pushing model
Browse files- .gitattributes +1 -0
- README.md +85 -0
- events.out.tfevents.1672533100.pop-os.989457.0 +3 -0
- poetry.lock +0 -0
- ppo_atari_envpool_xla_jax_scan.cleanrl_model +3 -0
- ppo_atari_envpool_xla_jax_scan.py +514 -0
- pyproject.toml +178 -0
- replay.mp4 +0 -0
- videos/Breakout-v5__ppo_atari_envpool_xla_jax_scan__1__1672533099-eval/0.mp4 +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
ppo_atari_envpool_xla_jax_scan.cleanrl_model filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- Breakout-v5
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- custom-implementation
|
7 |
+
library_name: cleanrl
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Breakout-v5
|
16 |
+
type: Breakout-v5
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 352.90 +/- 96.78
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# (CleanRL) **PPO** Agent Playing **Breakout-v5**
|
25 |
+
|
26 |
+
This is a trained model of a PPO agent playing Breakout-v5.
|
27 |
+
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
|
28 |
+
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_xla_jax_scan.py).
|
29 |
+
|
30 |
+
## Get Started
|
31 |
+
|
32 |
+
To use this model, please install the `cleanrl` package with the following command:
|
33 |
+
|
34 |
+
```
|
35 |
+
pip install "cleanrl[ppo_atari_envpool_xla_jax_scan]"
|
36 |
+
python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_xla_jax_scan --env-id Breakout-v5
|
37 |
+
```
|
38 |
+
|
39 |
+
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
|
40 |
+
|
41 |
+
|
42 |
+
## Command to reproduce the training
|
43 |
+
|
44 |
+
```bash
|
45 |
+
curl -OL https://huggingface.co/cleanrl/Breakout-v5-ppo_atari_envpool_xla_jax_scan-seed1/raw/main/ppo_atari_envpool_xla_jax_scan.py
|
46 |
+
curl -OL https://huggingface.co/cleanrl/Breakout-v5-ppo_atari_envpool_xla_jax_scan-seed1/raw/main/pyproject.toml
|
47 |
+
curl -OL https://huggingface.co/cleanrl/Breakout-v5-ppo_atari_envpool_xla_jax_scan-seed1/raw/main/poetry.lock
|
48 |
+
poetry install --all-extras
|
49 |
+
python ppo_atari_envpool_xla_jax_scan.py --track --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1
|
50 |
+
```
|
51 |
+
|
52 |
+
# Hyperparameters
|
53 |
+
```python
|
54 |
+
{'anneal_lr': True,
|
55 |
+
'batch_size': 1024,
|
56 |
+
'capture_video': False,
|
57 |
+
'clip_coef': 0.1,
|
58 |
+
'cuda': True,
|
59 |
+
'ent_coef': 0.01,
|
60 |
+
'env_id': 'Breakout-v5',
|
61 |
+
'exp_name': 'ppo_atari_envpool_xla_jax_scan',
|
62 |
+
'gae_lambda': 0.95,
|
63 |
+
'gamma': 0.99,
|
64 |
+
'hf_entity': 'cleanrl',
|
65 |
+
'learning_rate': 0.00025,
|
66 |
+
'max_grad_norm': 0.5,
|
67 |
+
'minibatch_size': 256,
|
68 |
+
'norm_adv': True,
|
69 |
+
'num_envs': 8,
|
70 |
+
'num_minibatches': 4,
|
71 |
+
'num_steps': 128,
|
72 |
+
'num_updates': 9765,
|
73 |
+
'save_model': True,
|
74 |
+
'seed': 1,
|
75 |
+
'target_kl': None,
|
76 |
+
'torch_deterministic': True,
|
77 |
+
'total_timesteps': 10000000,
|
78 |
+
'track': True,
|
79 |
+
'update_epochs': 4,
|
80 |
+
'upload_model': True,
|
81 |
+
'vf_coef': 0.5,
|
82 |
+
'wandb_entity': None,
|
83 |
+
'wandb_project_name': 'cleanRL'}
|
84 |
+
```
|
85 |
+
|
events.out.tfevents.1672533100.pop-os.989457.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7f72cf0512336e420cdb4211899b32cdc32c97da7ab410f613284a65336d9f4
|
3 |
+
size 5693203
