|
|
|
import argparse |
|
import os |
|
import random |
|
import time |
|
from distutils.util import strtobool |
|
|
|
import flax |
|
import flax.linen as nn |
|
import gym |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
from flax.training.train_state import TrainState |
|
from stable_baselines3.common.buffers import ReplayBuffer |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
def parse_args(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), |
|
help="the name of this experiment") |
|
parser.add_argument("--seed", type=int, default=1, |
|
help="seed of the experiment") |
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="if toggled, this experiment will be tracked with Weights and Biases") |
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", |
|
help="the wandb's project name") |
|
parser.add_argument("--wandb-entity", type=str, default=None, |
|
help="the entity (team) of wandb's project") |
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to capture videos of the agent performances (check out `videos` folder)") |
|
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to save model into the `runs/{run_name}` folder") |
|
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to upload the saved model to huggingface") |
|
parser.add_argument("--hf-entity", type=str, default="", |
|
help="the user or org name of the model repository from the Hugging Face Hub") |
|
|
|
|
|
parser.add_argument("--env-id", type=str, default="CartPole-v1", |
|
help="the id of the environment") |
|
parser.add_argument("--total-timesteps", type=int, default=500000, |
|
help="total timesteps of the experiments") |
|
parser.add_argument("--learning-rate", type=float, default=2.5e-4, |
|
help="the learning rate of the optimizer") |
|
parser.add_argument("--n-atoms", type=int, default=101, |
|
help="the number of atoms") |
|
parser.add_argument("--v-min", type=float, default=-100, |
|
help="the number of atoms") |
|
parser.add_argument("--v-max", type=float, default=100, |
|
help="the number of atoms") |
|
parser.add_argument("--buffer-size", type=int, default=10000, |
|
help="the replay memory buffer size") |
|
parser.add_argument("--gamma", type=float, default=0.99, |
|
help="the discount factor gamma") |
|
parser.add_argument("--target-network-frequency", type=int, default=500, |
|
help="the timesteps it takes to update the target network") |
|
parser.add_argument("--batch-size", type=int, default=128, |
|
help="the batch size of sample from the reply memory") |
|
parser.add_argument("--start-e", type=float, default=1, |
|
help="the starting epsilon for exploration") |
|
parser.add_argument("--end-e", type=float, default=0.05, |
|
help="the ending epsilon for exploration") |
|
parser.add_argument("--exploration-fraction", type=float, default=0.5, |
|
help="the fraction of `total-timesteps` it takes from start-e to go end-e") |
|
parser.add_argument("--learning-starts", type=int, default=10000, |
|
help="timestep to start learning") |
|
parser.add_argument("--train-frequency", type=int, default=10, |
|
help="the frequency of training") |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def make_env(env_id, seed, idx, capture_video, run_name): |
|
def thunk(): |
|
env = gym.make(env_id) |
|
env = gym.wrappers.RecordEpisodeStatistics(env) |
|
if capture_video: |
|
if idx == 0: |
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") |
|
env.seed(seed) |
|
env.action_space.seed(seed) |
|
env.observation_space.seed(seed) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
|
|
class QNetwork(nn.Module): |
|
action_dim: int |
|
n_atoms: int |
|
|
|
@nn.compact |
|
def __call__(self, x): |
|
x = nn.Dense(120)(x) |
|
x = nn.relu(x) |
|
x = nn.Dense(84)(x) |
|
x = nn.relu(x) |
|
x = nn.Dense(self.action_dim * self.n_atoms)(x) |
|
x = x.reshape((x.shape[0], self.action_dim, self.n_atoms)) |
|
x = nn.softmax(x, axis=-1) |
|
return x |
|
|
|
|
|
class TrainState(TrainState): |
|
target_params: flax.core.FrozenDict |
|
atoms: jnp.ndarray |
|
|
|
|
|
def linear_schedule(start_e: float, end_e: float, duration: int, t: int): |
|
slope = (end_e - start_e) / duration |
|
return max(slope * t + start_e, end_e) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" |
|
if args.track: |
|
import wandb |
|
|
|
wandb.init( |
|
project=args.wandb_project_name, |
|
entity=args.wandb_entity, |
|
sync_tensorboard=True, |
|
config=vars(args), |
|
name=run_name, |
|
monitor_gym=True, |
|
save_code=True, |
|
) |
|
writer = SummaryWriter(f"runs/{run_name}") |
|
writer.add_text( |
|
"hyperparameters", |
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), |
|
) |
|
|
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
key = jax.random.PRNGKey(args.seed) |
|
key, q_key = jax.random.split(key, 2) |
|
|
|
|
|
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)]) |
|
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported" |
|
|
|
obs = envs.reset() |
|
q_network = QNetwork(action_dim=envs.single_action_space.n, n_atoms=args.n_atoms) |
|
q_state = TrainState.create( |
|
apply_fn=q_network.apply, |
|
params=q_network.init(q_key, obs), |
|
target_params=q_network.init(q_key, obs), |
