10)
276
+ rollout_time = deque(maxlen=10)
277
+ rollout_queue_put_time = deque(maxlen=10)
278
+ actor_policy_version = 0
279
+ obs = []
280
+ dones = []
281
+ actions = []
282
+ logitss = []
283
+ env_ids = []
284
+ rewards = []
285
+ truncations = []
286
+ terminations = []
287
+ firststeps = [] # first step of an episode
288
+ for update in range(1, args.num_updates + 2):
289
+ # NOTE: This is a major difference from the sync version:
290
+ # at the end of the rollout phase, the sync version will have the next observation
291
+ # ready for the value bootstrap, but the async version will not have it.
292
+ # for this reason we do `num_steps + 1`` to get the extra states for value bootstrapping.
293
+ # but note that the extra states are not used for the loss computation in the next iteration,
294
+ # while the sync version will use the extra state for the loss computation.
295
+ update_time_start = time.time()
296
+ env_recv_time = 0
297
+ inference_time = 0
298
+ storage_time = 0
299
+ env_send_time = 0
300
+
301
+ num_steps_with_bootstrap = args.num_steps + 1 + int(len(obs) == 0)
302
+ # NOTE: `update != 2` is actually IMPORTANT — it allows us to start running policy collection
303
+ # concurrently with the learning process. It also ensures the actor's policy version is only 1 step
304
+ # behind the learner's policy version
305
+ params_queue_get_time_start = time.time()
306
+ if update != 2:
307
+ params = params_queue.get()
308
+ actor_policy_version += 1
309
+ params_queue_get_time.append(time.time() - params_queue_get_time_start)
310
+ writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
311
+ rollout_time_start = time.time()
312
+ for _ in range(
313
+ args.async_update, (num_steps_with_bootstrap) * args.async_update
314
+ ): # num_steps + 1 to get the states for value bootstrapping.
315
+ env_recv_time_start = time.time()
316
+ next_obs, next_reward, next_done, info = envs.recv()
317
+ env_recv_time += time.time() - env_recv_time_start
318
+ global_step += len(next_done) * len_actor_device_ids * args.world_size
319
+ env_id = info["env_id"]
320
+
321
+ inference_time_start = time.time()
322
+ next_obs, action, logits, key = get_action(params, next_obs, key, envs.single_action_space.n)
323
+ inference_time += time.time() - inference_time_start
324
+
325
+ env_send_time_start = time.time()
326
+ envs.send(np.array(action), env_id)
327
+ env_send_time += time.time() - env_send_time_start
328
+ storage_time_start = time.time()
329
+ obs.append(next_obs)
330
+ dones.append(next_done)
331
+ actions.append(action)
332
+ logitss.append(logits)
333
+ env_ids.append(env_id)
334
+ rewards.append(next_reward)
335
+ firststeps.append(info["elapsed_step"] == 0)
336
+
337
+ # info["TimeLimit.truncated"] has a bug https://github.com/sail-sg/envpool/issues/239
338
+ # so we use our own truncated flag
339
+ truncated = info["elapsed_step"] >= envs.spec.config.max_episode_steps
340
+ truncations.append(truncated)
341
+ terminations.append(info["terminated"])
342
+ episode_returns[env_id] += info["reward"]
343
+ returned_episode_returns[env_id] = np.where(
344
+ info["terminated"] + truncated, episode_returns[env_id], returned_episode_returns[env_id]
345
+ )
346
+ episode_returns[env_id] *= (1 - info["terminated"]) * (1 - truncated)
347
+ episode_lengths[env_id] += 1
348
+ returned_episode_lengths[env_id] = np.where(
349
+ info["terminated"] + truncated, episode_lengths[env_id], returned_episode_lengths[env_id]
350
+ )
351
+ episode_lengths[env_id] *= (1 - info["terminated"]) * (1 - truncated)
352
+ storage_time += time.time() - storage_time_start
353
+ if args.profile:
354
+ action.block_until_ready()
355