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ppo_atari_envpool_xla_jax_scan.cleanrl_model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe8c4a1034f9e0b6c953c888dc969349bab59c639bf20fa528a337dfb7236077
|
3 |
+
size 6747669
|
ppo_atari_envpool_xla_jax_scan.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_xla_jaxpy
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
from distutils.util import strtobool
|
7 |
+
from functools import partial
|
8 |
+
from typing import Sequence
|
9 |
+
|
10 |
+
os.environ[
|
11 |
+
"XLA_PYTHON_CLIENT_MEM_FRACTION"
|
12 |
+
] = "0.7" # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
|
13 |
+
|
14 |
+
import envpool
|
15 |
+
import flax
|
16 |
+
import flax.linen as nn
|
17 |
+
import gym
|
18 |
+
import jax
|
19 |
+
import jax.numpy as jnp
|
20 |
+
import numpy as np
|
21 |
+
import optax
|
22 |
+
from flax.linen.initializers import constant, orthogonal
|
23 |
+
from flax.training.train_state import TrainState
|
24 |
+
from torch.utils.tensorboard import SummaryWriter
|
25 |
+
|
26 |
+
|
27 |
+
def parse_args():
|
28 |
+
# fmt: off
|
29 |
+
parser = argparse.ArgumentParser()
|
30 |
+
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
|
31 |
+
help="the name of this experiment")
|
32 |
+
parser.add_argument("--seed", type=int, default=1,
|
33 |
+
help="seed of the experiment")
|
34 |
+
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
35 |
+
help="if toggled, `torch.backends.cudnn.deterministic=False`")
|
36 |
+
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
37 |
+
help="if toggled, cuda will be enabled by default")
|
38 |
+
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
39 |
+
help="if toggled, this experiment will be tracked with Weights and Biases")
|
40 |
+
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
|
41 |
+
help="the wandb's project name")
|
42 |
+
parser.add_argument("--wandb-entity", type=str, default=None,
|
43 |
+
help="the entity (team) of wandb's project")
|
44 |
+
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
45 |
+
help="whether to capture videos of the agent performances (check out `videos` folder)")
|
46 |
+
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
47 |
+
help="whether to save model into the `runs/{run_name}` folder")
|
48 |
+
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
49 |
+
help="whether to upload the saved model to huggingface")
|
50 |
+
parser.add_argument("--hf-entity", type=str, default="",
|
51 |
+
help="the user or org name of the model repository from the Hugging Face Hub")
|
52 |
+
|
53 |
+
# Algorithm specific arguments
|
54 |
+
parser.add_argument("--env-id", type=str, default="Pong-v5",
|
55 |
+
help="the id of the environment")
|
56 |
+
parser.add_argument("--total-timesteps", type=int, default=10000000,
|
57 |
+
help="total timesteps of the experiments")
|
58 |
+
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
|
59 |
+
help="the learning rate of the optimizer")
|
60 |
+
parser.add_argument("--num-envs", type=int, default=8,
|
61 |
+
help="the number of parallel game environments")
|
62 |
+
parser.add_argument("--num-steps", type=int, default=128,
|
63 |
+
help="the number of steps to run in each environment per policy rollout")
|
64 |
+
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
65 |
+