|
|
|
atoms=jnp.asarray(np.linspace(args.v_min, args.v_max, num=args.n_atoms)), |
|
tx=optax.adam(learning_rate=args.learning_rate, eps=0.01 / args.batch_size), |
|
) |
|
q_network.apply = jax.jit(q_network.apply) |
|
|
|
q_state = q_state.replace(target_params=optax.incremental_update(q_state.params, q_state.target_params, 1)) |
|
|
|
rb = ReplayBuffer( |
|
args.buffer_size, |
|
envs.single_observation_space, |
|
envs.single_action_space, |
|
"cpu", |
|
handle_timeout_termination=True, |
|
) |
|
|
|
@jax.jit |
|
def update(q_state, observations, actions, next_observations, rewards, dones): |
|
next_pmfs = q_network.apply(q_state.target_params, next_observations) |
|
next_vals = (next_pmfs * q_state.atoms).sum(axis=-1) |
|
next_action = jnp.argmax(next_vals, axis=-1) |
|
next_pmfs = next_pmfs[np.arange(next_pmfs.shape[0]), next_action] |
|
next_atoms = rewards + args.gamma * q_state.atoms * (1 - dones) |
|
|
|
delta_z = q_state.atoms[1] - q_state.atoms[0] |
|
tz = jnp.clip(next_atoms, a_min=(args.v_min), a_max=(args.v_max)) |
|
|
|
b = (tz - args.v_min) / delta_z |
|
l = jnp.clip(jnp.floor(b), a_min=0, a_max=args.n_atoms - 1) |
|
u = jnp.clip(jnp.ceil(b), a_min=0, a_max=args.n_atoms - 1) |
|
|
|
|
|
d_m_l = (u + (l == u).astype(jnp.float32) - b) * next_pmfs |
|
d_m_u = (b - l) * next_pmfs |
|
target_pmfs = jnp.zeros_like(next_pmfs) |
|
|
|
def project_to_bins(i, val): |
|
val = val.at[i, l[i].astype(jnp.int32)].add(d_m_l[i]) |
|
val = val.at[i, u[i].astype(jnp.int32)].add(d_m_u[i]) |
|
return val |
|
|
|
target_pmfs = jax.lax.fori_loop(0, target_pmfs.shape[0], project_to_bins, target_pmfs) |
|
|
|
def loss(q_params, observations, actions, target_pmfs): |
|
pmfs = q_network.apply(q_params, observations) |
|
old_pmfs = pmfs[np.arange(pmfs.shape[0]), actions.squeeze()] |
|
|
|
old_pmfs_l = jnp.clip(old_pmfs, a_min=1e-5, a_max=1 - 1e-5) |
|
loss = (-(target_pmfs * jnp.log(old_pmfs_l)).sum(-1)).mean() |
|
return loss, (old_pmfs * q_state.atoms).sum(-1) |
|
|
|
(loss_value, old_values), grads = jax.value_and_grad(loss, has_aux=True)( |
|
q_state.params, observations, actions, target_pmfs |
|
) |
|
q_state = q_state.apply_gradients(grads=grads) |
|
return loss_value, old_values, q_state |
|
|
|
start_time = time.time() |
|
|
|
|
|
obs = envs.reset() |
|
for global_step in range(args.total_timesteps): |
|
|
|
epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step) |
|
if random.random() < epsilon: |
|
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)]) |
|
else: |
|
pmfs = q_network.apply(q_state.params, obs) |
|
q_vals = (pmfs * q_state.atoms).sum(axis=-1) |
|
actions = q_vals.argmax(axis=-1) |
|
actions = jax.device_get(actions) |
|
|
|
|
|
next_obs, rewards, dones, infos = envs.step(actions) |
|
|
|
|
|
for info in infos: |
|
if "episode" in info.keys(): |
|
print(f"global_step={global_step}, episodic_return={info['episode']['r']}") |
|
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step) |
|
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step) |
|
writer.add_scalar("charts/epsilon", epsilon, global_step) |
|
break |
|
|
|
|
|
real_next_obs = next_obs.copy() |
|
for idx, d in enumerate(dones): |
|
if d: |
|
real_next_obs[idx] = infos[idx]["terminal_observation"] |
|
rb.add(obs, real_next_obs, actions, rewards, dones, infos) |
|
|
|
|
|
obs = next_obs |
|
|
|
|
|
if global_step > args.learning_starts and global_step % args.train_frequency == 0: |
|
data = rb.sample(args.batch_size) |
|
loss, old_val, q_state = update( |
|
q_state, |
|
data.observations.numpy(), |
|
data.actions.numpy(), |
|
data.next_observations.numpy(), |
|
data.rewards.numpy(), |
|
data.dones.numpy(), |
|
) |
|
|
|
if global_step % 100 == 0: |
|
writer.add_scalar("losses/loss", jax.device_get(loss), global_step) |
|
writer.add_scalar("losses/q_values", jax.device_get(old_val.mean()), global_step) |
|
print("SPS:", int(global_step / (time.time() - start_time))) |
|
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) |
|
|
|
|
|
if global_step % args.target_network_frequency == 0: |
|
q_state = q_state.replace(target_params=optax.incremental_update(q_state.params, q_state.target_params, 1)) |
|
|
|
if args.save_model: |
|
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model" |
|
model_data = { |
|
"model_weights": q_state.params, |
|
"args": vars(args), |
|
} |
|
with open(model_path, "wb") as f: |
|
f.write(flax.serialization.to_bytes(model_data)) |
|
print(f"model saved to {model_path}") |
|
from cleanrl_utils.evals.c51_jax_eval import evaluate |
|
|
|
episodic_returns = evaluate( |
|
model_path, |
|
make_env, |
|
args.env_id, |
|
eval_episodes=10, |
|
run_name=f"{run_name}-eval", |
|
Model=QNetwork, |
|
epsilon=0.05, |
|
) |
|
for idx, episodic_return in enumerate(episodic_returns): |
|
writer.add_scalar("eval/episodic_return", episodic_return, idx) |
|
|
|
if args.upload_model: |
|
from cleanrl_utils.huggingface import push_to_hub |
|
|
|
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}" |
|
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name |
|
push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval") |
|
|
|
envs.close() |
|
writer.close() |
|
|