+ rollout_time.append(time.time() - rollout_time_start)
356
+ writer.add_scalar("stats/rollout_time", np.mean(rollout_time), global_step)
357
+
358
+ avg_episodic_return = np.mean(returned_episode_returns)
359
+ writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
360
+ writer.add_scalar("charts/avg_episodic_length", np.mean(returned_episode_lengths), global_step)
361
+ print(f"global_step={global_step}, avg_episodic_return={avg_episodic_return}")
362
+ print("SPS:", int(global_step / (time.time() - start_time)))
363
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
364
+
365
+ writer.add_scalar("stats/truncations", np.sum(truncations), global_step)
366
+ writer.add_scalar("stats/terminations", np.sum(terminations), global_step)
367
+ writer.add_scalar("stats/env_recv_time", env_recv_time, global_step)
368
+ writer.add_scalar("stats/inference_time", inference_time, global_step)
369
+ writer.add_scalar("stats/storage_time", storage_time, global_step)
370
+ writer.add_scalar("stats/env_send_time", env_send_time, global_step)
371
+ # `make_bulk_array` is actually important. It accumulates the data from the lists
372
+ # into single bulk arrays, which later makes transferring the data to the learner's
373
+ # device slightly faster. See https://wandb.ai/costa-huang/cleanRL/reports/data-transfer-optimization--VmlldzozNjU5MTg1
374
+ c_obs, c_actions, c_logitss = obs, actions, logitss
375
+ if args.learner_device_ids[0] != args.actor_device_ids[0]:
376
+ c_obs, c_actions, c_logitss = make_bulk_array(
377
+ obs,
378
+ actions,
379
+ logitss,
380
+ )
381
+
382
+ payload = (
383
+ global_step,
384
+ actor_policy_version,
385
+ update,
386
+ c_obs,
387
+ c_actions,
388
+ c_logitss,
389
+ firststeps,
390
+ dones,
391
+ env_ids,
392
+ rewards,
393
+ np.mean(params_queue_get_time),
394
+ )
395
+ if update == 1 or not args.test_actor_learner_throughput:
396
+ rollout_queue_put_time_start = time.time()
397
+ rollout_queue.put(payload)
398
+ rollout_queue_put_time.append(time.time() - rollout_queue_put_time_start)
399
+ writer.add_scalar("stats/rollout_queue_put_time", np.mean(rollout_queue_put_time), global_step)
400
+
401
+ writer.add_scalar(
402
+ "charts/SPS_update",
403
+ int(
404
+ args.local_num_envs
405
+ * args.num_steps
406
+ * len_actor_device_ids
407
+ * args.world_size
408
+ / (time.time() - update_time_start)
409
+ ),
410
+ global_step,
411
+ )
412
+
413
+ obs = obs[-args.async_update :]
414
+ dones = dones[-args.async_update :]
415
+ actions = actions[-args.async_update :]
416
+ logitss = logitss[-args.async_update :]
417
+ env_ids = env_ids[-args.async_update :]
418
+ rewards = rewards[-args.async_update :]
419
+ truncations = truncations[-args.async_update :]
420
+ terminations = terminations[-args.async_update :]
421
+ firststeps = firststeps[-args.async_update :]
422
+
423
+
424
+ @partial(jax.jit, static_argnums=(2))
425
+ def get_action_and_value2(
426
+ params: flax.core.FrozenDict,
427
+ x: np.ndarray,
428
+ action_dim: int,
429
+ ):
430
+ hidden = Network().apply(params.network_params, x)
431
+ raw_logits = Actor(action_dim).apply(params.actor_params, hidden)
432
+ value = Critic().apply(params.critic_params, hidden).squeeze()
433
+ return raw_logits, value
434
+
435
+
436
+ def policy_gradient_loss(logits, *args):
437
+ """rlax.policy_gradient_loss, but with sum(loss) and [T, B, ...] inputs."""
438
+ mean_per_batch = jax.vmap(rlax.policy_gradient_loss, in_axes=1)(logits, *args)
439
+ total_loss_per_batch = mean_per_batch * logits.shape[0]
440
+ return jnp.sum(total_loss_per_batch)
441
+
442
+
443
+ def entropy_loss_fn(logits, *args):
444
+ """rlax.entropy_loss, but with sum(loss) and [T, B, ...] inputs."""