help="Toggle learning rate annealing for policy and value networks")
|
66 |
+
parser.add_argument("--gamma", type=float, default=0.99,
|
67 |
+
help="the discount factor gamma")
|
68 |
+
parser.add_argument("--gae-lambda", type=float, default=0.95,
|
69 |
+
help="the lambda for the general advantage estimation")
|
70 |
+
parser.add_argument("--num-minibatches", type=int, default=4,
|
71 |
+
help="the number of mini-batches")
|
72 |
+
parser.add_argument("--update-epochs", type=int, default=4,
|
73 |
+
help="the K epochs to update the policy")
|
74 |
+
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
75 |
+
help="Toggles advantages normalization")
|
76 |
+
parser.add_argument("--clip-coef", type=float, default=0.1,
|
77 |
+
help="the surrogate clipping coefficient")
|
78 |
+
parser.add_argument("--ent-coef", type=float, default=0.01,
|
79 |
+
help="coefficient of the entropy")
|
80 |
+
parser.add_argument("--vf-coef", type=float, default=0.5,
|
81 |
+
help="coefficient of the value function")
|
82 |
+
parser.add_argument("--max-grad-norm", type=float, default=0.5,
|
83 |
+
help="the maximum norm for the gradient clipping")
|
84 |
+
parser.add_argument("--target-kl", type=float, default=None,
|
85 |
+
help="the target KL divergence threshold")
|
86 |
+
args = parser.parse_args()
|
87 |
+
args.batch_size = int(args.num_envs * args.num_steps)
|
88 |
+
args.minibatch_size = int(args.batch_size // args.num_minibatches)
|
89 |
+
args.num_updates = args.total_timesteps // args.batch_size
|
90 |
+
# fmt: on
|
91 |
+
return args
|
92 |
+
|
93 |
+
|
94 |
+
def make_env(env_id, seed, num_envs):
|
95 |
+
def thunk():
|
96 |
+
envs = envpool.make(
|
97 |
+
env_id,
|
98 |
+
env_type="gym",
|
99 |
+
num_envs=num_envs,
|
100 |
+
episodic_life=True,
|
101 |
+
reward_clip=True,
|
102 |
+
seed=seed,
|
103 |
+
)
|
104 |
+
envs.num_envs = num_envs
|
105 |
+
envs.single_action_space = envs.action_space
|
106 |
+
envs.single_observation_space = envs.observation_space
|
107 |
+
envs.is_vector_env = True
|
108 |
+
return envs
|
109 |
+
|
110 |
+
return thunk
|
111 |
+
|
112 |
+
|
113 |
+
class Network(nn.Module):
|
114 |
+
@nn.compact
|
115 |
+
def __call__(self, x):
|
116 |
+
x = jnp.transpose(x, (0, 2, 3, 1))
|
117 |
+
x = x / (255.0)
|
118 |
+
x = nn.Conv(
|
119 |
+
32,
|
120 |
+
kernel_size=(8, 8),
|
121 |
+
strides=(4, 4),
|
122 |
+
padding="VALID",
|
123 |
+
kernel_init=orthogonal(np.sqrt(2)),
|
124 |
+
bias_init=constant(0.0),
|
125 |
+
)(x)
|
126 |
+
x = nn.relu(x)
|
127 |
+
x = nn.Conv(
|
128 |
+
64,
|
129 |
+
kernel_size=(4, 4),
|
130 |
+
strides=(2, 2),
|
131 |
+
padding="VALID",
|
132 |
+
kernel_init=orthogonal(np.sqrt(2)),
|
133 |
+
bias_init=constant(0.0),
|
134 |
+
)(x)
|
135 |
+
x = nn.relu(x)
|
136 |
+
x = nn.Conv(
|
137 |
+
64,
|
138 |
+
kernel_size=(3, 3),
|
139 |
+
strides=(1, 1),
|
140 |
+
padding="VALID",
|
141 |
+
kernel_init=orthogonal(np.sqrt(2)),
|
142 |
+
bias_init=constant(0.0),
|
143 |
+
)(x)
|
144 |
+
x = nn.relu(x)
|
145 |
+
x = x.reshape((x.shape[0], -1))
|
146 |
+
x = nn.Dense(512, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0))(x)
|
147 |
+
x = nn.relu(x)
|
148 |
+
return x
|
149 |
+
|
150 |
+
|
151 |
+
class Critic(nn.Module):
|
152 |
+
@nn.compact
|
153 |
+
def __call__(self, x):
|
154 |
+
return nn.Dense(1, kernel_init=orthogonal(1), bias_init=constant(0.0))(x)
|
155 |
+
|
156 |
+
|
157 |
+
