sdpkjc commited on
Commit
874f904
1 Parent(s): ab90431

pushing model

Browse files
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - InvertedPendulum-v2
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ library_name: cleanrl
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: InvertedPendulum-v2
16
+ type: InvertedPendulum-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1000.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # (CleanRL) **TD3** Agent Playing **InvertedPendulum-v2**
25
+
26
+ This is a trained model of a TD3 agent playing InvertedPendulum-v2.
27
+ The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
28
+ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action_jax.py).
29
+
30
+ ## Get Started
31
+
32
+ To use this model, please install the `cleanrl` package with the following command:
33
+
34
+ ```
35
+ pip install "cleanrl[td3_continuous_action_jax]"
36
+ python -m cleanrl_utils.enjoy --exp-name td3_continuous_action_jax --env-id InvertedPendulum-v2
37
+ ```
38
+
39
+ Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
40
+
41
+
42
+ ## Command to reproduce the training
43
+
44
+ ```bash
45
+ curl -OL https://huggingface.co/cleanrl/InvertedPendulum-v2-td3_continuous_action_jax-seed1/raw/main/td3_continuous_action_jax.py
46
+ curl -OL https://huggingface.co/cleanrl/InvertedPendulum-v2-td3_continuous_action_jax-seed1/raw/main/pyproject.toml
47
+ curl -OL https://huggingface.co/cleanrl/InvertedPendulum-v2-td3_continuous_action_jax-seed1/raw/main/poetry.lock
48
+ poetry install --all-extras
49
+ python td3_continuous_action_jax.py --track --capture-video --env-id InvertedPendulum-v2 --seed 1 --save-model --upload-model --hf-entity cleanrl
50
+ ```
51
+
52
+ # Hyperparameters
53
+ ```python
54
+ {'batch_size': 256,
55
+ 'buffer_size': 1000000,
56
+ 'capture_video': True,
57
+ 'env_id': 'InvertedPendulum-v2',
58
+ 'exp_name': 'td3_continuous_action_jax',
59
+ 'exploration_noise': 0.1,
60
+ 'gamma': 0.99,
61
+ 'hf_entity': 'cleanrl',
62
+ 'learning_rate': 0.0003,
63
+ 'learning_starts': 25000.0,
64
+ 'noise_clip': 0.5,
65
+ 'policy_frequency': 2,
66
+ 'policy_noise': 0.2,
67
+ 'save_model': True,
68
+ 'seed': 1,
69
+ 'tau': 0.005,
70
+ 'total_timesteps': 1000000,
71
+ 'track': True,
72
+ 'upload_model': True,
73
+ 'wandb_entity': None,
74
+ 'wandb_project_name': 'cleanRL'}
75
+ ```
76
+
events.out.tfevents.1697083251.3090-172.582669.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edd4fe45624f0868f02e45f2dfe4a6d891401535a7849feb8534ef222e3fa055
3
+ size 3969237
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "cleanrl"
3
+ version = "1.1.0"
4
+ description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
5
+ authors = ["Costa Huang <costa.huang@outlook.com>"]
6
+ packages = [
7
+ { include = "cleanrl" },
8
+ { include = "cleanrl_utils" },
9
+ ]
10
+ keywords = ["reinforcement", "machine", "learning", "research"]
11
+ license="MIT"
12
+ readme = "README.md"
13
+
14
+ [tool.poetry.dependencies]
15
+ python = ">=3.7.1,<3.11"
16
+ tensorboard = "^2.10.0"
17
+ wandb = "^0.13.11"
18
+ gym = "0.23.1"
19
+ torch = ">=1.12.1"
20
+ stable-baselines3 = "1.2.0"
21
+ gymnasium = ">=0.28.1"
22
+ moviepy = "^1.0.3"
23
+ pygame = "2.1.0"
24
+ huggingface-hub = "^0.11.1"
25
+ rich = "<12.0"
26
+ tenacity = "^8.2.2"
27
+
28
+ ale-py = {version = "0.7.4", optional = true}
29
+ AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2", optional = true}
30