445
+ mean_per_batch = jax.vmap(rlax.entropy_loss, in_axes=1)(logits, *args)
446
+ total_loss_per_batch = mean_per_batch * logits.shape[0]
447
+ return jnp.sum(total_loss_per_batch)
448
+
449
+
450
+ def impala_loss(params, x, a, logitss, rewards, dones, firststeps, action_dim):
451
+ discounts = (1.0 - dones) * args.gamma
452
+ mask = 1.0 - firststeps
453
+ policy_logits, newvalue = jax.vmap(get_action_and_value2, in_axes=(None, 0, None))(params, x, action_dim)
454
+
455
+ v_t = newvalue[1:]
456
+ # Remove bootstrap timestep from non-timesteps.
457
+ v_tm1 = newvalue[:-1]
458
+ policy_logits = policy_logits[:-1]
459
+ logitss = logitss[:-1]
460
+ a = a[:-1]
461
+ mask = mask[:-1]
462
+ rewards = rewards[:-1]
463
+ discounts = discounts[:-1]
464
+
465
+ rhos = rlax.categorical_importance_sampling_ratios(policy_logits, logitss, a)
466
+ vtrace_td_error_and_advantage = jax.vmap(rlax.vtrace_td_error_and_advantage, in_axes=1, out_axes=1)
467
+
468
+ vtrace_returns = vtrace_td_error_and_advantage(v_tm1, v_t, rewards, discounts, rhos)
469
+ pg_advs = vtrace_returns.pg_advantage
470
+ pg_loss = policy_gradient_loss(policy_logits, a, pg_advs, mask)
471
+
472
+ baseline_loss = 0.5 * jnp.sum(jnp.square(vtrace_returns.errors) * mask)
473
+ ent_loss = entropy_loss_fn(policy_logits, mask)
474
+
475
+ total_loss = pg_loss
476
+ total_loss += args.vf_coef * baseline_loss
477
+ total_loss += args.ent_coef * ent_loss
478
+ return total_loss, (pg_loss, baseline_loss, ent_loss)
479
+
480
+
481
+ @partial(jax.jit, static_argnames=("action_dim"))
482
+ def single_device_update(
483
+ agent_state: TrainState,
484
+ obs,
485
+ actions,
486
+ logitss,
487
+ rewards,
488
+ dones,
489
+ firststeps,
490
+ action_dim,
491
+ key: jax.random.PRNGKey,
492
+ ):
493
+ impala_loss_grad_fn = jax.value_and_grad(impala_loss, has_aux=True)
494
+
495
+ def update_minibatch(agent_state, minibatch):
496
+ mb_obs, mb_actions, mb_logitss, mb_rewards, mb_dones, mb_firststeps = minibatch
497
+ (loss, (pg_loss, v_loss, entropy_loss)), grads = impala_loss_grad_fn(
498
+ agent_state.params,
499
+ mb_obs,
500
+ mb_actions,
501
+ mb_logitss,
502
+ mb_rewards,
503
+ mb_dones,
504
+ mb_firststeps,
505
+ action_dim,
506
+ )
507
+ grads = jax.lax.pmean(grads, axis_name="local_devices")
508
+ agent_state = agent_state.apply_gradients(grads=grads)
509
+ return agent_state, (loss, pg_loss, v_loss, entropy_loss)
510
+
511
+ agent_state, (loss, pg_loss, v_loss, entropy_loss) = jax.lax.scan(
512
+ update_minibatch,
513
+ agent_state,
514
+ (
515
+ jnp.array(jnp.split(obs, args.num_minibatches, axis=1)),
516
+ jnp.array(jnp.split(actions, args.num_minibatches, axis=1)),
517
+ jnp.array(jnp.split(logitss, args.num_minibatches, axis=1)),
518
+ jnp.array(jnp.split(rewards, args.num_minibatches, axis=1)),
519
+ jnp.array(jnp.split(dones, args.num_minibatches, axis=1)),
520
+ jnp.array(jnp.split(firststeps, args.num_minibatches, axis=1)),
521
+ ),
522
+ )
523
+ return agent_state, loss, pg_loss, v_loss, entropy_loss, key
524
+
525
+
526
+ if __name__ == "__main__":
527
+ args = parse_args()
528
+ if args.distributed:
529
+ jax.distributed.initialize(
530
+ local_device_ids=range(len(args.learner_device_ids) + len(args.actor_device_ids)),
531
+ )
532
+ print(list(range(len(args.learner_device_ids) + len(args.actor_device_ids))))
533
+
534
+ args.world_size = jax.process_count()
535
+ args.local_rank = jax.process_index()
536
+ args.num_envs = args.local_num_envs * args.world_size
537
+ args.batch_size = args.local_batch_size * args.world_size