class Actor(nn.Module):
|
158 |
+
action_dim: Sequence[int]
|
159 |
+
|
160 |
+
@nn.compact
|
161 |
+
def __call__(self, x):
|
162 |
+
return nn.Dense(self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0))(x)
|
163 |
+
|
164 |
+
|
165 |
+
@flax.struct.dataclass
|
166 |
+
class AgentParams:
|
167 |
+
network_params: flax.core.FrozenDict
|
168 |
+
actor_params: flax.core.FrozenDict
|
169 |
+
critic_params: flax.core.FrozenDict
|
170 |
+
|
171 |
+
|
172 |
+
@flax.struct.dataclass
|
173 |
+
class Storage:
|
174 |
+
obs: jnp.array
|
175 |
+
actions: jnp.array
|
176 |
+
logprobs: jnp.array
|
177 |
+
dones: jnp.array
|
178 |
+
values: jnp.array
|
179 |
+
advantages: jnp.array
|
180 |
+
returns: jnp.array
|
181 |
+
rewards: jnp.array
|
182 |
+
|
183 |
+
|
184 |
+
@flax.struct.dataclass
|
185 |
+
class EpisodeStatistics:
|
186 |
+
episode_returns: jnp.array
|
187 |
+
episode_lengths: jnp.array
|
188 |
+
returned_episode_returns: jnp.array
|
189 |
+
returned_episode_lengths: jnp.array
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
args = parse_args()
|
194 |
+
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
|
195 |
+
if args.track:
|
196 |
+
import wandb
|
197 |
+
|
198 |
+
wandb.init(
|
199 |
+
project=args.wandb_project_name,
|
200 |
+
entity=args.wandb_entity,
|
201 |
+
sync_tensorboard=True,
|
202 |
+
config=vars(args),
|
203 |
+
name=run_name,
|
204 |
+
monitor_gym=True,
|
205 |
+
save_code=True,
|
206 |
+
)
|
207 |
+
writer = SummaryWriter(f"runs/{run_name}")
|
208 |
+
writer.add_text(
|
209 |
+
"hyperparameters",
|
210 |
+
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
211 |
+
)
|
212 |
+
|
213 |
+
# TRY NOT TO MODIFY: seeding
|
214 |
+
random.seed(args.seed)
|
215 |
+
np.random.seed(args.seed)
|
216 |
+
key = jax.random.PRNGKey(args.seed)
|
217 |
+
key, network_key, actor_key, critic_key = jax.random.split(key, 4)
|
218 |
+
|
219 |
+
# env setup
|
220 |
+
envs = make_env(args.env_id, args.seed, args.num_envs)()
|
221 |
+
episode_stats = EpisodeStatistics(
|
222 |
+
episode_returns=jnp.zeros(args.num_envs, dtype=jnp.float32),
|
223 |
+
episode_lengths=jnp.zeros(args.num_envs, dtype=jnp.int32),
|
224 |
+
returned_episode_returns=jnp.zeros(args.num_envs, dtype=jnp.float32),
|
225 |
+
returned_episode_lengths=jnp.zeros(args.num_envs, dtype=jnp.int32),
|
226 |
+
)
|
227 |
+
handle, recv, send, step_env = envs.xla()
|
228 |
+
|
229 |
+
def step_env_wrappeed(episode_stats, handle, action):
|
230 |
+
handle, (next_obs, reward, next_done, info) = step_env(handle, action)
|
231 |
+
new_episode_return = episode_stats.episode_returns + info["reward"]
|
232 |
+
new_episode_length = episode_stats.episode_lengths + 1
|
233 |
+
episode_stats = episode_stats.replace(
|
234 |
+
episode_returns=(new_episode_return) * (1 - info["terminated"]) * (1 - info["TimeLimit.truncated"]),
|
235 |
+
episode_lengths=(new_episode_length) * (1 - info["terminated"]) * (1 - info["TimeLimit.truncated"]),
|
236 |
+
# only update the `returned_episode_returns` if the episode is done
|
237 |
+
returned_episode_returns=jnp.where(
|
238 |
+
info["terminated"] + info["TimeLimit.truncated"], new_episode_return, episode_stats.returned_episode_returns
|
239 |
+
),
|
240 |
+
returned_episode_lengths=jnp.where(
|
241 |
+
info["terminated"] + info["TimeLimit.truncated"], new_episode_length, episode_stats.returned_episode_lengths