+ opencv-python = {version = "^4.6.0.66", optional = true}
31
+ procgen = {version = "^0.10.7", optional = true}
32
+ pytest = {version = "^7.1.3", optional = true}
33
+ mujoco = {version = "<=2.3.3", optional = true}
34
+ imageio = {version = "^2.14.1", optional = true}
35
+ free-mujoco-py = {version = "^2.1.6", optional = true}
36
+ mkdocs-material = {version = "^8.4.3", optional = true}
37
+ markdown-include = {version = "^0.7.0", optional = true}
38
+ openrlbenchmark = {version = "^0.1.1b4", optional = true}
39
+ jax = {version = "^0.3.17", optional = true}
40
+ jaxlib = {version = "^0.3.15", optional = true}
41
+ flax = {version = "^0.6.0", optional = true}
42
+ optuna = {version = "^3.0.1", optional = true}
43
+ optuna-dashboard = {version = "^0.7.2", optional = true}
44
+ envpool = {version = "^0.6.4", optional = true}
45
+ PettingZoo = {version = "1.18.1", optional = true}
46
+ SuperSuit = {version = "3.4.0", optional = true}
47
+ multi-agent-ale-py = {version = "0.1.11", optional = true}
48
+ boto3 = {version = "^1.24.70", optional = true}
49
+ awscli = {version = "^1.25.71", optional = true}
50
+ shimmy = {version = ">=1.0.0", extras = ["dm-control"], optional = true}
51
+
52
+ [tool.poetry.group.dev.dependencies]
53
+ pre-commit = "^2.20.0"
54
+
55
+
56
+ [tool.poetry.group.isaacgym]
57
+ optional = true
58
+ [tool.poetry.group.isaacgym.dependencies]
59
+ isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry", python = ">=3.7.1,<3.10"}
60
+ isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
61
+
62
+
63
+ [build-system]
64
+ requires = ["poetry-core"]
65
+ build-backend = "poetry.core.masonry.api"
66
+
67
+ [tool.poetry.extras]
68
+ atari = ["ale-py", "AutoROM", "opencv-python"]
69
+ procgen = ["procgen"]
70
+ plot = ["pandas", "seaborn"]
71
+ pytest = ["pytest"]
72
+ mujoco = ["mujoco", "imageio"]
73
+ mujoco_py = ["free-mujoco-py"]
74
+ jax = ["jax", "jaxlib", "flax"]
75
+ docs = ["mkdocs-material", "markdown-include", "openrlbenchmark"]
76
+ envpool = ["envpool"]
77
+ optuna = ["optuna", "optuna-dashboard"]
78
+ pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
79
+ cloud = ["boto3", "awscli"]
80
+ dm_control = ["shimmy", "mujoco"]
81
+
82
+ # dependencies for algorithm variant (useful when you want to run a specific algorithm)
83
+ dqn = []
84
+ dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
85
+ dqn_jax = ["jax", "jaxlib", "flax"]
86
+ dqn_atari_jax = [
87
+ "ale-py", "AutoROM", "opencv-python", # atari
88
+ "jax", "jaxlib", "flax" # jax
89
+ ]
90
+ c51 = []
91
+ c51_atari = ["ale-py", "AutoROM", "opencv-python"]
92
+ c51_jax = ["jax", "jaxlib", "flax"]
93
+ c51_atari_jax = [
94
+ "ale-py", "AutoROM", "opencv-python", # atari
95
+ "jax", "jaxlib", "flax" # jax
96
+ ]
97
+ ppo_atari_envpool_xla_jax_scan = [
98
+ "ale-py", "AutoROM", "opencv-python", # atari
99
+ "jax", "jaxlib", "flax", # jax
100
+ "envpool", # envpool
101
+ ]
102
+ qdagger_dqn_atari_impalacnn = [
103
+ "ale-py", "AutoROM", "opencv-python"
104
+ ]
105
+ qdagger_dqn_atari_jax_impalacnn = [
106
+ "ale-py", "AutoROM", "opencv-python", # atari
107
+ "jax", "jaxlib", "flax", # jax
108
+ ]
replay.mp4 ADDED
Binary file (34.7 kB). View file
 
td3_continuous_action_jax.cleanrl_model ADDED
Binary file (811 kB). View file
 
td3_continuous_action_jax.py ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/td3/#td3_continuous_action_jaxpy
2
+ import argparse
3
+ import os
4
+ import random
5
+ import time
6
+ from distutils.util import strtobool
7
+