538
+ args.minibatch_size = args.local_minibatch_size * args.world_size
539
+ args.num_updates = args.total_timesteps // (args.local_batch_size * args.world_size)
540
+ args.async_update = int(args.local_num_envs / args.async_batch_size)
541
+ local_devices = jax.local_devices()
542
+ global_devices = jax.devices()
543
+ learner_devices = [local_devices[d_id] for d_id in args.learner_device_ids]
544
+ actor_devices = [local_devices[d_id] for d_id in args.actor_device_ids]
545
+ global_learner_decices = [
546
+ global_devices[d_id + process_index * len(local_devices)]
547
+ for process_index in range(args.world_size)
548
+ for d_id in args.learner_device_ids
549
+ ]
550
+ print("global_learner_decices", global_learner_decices)
551
+ args.global_learner_decices = [str(item) for item in global_learner_decices]
552
+ args.actor_devices = [str(item) for item in actor_devices]
553
+ args.learner_devices = [str(item) for item in learner_devices]
554
+
555
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{uuid.uuid4()}"
556
+ if args.track and args.local_rank == 0:
557
+ import wandb
558
+
559
+ wandb.init(
560
+ project=args.wandb_project_name,
561
+ entity=args.wandb_entity,
562
+ sync_tensorboard=True,
563
+ config=vars(args),
564
+ name=run_name,
565
+ monitor_gym=True,
566
+ save_code=True,
567
+ )
568
+ writer = SummaryWriter(f"runs/{run_name}")
569
+ writer.add_text(
570
+ "hyperparameters",
571
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
572
+ )
573
+
574
+ # TRY NOT TO MODIFY: seeding
575
+ random.seed(args.seed)
576
+ np.random.seed(args.seed)
577
+ key = jax.random.PRNGKey(args.seed)
578
+ key, network_key, actor_key, critic_key = jax.random.split(key, 4)
579
+
580
+ # env setup
581
+ envs = make_env(args.env_id, args.seed, args.local_num_envs, args.async_batch_size)()
582
+ assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
583
+
584
+ def linear_schedule(count):
585
+ # anneal learning rate linearly after one training iteration which contains
586
+ # (args.num_minibatches) gradient updates
587
+ frac = 1.0 - (count // (args.num_minibatches)) / args.num_updates
588
+ return args.learning_rate * frac
589
+
590
+ network = Network()
591
+ actor = Actor(action_dim=envs.single_action_space.n)
592
+ critic = Critic()
593
+ network_params = network.init(network_key, np.array([envs.single_observation_space.sample()]))
594
+ agent_state = TrainState.create(
595
+ apply_fn=None,
596
+ params=AgentParams(
597
+ network_params,
598
+ actor.init(actor_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
599
+ critic.init(critic_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
600
+ ),
601
+ tx=optax.chain(
602
+ optax.clip_by_global_norm(args.max_grad_norm),
603
+ optax.inject_hyperparams(optax.adam)(
604
+ learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
605
+ ),
606
+ ),
607
+ )
608
+ agent_state = flax.jax_utils.replicate(agent_state, devices=learner_devices)
609
+
610
+ multi_device_update = jax.pmap(
611
+ single_device_update,
612
+ axis_name="local_devices",
613
+ devices=global_learner_decices,
614
+ in_axes=(0, 0, 0, 0, 0, 0, 0, None, None),
615
+ out_axes=(0, 0, 0, 0, 0, None),
616
+ static_broadcasted_argnums=(7),
617
+ )
618
+
619
+ rollout_queue = queue.Queue(maxsize=1)
620
+ params_queues = []
621
+ for d_idx, d_id in enumerate(args.actor_device_ids):
622
+ params_queue = queue.Queue(maxsize=1)
623
+ params_queue.put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), local_devices[d_id]))
624
+ threading.Thread(
625