|
242 |
+
),
|
243 |
+
)
|
244 |
+
return episode_stats, handle, (next_obs, reward, next_done, info)
|
245 |
+
|
246 |
+
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
|
247 |
+
|
248 |
+
def linear_schedule(count):
|
249 |
+
# anneal learning rate linearly after one training iteration which contains
|
250 |
+
# (args.num_minibatches * args.update_epochs) gradient updates
|
251 |
+
frac = 1.0 - (count // (args.num_minibatches * args.update_epochs)) / args.num_updates
|
252 |
+
return args.learning_rate * frac
|
253 |
+
|
254 |
+
network = Network()
|
255 |
+
actor = Actor(action_dim=envs.single_action_space.n)
|
256 |
+
critic = Critic()
|
257 |
+
network_params = network.init(network_key, np.array([envs.single_observation_space.sample()]))
|
258 |
+
agent_state = TrainState.create(
|
259 |
+
apply_fn=None,
|
260 |
+
params=AgentParams(
|
261 |
+
network_params,
|
262 |
+
actor.init(actor_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
|
263 |
+
critic.init(critic_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
|
264 |
+
),
|
265 |
+
tx=optax.chain(
|
266 |
+
optax.clip_by_global_norm(args.max_grad_norm),
|
267 |
+
optax.inject_hyperparams(optax.adam)(
|
268 |
+
learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
|
269 |
+
),
|
270 |
+
),
|
271 |
+
)
|
272 |
+
network.apply = jax.jit(network.apply)
|
273 |
+
actor.apply = jax.jit(actor.apply)
|
274 |
+
critic.apply = jax.jit(critic.apply)
|
275 |
+
|
276 |
+
@jax.jit
|
277 |
+
def get_action_and_value(
|
278 |
+
agent_state: TrainState,
|
279 |
+
next_obs: np.ndarray,
|
280 |
+
key: jax.random.PRNGKey,
|
281 |
+
):
|
282 |
+
"""sample action, calculate value, logprob, entropy, and update storage"""
|
283 |
+
hidden = network.apply(agent_state.params.network_params, next_obs)
|
284 |
+
logits = actor.apply(agent_state.params.actor_params, hidden)
|
285 |
+
# sample action: Gumbel-softmax trick
|
286 |
+
# see https://stats.stackexchange.com/questions/359442/sampling-from-a-categorical-distribution
|
287 |
+
key, subkey = jax.random.split(key)
|
288 |
+
u = jax.random.uniform(subkey, shape=logits.shape)
|
289 |
+
action = jnp.argmax(logits - jnp.log(-jnp.log(u)), axis=1)
|
290 |
+
logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
|
291 |
+
value = critic.apply(agent_state.params.critic_params, hidden)
|
292 |
+
return action, logprob, value.squeeze(1), key
|
293 |
+
|
294 |
+
@jax.jit
|
295 |
+
def get_action_and_value2(
|
296 |
+
params: flax.core.FrozenDict,
|
297 |
+
x: np.ndarray,
|
298 |
+
action: np.ndarray,
|
299 |
+
):
|
300 |
+
"""calculate value, logprob of supplied `action`, and entropy"""
|
301 |
+
hidden = network.apply(params.network_params, x)
|
302 |
+
logits = actor.apply(params.actor_params, hidden)
|
303 |
+
logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
|
304 |
+
# normalize the logits https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/
|
305 |
+
logits = logits - jax.scipy.special.logsumexp(logits, axis=-1, keepdims=True)
|
306 |
+
logits = logits.clip(min=jnp.finfo(logits.dtype).min)
|
307 |
+
p_log_p = logits * jax.nn.softmax(logits)
|
308 |
+
entropy = -p_log_p.sum(-1)
|
309 |
+
value = critic.apply(params.critic_params, hidden).squeeze()
|
310 |
+
return logprob, entropy, value
|
311 |
+
|
312 |
+
def compute_gae_once(carry, inp, gamma, gae_lambda):