8
+ import flax
9
+ import flax.linen as nn
10
+ import gymnasium as gym
11
+ import jax
12
+ import jax.numpy as jnp
13
+ import numpy as np
14
+ import optax
15
+ from flax.training.train_state import TrainState
16
+ from stable_baselines3.common.buffers import ReplayBuffer
17
+ from torch.utils.tensorboard import SummaryWriter
18
+
19
+
20
+ def parse_args():
21
+ # fmt: off
22
+ parser = argparse.ArgumentParser()
23
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
24
+ help="the name of this experiment")
25
+ parser.add_argument("--seed", type=int, default=1,
26
+ help="seed of the experiment")
27
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
28
+ help="if toggled, this experiment will be tracked with Weights and Biases")
29
+ parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
30
+ help="the wandb's project name")
31
+ parser.add_argument("--wandb-entity", type=str, default=None,
32
+ help="the entity (team) of wandb's project")
33
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
34
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
35
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
36
+ help="whether to save model into the `runs/{run_name}` folder")
37
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
38
+ help="whether to upload the saved model to huggingface")
39
+ parser.add_argument("--hf-entity", type=str, default="",
40
+ help="the user or org name of the model repository from the Hugging Face Hub")
41
+
42
+ # Algorithm specific arguments
43
+ parser.add_argument("--env-id", type=str, default="HalfCheetah-v4",
44
+ help="the id of the environment")
45
+ parser.add_argument("--total-timesteps", type=int, default=1000000,
46
+ help="total timesteps of the experiments")
47
+ parser.add_argument("--learning-rate", type=float, default=3e-4,
48
+ help="the learning rate of the optimizer")
49
+ parser.add_argument("--buffer-size", type=int, default=int(1e6),
50
+ help="the replay memory buffer size")
51
+ parser.add_argument("--gamma", type=float, default=0.99,
52
+ help="the discount factor gamma")
53
+ parser.add_argument("--tau", type=float, default=0.005,
54
+ help="target smoothing coefficient (default: 0.005)")
55
+ parser.add_argument("--policy-noise", type=float, default=0.2,
56
+ help="the scale of policy noise")
57
+ parser.add_argument("--batch-size", type=int, default=256,
58
+ help="the batch size of sample from the reply memory")
59
+ parser.add_argument("--exploration-noise", type=float, default=0.1,
60
+ help="the scale of exploration noise")
61
+ parser.add_argument("--learning-starts", type=int, default=25e3,
62
+ help="timestep to start learning")
63
+ parser.add_argument("--policy-frequency", type=int, default=2,
64
+ help="the frequency of training policy (delayed)")
65
+ parser.add_argument("--noise-clip", type=float, default=0.5,
66
+ help="noise clip parameter of the Target Policy Smoothing Regularization")
67
+ args = parser.parse_args()
68
+ # fmt: on
69
+ return args
70
+
71
+
72
+ def make_env(env_id, seed, idx, capture_video, run_name):
73
+ def thunk():
74
+ if capture_video and idx == 0:
75
+ env = gym.make(env_id, render_mode="rgb_array")
76
+ env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
77
+ else:
78
+ env = gym.make(env_id)
79
+ env = gym.wrappers.RecordEpisodeStatistics(env)
80
+ env.action_space.seed(seed)
81
+ return env
82
+
83
+ return thunk
84
+
85
+
86
+ # ALGO LOGIC: initialize agent here:
87
+ class QNetwork(nn.Module):