+ target=rollout,
626
+ args=(
627
+ jax.device_put(key, local_devices[d_id]),
628
+ args,
629
+ rollout_queue,
630
+ params_queue,
631
+ writer,
632
+ learner_devices,
633
+ ),
634
+ ).start()
635
+ params_queues.append(params_queue)
636
+
637
+ rollout_queue_get_time = deque(maxlen=10)
638
+ data_transfer_time = deque(maxlen=10)
639
+ learner_policy_version = 0
640
+ prepare_data = jax.jit(prepare_data, device=learner_devices[0])
641
+ while True:
642
+ learner_policy_version += 1
643
+ if learner_policy_version == 1 or not args.test_actor_learner_throughput:
644
+ rollout_queue_get_time_start = time.time()
645
+ (
646
+ global_step,
647
+ actor_policy_version,
648
+ update,
649
+ obs,
650
+ actions,
651
+ logitss,
652
+ firststeps,
653
+ dones,
654
+ env_ids,
655
+ rewards,
656
+ avg_params_queue_get_time,
657
+ ) = rollout_queue.get()
658
+ rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
659
+ writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
660
+ writer.add_scalar(
661
+ "stats/rollout_params_queue_get_time_diff",
662
+ np.mean(rollout_queue_get_time) - avg_params_queue_get_time,
663
+ global_step,
664
+ )
665
+
666
+ data_transfer_time_start = time.time()
667
+ obs, dones, actions, logitss, firststeps, env_ids, rewards = prepare_data(
668
+ obs,
669
+ dones,
670
+ actions,
671
+ logitss,
672
+ firststeps,
673
+ env_ids,
674
+ rewards,
675
+ )
676
+
677
+ obs = jnp.array_split(obs, len(learner_devices), axis=1)
678
+ actions = jnp.array_split(actions, len(learner_devices), axis=1)
679
+ logitss = jnp.array_split(logitss, len(learner_devices), axis=1)
680
+ rewards = jnp.array_split(rewards, len(learner_devices), axis=1)
681
+ dones = jnp.array_split(dones, len(learner_devices), axis=1)
682
+ firststeps = jnp.array_split(firststeps, len(learner_devices), axis=1)
683
+ data_transfer_time.append(time.time() - data_transfer_time_start)
684
+ writer.add_scalar("stats/data_transfer_time", np.mean(data_transfer_time), global_step)
685
+
686
+ training_time_start = time.time()
687
+ (agent_state, loss, pg_loss, v_loss, entropy_loss, key) = multi_device_update(
688
+ agent_state,
689
+ jax.device_put_sharded(obs, learner_devices),
690
+ jax.device_put_sharded(actions, learner_devices),
691
+ jax.device_put_sharded(logitss, learner_devices),
692
+ jax.device_put_sharded(rewards, learner_devices),
693
+ jax.device_put_sharded(dones, learner_devices),
694
+ jax.device_put_sharded(firststeps, learner_devices),
695
+ envs.single_action_space.n,
696
+ key,
697
+ )
698
+ if learner_policy_version == 1 or not args.test_actor_learner_throughput:
699
+ for d_idx, d_id in enumerate(args.actor_device_ids):
700
+ params_queues[d_idx].put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), local_devices[d_id]))
701
+ if args.profile:
702
+ v_loss[-1, -1, -1].block_until_ready()
703
+ writer.add_scalar("stats/training_time", time.time() - training_time_start, global_step)
704
+ writer.add_scalar("stats/rollout_queue_size", rollout_queue.qsize(), global_step)
705
+ writer.add_scalar("stats/params_queue_size", params_queue.qsize(), global_step)
706
+ print(
707
+ global_step,
708
+ f"actor_policy_version={actor_policy_version}, actor_update={update}, learner_policy_version={learner_policy_version}, training time: {time.time() - training_time_start}s",
709
+ )
710
+
711
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
712
+ writer.add_scalar("charts/learning_rate", agent_state.opt_state[1].hyperparams["learning_rate"][0].item(), global_step)
713