|
313 |
+
advantages = carry
|
314 |
+
nextdone, nextvalues, curvalues, reward = inp
|
315 |
+
nextnonterminal = 1.0 - nextdone
|
316 |
+
|
317 |
+
delta = reward + gamma * nextvalues * nextnonterminal - curvalues
|
318 |
+
advantages = delta + gamma * gae_lambda * nextnonterminal * advantages
|
319 |
+
return advantages, advantages
|
320 |
+
|
321 |
+
compute_gae_once = partial(compute_gae_once, gamma=args.gamma, gae_lambda=args.gae_lambda)
|
322 |
+
|
323 |
+
@jax.jit
|
324 |
+
def compute_gae(
|
325 |
+
agent_state: TrainState,
|
326 |
+
next_obs: np.ndarray,
|
327 |
+
next_done: np.ndarray,
|
328 |
+
storage: Storage,
|
329 |
+
):
|
330 |
+
next_value = critic.apply(
|
331 |
+
agent_state.params.critic_params, network.apply(agent_state.params.network_params, next_obs)
|
332 |
+
).squeeze()
|
333 |
+
|
334 |
+
advantages = jnp.zeros((args.num_envs,))
|
335 |
+
dones = jnp.concatenate([storage.dones, next_done[None, :]], axis=0)
|
336 |
+
values = jnp.concatenate([storage.values, next_value[None, :]], axis=0)
|
337 |
+
_, advantages = jax.lax.scan(
|
338 |
+
compute_gae_once, advantages, (dones[1:], values[1:], values[:-1], storage.rewards), reverse=True
|
339 |
+
)
|
340 |
+
storage = storage.replace(
|
341 |
+
advantages=advantages,
|
342 |
+
returns=advantages + storage.values,
|
343 |
+
)
|
344 |
+
return storage
|
345 |
+
|
346 |
+
def ppo_loss(params, x, a, logp, mb_advantages, mb_returns):
|
347 |
+
newlogprob, entropy, newvalue = get_action_and_value2(params, x, a)
|
348 |
+
logratio = newlogprob - logp
|
349 |
+
ratio = jnp.exp(logratio)
|
350 |
+
approx_kl = ((ratio - 1) - logratio).mean()
|
351 |
+
|
352 |
+
if args.norm_adv:
|
353 |
+
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
|
354 |
+
|
355 |
+
# Policy loss
|
356 |
+
pg_loss1 = -mb_advantages * ratio
|
357 |
+
pg_loss2 = -mb_advantages * jnp.clip(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
|
358 |
+
pg_loss = jnp.maximum(pg_loss1, pg_loss2).mean()
|
359 |
+
|
360 |
+
# Value loss
|
361 |
+
v_loss = 0.5 * ((newvalue - mb_returns) ** 2).mean()
|
362 |
+
|
363 |
+
entropy_loss = entropy.mean()
|
364 |
+
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
|
365 |
+
return loss, (pg_loss, v_loss, entropy_loss, jax.lax.stop_gradient(approx_kl))
|
366 |
+
|
367 |
+
ppo_loss_grad_fn = jax.value_and_grad(ppo_loss, has_aux=True)
|
368 |
+
|
369 |
+
@jax.jit
|
370 |
+
def update_ppo(
|
371 |
+
agent_state: TrainState,
|
372 |
+
storage: Storage,
|
373 |
+
key: jax.random.PRNGKey,
|
374 |
+
):
|
375 |
+
def update_epoch(carry, unused_inp):
|
376 |
+
agent_state, key = carry
|
377 |
+
key, subkey = jax.random.split(key)
|
378 |
+
|
379 |
+
def flatten(x):
|
380 |
+
return x.reshape((-1,) + x.shape[2:])
|
381 |
+
|
382 |
+
# taken from: https://github.com/google/brax/blob/main/brax/training/agents/ppo/train.py
|
383 |
+
def convert_data(x: jnp.ndarray):
|
384 |
+
x = jax.random.permutation(subkey, x)
|
385 |
+
x = jnp.reshape(x, (args.num_minibatches, -1) + x.shape[1:])
|
386 |
+
return x
|
387 |
+
|
388 |
+
flatten_storage = jax.tree_map(flatten, storage)
|
389 |
+
shuffled_storage = jax.tree_map(convert_data, flatten_storage)
|
390 |
+
|
391 |
+
def update_minibatch(agent_state, minibatch):
|
392 |
+
(loss, (pg_loss, v_loss, entropy_loss, approx_kl)), grads = ppo_loss_grad_fn(
|
393 |
+