88
+ @nn.compact
89
+ def __call__(self, x: jnp.ndarray, a: jnp.ndarray):
90
+ x = jnp.concatenate([x, a], -1)
91
+ x = nn.Dense(256)(x)
92
+ x = nn.relu(x)
93
+ x = nn.Dense(256)(x)
94
+ x = nn.relu(x)
95
+ x = nn.Dense(1)(x)
96
+ return x
97
+
98
+
99
+ class Actor(nn.Module):
100
+ action_dim: int
101
+ action_scale: jnp.ndarray
102
+ action_bias: jnp.ndarray
103
+
104
+ @nn.compact
105
+ def __call__(self, x):
106
+ x = nn.Dense(256)(x)
107
+ x = nn.relu(x)
108
+ x = nn.Dense(256)(x)
109
+ x = nn.relu(x)
110
+ x = nn.Dense(self.action_dim)(x)
111
+ x = nn.tanh(x)
112
+ x = x * self.action_scale + self.action_bias
113
+ return x
114
+
115
+
116
+ class TrainState(TrainState):
117
+ target_params: flax.core.FrozenDict
118
+
119
+
120
+ if __name__ == "__main__":
121
+ import stable_baselines3 as sb3
122
+
123
+ if sb3.__version__ < "2.0":
124
+ raise ValueError(
125
+ """Ongoing migration: run the following command to install the new dependencies:
126
+ poetry run pip install "stable_baselines3==2.0.0a1"
127
+ """
128
+ )
129
+ args = parse_args()
130
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
131
+ if args.track:
132
+ import wandb
133
+
134
+ wandb.init(
135
+ project=args.wandb_project_name,
136
+ entity=args.wandb_entity,
137
+ sync_tensorboard=True,
138
+ config=vars(args),
139
+ name=run_name,
140
+ monitor_gym=True,
141
+ save_code=True,
142
+ )
143
+ writer = SummaryWriter(f"runs/{run_name}")
144
+ writer.add_text(
145
+ "hyperparameters",
146
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
147
+ )
148
+ video_filenames = set()
149
+
150
+ # TRY NOT TO MODIFY: seeding
151
+ random.seed(args.seed)
152
+ np.random.seed(args.seed)
153
+ key = jax.random.PRNGKey(args.seed)
154
+ key, actor_key, qf1_key, qf2_key = jax.random.split(key, 4)
155
+
156
+ # env setup
157
+ envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
158
+ assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
159
+
160
+ max_action = float(envs.single_action_space.high[0])
161
+ envs.single_observation_space.dtype = np.float32
162
+ rb = ReplayBuffer(
163
+ args.buffer_size,
164
+ envs.single_observation_space,
165
+ envs.single_action_space,
166
+ device="cpu",
167
+ handle_timeout_termination=False,
168
+ )
169
+
170
+ # TRY NOT TO MODIFY: start the game
171
+ obs, _ = envs.reset(seed=args.seed)
172
+
173
+ actor = Actor(
174
+ action_dim=np.prod(envs.single_action_space.shape),
175
+ action_scale=jnp.array((envs.action_space.high - envs.action_space.low) / 2.0),
176
+ action_bias=jnp.array((envs.action_space.high + envs.action_space.low) / 2.0),
177
+ )
178
+ actor_state = TrainState.create(
179
+ apply_fn=actor.apply,
180
+ params=actor.init(actor_key, obs),
181
+ target_params=actor.init(actor_key, obs),
182
+ tx=optax.adam(learning_rate=args.learning_rate),
183
+ )
184
+ qf = QNetwork()
185
+ qf1_state = TrainState.create(
186
+ apply_fn=qf.apply,
187
+ params=qf.init(qf1_key, obs, envs.action_space.sample()),
188
+ target_params=qf.init(qf1_key, obs, envs.action_space.sample()),
189
+ tx=optax.adam(learning_rate=args.learning_rate),
190
+ )
191
+ qf2_state = TrainState.create(
192
+ apply_fn=qf.apply,
193
+ params=qf.init(qf2_key, obs, envs.action_space.sample()),
194
+ target_params=qf.init(qf2_key, obs, envs.action_space.sample()),
195
+ tx=optax.adam(learning_rate=args.learning_rate),
196
+ )
197
+ actor.apply = jax.jit(actor.apply)
198
+ qf.apply = jax.jit(qf.apply)
199
+
200
+ @jax.jit
201
+ def update_critic(