+ writer.add_scalar("losses/value_loss", v_loss[-1, -1].item(), global_step)
714
+ writer.add_scalar("losses/policy_loss", pg_loss[-1, -1].item(), global_step)
715
+ writer.add_scalar("losses/entropy", entropy_loss[-1, -1].item(), global_step)
716
+ writer.add_scalar("losses/loss", loss[-1, -1].item(), global_step)
717
+ if update >= args.num_updates:
718
+ break
719
+
720
+ # print weights
721
+ # sum_params(agent_state.params)
722
+ # print("network_params", agent_state.params.network_params['params']["Dense_0"]["kernel"])
723
+ # print("actor_params", agent_state.params.actor_params['params']["Dense_0"]["kernel"])
724
+ # print("critic_params", agent_state.params.critic_params['params']["Dense_0"]["kernel"])
725
+
726
+ if args.save_model and args.local_rank == 0:
727
+ if args.distributed:
728
+ jax.distributed.shutdown()
729
+ agent_state = flax.jax_utils.unreplicate(agent_state)
730
+ model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
731
+ with open(model_path, "wb") as f:
732
+ f.write(
733
+ flax.serialization.to_bytes(
734
+ [
735
+ vars(args),
736
+ [
737
+ agent_state.params.network_params,
738
+ agent_state.params.actor_params,
739
+ agent_state.params.critic_params,
740
+ ],
741
+ ]
742
+ )
743
+ )
744
+ print(f"model saved to {model_path}")
745
+ from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
746
+
747
+ episodic_returns = evaluate(
748
+ model_path,
749
+ make_env,
750
+ args.env_id,
751
+ eval_episodes=10,
752
+ run_name=f"{run_name}-eval",
753
+ Model=(Network, Actor, Critic),
754
+ )
755
+ for idx, episodic_return in enumerate(episodic_returns):
756
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
757
+
758
+ if args.upload_model:
759
+ from cleanrl_utils.huggingface import push_to_hub
760
+
761
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
762
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
763
+ push_to_hub(
764
+ args,
765
+ episodic_returns,
766
+ repo_id,
767
+ "PPO",
768
+ f"runs/{run_name}",
769
+ f"videos/{run_name}-eval",
770
+ extra_dependencies=["jax", "envpool", "atari"],
771
+ )
772
+
773
+ envs.close()
774
+ writer.close()
cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.cleanrl_model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264c98ac7720e316bb56450a18a905089287e6d7a3db7acec58c614c726851cc
3
+ size 4378454
events.out.tfevents.1679781970.ip-26-0-132-141 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3720c300f1da848bc3773f4d08e341af6ebddbe9ffcfa874ffb33ec2679a08f2
3
+ size 30917754
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "cleanba"
3
+ version = "0.1.0"
4
+ description = ""
5
+ authors = ["Costa Huang <costa.huang@outlook.com>"]
6
+ readme = "README.md"
7
+ packages = [
8
+ { include = "cleanba" },
9
+ { include = "cleanrl_utils" },
10
+ ]
11
+
12
+ [tool.poetry.dependencies]
13
+ python = "^3.8"
14
+ tensorboard = "^2.12.0"
15
+ envpool = "^0.8.1"
16
+ jax = "0.3.25"
17
+ flax = "0.6.0"
18
+ optax = "0.1.3"
19
+ huggingface-hub = "^0.12.0"
20
+ jaxlib = "0.3.25"
21
+ wandb = "^0.13.10"
22
+ tensorboardx = "^2.5.1"
23
+ chex = "0.1.5"
24
+ gym = "0.23.1"
25
+ opencv-python = "^4.7.0.68"
26
+ moviepy = "^1.0.3"
27
+
28
+
29
+ [tool.poetry.group.dev.dependencies]
30
+ pre-commit = "^3.0.4"
31
+
32
+ [build-system]
33
+ requires = ["poetry-core"]
34
+ build-backend = "poetry.core.masonry.api"
replay.mp4 ADDED
Binary file (209 kB). View file
 
videos/Phoenix-v5__cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4__10__ab3b836f-5482-4fc5-b09b-e9150ad1b247-eval/0.mp4 ADDED
Binary file (209 kB). View file