202
+ actor_state: TrainState,
203
+ qf1_state: TrainState,
204
+ qf2_state: TrainState,
205
+ observations: np.ndarray,
206
+ actions: np.ndarray,
207
+ next_observations: np.ndarray,
208
+ rewards: np.ndarray,
209
+ terminations: np.ndarray,
210
+ key: jnp.ndarray,
211
+ ):
212
+ # TODO Maybe pre-generate a lot of random keys
213
+ # also check https://jax.readthedocs.io/en/latest/jax.random.html
214
+ key, noise_key = jax.random.split(key, 2)
215
+ clipped_noise = (
216
+ jnp.clip(
217
+ (jax.random.normal(noise_key, actions.shape) * args.policy_noise),
218
+ -args.noise_clip,
219
+ args.noise_clip,
220
+ )
221
+ * actor.action_scale
222
+ )
223
+ next_state_actions = jnp.clip(
224
+ actor.apply(actor_state.target_params, next_observations) + clipped_noise,
225
+ envs.single_action_space.low,
226
+ envs.single_action_space.high,
227
+ )
228
+ qf1_next_target = qf.apply(qf1_state.target_params, next_observations, next_state_actions).reshape(-1)
229
+ qf2_next_target = qf.apply(qf2_state.target_params, next_observations, next_state_actions).reshape(-1)
230
+ min_qf_next_target = jnp.minimum(qf1_next_target, qf2_next_target)
231
+ next_q_value = (rewards + (1 - terminations) * args.gamma * (min_qf_next_target)).reshape(-1)
232
+
233
+ def mse_loss(params):
234
+ qf_a_values = qf.apply(params, observations, actions).squeeze()
235
+ return ((qf_a_values - next_q_value) ** 2).mean(), qf_a_values.mean()
236
+
237
+ (qf1_loss_value, qf1_a_values), grads1 = jax.value_and_grad(mse_loss, has_aux=True)(qf1_state.params)
238
+ (qf2_loss_value, qf2_a_values), grads2 = jax.value_and_grad(mse_loss, has_aux=True)(qf2_state.params)
239
+ qf1_state = qf1_state.apply_gradients(grads=grads1)
240
+ qf2_state = qf2_state.apply_gradients(grads=grads2)
241
+
242
+ return (qf1_state, qf2_state), (qf1_loss_value, qf2_loss_value), (qf1_a_values, qf2_a_values), key
243
+
244
+ @jax.jit
245
+ def update_actor(
246
+ actor_state: TrainState,
247
+ qf1_state: TrainState,
248
+ qf2_state: TrainState,
249
+ observations: np.ndarray,
250
+ ):
251
+ def actor_loss(params):
252
+ return -qf.apply(qf1_state.params, observations, actor.apply(params, observations)).mean()
253
+
254
+ actor_loss_value, grads = jax.value_and_grad(actor_loss)(actor_state.params)
255
+ actor_state = actor_state.apply_gradients(grads=grads)
256
+ actor_state = actor_state.replace(
257
+ target_params=optax.incremental_update(actor_state.params, actor_state.target_params, args.tau)
258
+ )
259
+
260
+ qf1_state = qf1_state.replace(
261
+ target_params=optax.incremental_update(qf1_state.params, qf1_state.target_params, args.tau)
262
+ )
263
+ qf2_state = qf2_state.replace(
264
+ target_params=optax.incremental_update(qf2_state.params, qf2_state.target_params, args.tau)
265
+ )
266
+ return actor_state, (qf1_state, qf2_state), actor_loss_value
267
+
268
+ start_time = time.time()
269
+ for global_step in range(args.total_timesteps):
270
+ # ALGO LOGIC: put action logic here
271
+ if global_step < args.learning_starts:
272
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
273
+ else:
274
+ actions = actor.apply(actor_state.params, obs)
275
+ actions = np.array(
276
+ [
277
+ (
278
+ jax.device_get(actions)[0]
279
+ + np.random.normal(0, max_action * args.exploration_noise, size=envs.single_action_space.shape)
280
+ ).clip(envs.single_action_space.low, envs.single_action_space.high)
281
+ ]
282
+ )
283
+
284
+ # TRY NOT TO MODIFY: execute the game and log data.
285
+ next_obs, rewards, terminations, truncations, infos = envs.step(actions)
286
+
287
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
288
+ if "final_info" in infos:
289
+ for info in infos["final_info"]:
290
+ print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
291
+ writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
292
+ writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
293
+ break
294
+
295
+ # TRY NOT TO MODIFY: save data to replay buffer; handle `terminal_observation`
296
+ real_next_obs = next_obs.copy()
297
+ for idx, trunc in enumerate(truncations):
298
+ if trunc:
299
+ real_next_obs[idx] = infos["final_observation"][idx]
300
+ rb.add(obs, real_next_obs, actions, rewards, terminations, infos)
301
+
302
+ # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
303
+ obs = next_obs
304
+
305
+ # ALGO LOGIC: training.
306
+ if global_step > args.learning_starts:
307
+ data = rb.sample(args.batch_size)
308
+
309
+ (qf1_state, qf2_state), (qf1_loss_value, qf2_loss_value), (qf1_a_values, qf2_a_values), key = update_critic(
310
+ actor_state,
311
+ qf1_state,
312
+ qf2_state,
313
+ data.observations.numpy(),
314
+ data.actions.numpy(),
315
+ data.next_observations.numpy(),
316
+ data.rewards.flatten().numpy(),
317
+ data.dones.flatten().numpy(),
318
+ key,
319
+ )
320
+
321
+ if global_step % args.policy_frequency == 0:
322
+ actor_state, (qf1_state, qf2_state), actor_loss_value = update_actor(
323
+ actor_state,
324
+ qf1_state,
325
+ qf2_state,
326
+ data.observations.numpy(),
327
+ )
328
+
329
+ if global_step % 100 == 0:
330
+ writer.add_scalar("losses/qf1_loss", qf1_loss_value.item(), global_step)
331
+ writer.add_scalar("losses/qf2_loss", qf2_loss_value.item(), global_step)
332
+ writer.add_scalar("losses/qf1_values", qf1_a_values.item(), global_step)
333
+ writer.add_scalar("losses/qf2_values", qf2_a_values.item(), global_step)
334
+ writer.add_scalar("losses/actor_loss", actor_loss_value.item(), global_step)
335
+ print("SPS:", int(global_step / (time.time() - start_time)))
336
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
337
+
338
+ if args.save_model:
339
+ model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
340
+ with open(model_path, "wb") as f:
341
+ f.write(
342
+ flax.serialization.to_bytes(
343
+ [
344
+ actor_state.params,
345
+ qf1_state.params,
346
+ qf2_state.params,
347
+ ]
348
+ )
349
+ )
350
+ print(f"model saved to {model_path}")
351
+ from cleanrl_utils.evals.td3_jax_eval import evaluate
352
+
353
+ episodic_returns = evaluate(
354
+ model_path,
355
+ make_env,
356
+ args.env_id,
357
+ eval_episodes=10,
358
+ run_name=f"{run_name}-eval",
359
+ Model=(Actor, QNetwork),
360
+ exploration_noise=args.exploration_noise,
361
+ )
362
+ for idx, episodic_return in enumerate(episodic_returns):
363
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
364
+
365
+ if args.upload_model:
366
+ from cleanrl_utils.huggingface import push_to_hub
367
+
368
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
369
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
370
+ push_to_hub(args, episodic_returns, repo_id, "TD3", f"runs/{run_name}", f"videos/{run_name}-eval")
371
+
372
+ envs.close()
373
+ writer.close()
videos/InvertedPendulum-v2__td3_continuous_action_jax__1__1697083245-eval/rl-video-episode-0.mp4 ADDED
Binary file (34.6 kB). View file
 
videos/InvertedPendulum-v2__td3_continuous_action_jax__1__1697083245-eval/rl-video-episode-1.mp4 ADDED
Binary file (34.6 kB). View file
 
videos/InvertedPendulum-v2__td3_continuous_action_jax__1__1697083245-eval/rl-video-episode-8.mp4 ADDED
Binary file (34.7 kB). View file