agent_state.params,
|
394 |
+
minibatch.obs,
|
395 |
+
minibatch.actions,
|
396 |
+
minibatch.logprobs,
|
397 |
+
minibatch.advantages,
|
398 |
+
minibatch.returns,
|
399 |
+
)
|
400 |
+
agent_state = agent_state.apply_gradients(grads=grads)
|
401 |
+
return agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
|
402 |
+
|
403 |
+
agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads) = jax.lax.scan(
|
404 |
+
update_minibatch, agent_state, shuffled_storage
|
405 |
+
)
|
406 |
+
return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
|
407 |
+
|
408 |
+
(agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads) = jax.lax.scan(
|
409 |
+
update_epoch, (agent_state, key), (), length=args.update_epochs
|
410 |
+
)
|
411 |
+
return agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key
|
412 |
+
|
413 |
+
# TRY NOT TO MODIFY: start the game
|
414 |
+
global_step = 0
|
415 |
+
start_time = time.time()
|
416 |
+
next_obs = envs.reset()
|
417 |
+
next_done = jnp.zeros(args.num_envs, dtype=jax.numpy.bool_)
|
418 |
+
|
419 |
+
# based on https://github.dev/google/evojax/blob/0625d875262011d8e1b6aa32566b236f44b4da66/evojax/sim_mgr.py
|
420 |
+
def step_once(carry, step, env_step_fn):
|
421 |
+
agent_state, episode_stats, obs, done, key, handle = carry
|
422 |
+
action, logprob, value, key = get_action_and_value(agent_state, obs, key)
|
423 |
+
|
424 |
+
episode_stats, handle, (next_obs, reward, next_done, _) = env_step_fn(episode_stats, handle, action)
|
425 |
+
storage = Storage(
|
426 |
+
obs=obs,
|
427 |
+
actions=action,
|
428 |
+
logprobs=logprob,
|
429 |
+
dones=done,
|
430 |
+
values=value,
|
431 |
+
rewards=reward,
|
432 |
+
returns=jnp.zeros_like(reward),
|
433 |
+
advantages=jnp.zeros_like(reward),
|
434 |
+
)
|
435 |
+
return ((agent_state, episode_stats, next_obs, next_done, key, handle), storage)
|
436 |
+
|
437 |
+
def rollout(agent_state, episode_stats, next_obs, next_done, key, handle, step_once_fn, max_steps):
|
438 |
+
(agent_state, episode_stats, next_obs, next_done, key, handle), storage = jax.lax.scan(
|
439 |
+
step_once_fn, (agent_state, episode_stats, next_obs, next_done, key, handle), (), max_steps
|
440 |
+
)
|
441 |
+
return agent_state, episode_stats, next_obs, next_done, storage, key, handle
|
442 |
+
|
443 |
+
rollout = partial(rollout, step_once_fn=partial(step_once, env_step_fn=step_env_wrappeed), max_steps=args.num_steps)
|
444 |
+
|
445 |
+
for update in range(1, args.num_updates + 1):
|
446 |
+
update_time_start = time.time()
|
447 |
+
agent_state, episode_stats, next_obs, next_done, storage, key, handle = rollout(
|
448 |
+
agent_state, episode_stats, next_obs, next_done, key, handle
|
449 |
+
)
|
450 |
+
global_step += args.num_steps * args.num_envs
|
451 |
+
storage = compute_gae(agent_state, next_obs, next_done, storage)
|
452 |
+
agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key = update_ppo(
|
453 |
+
agent_state,
|
454 |
+
storage,
|
455 |
+
key,
|
456 |
+
)
|
457 |
+
avg_episodic_return = np.mean(jax.device_get(episode_stats.returned_episode_returns))
|
458 |
+
print(f"global_step={global_step}, avg_episodic_return={avg_episodic_return}")
|
459 |
+
|
460 |
+
# TRY NOT TO MODIFY: record rewards for plotting purposes
|
461 |
+
writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
|
462 |
+
writer.add_scalar(
|
463 |
+
"charts/avg_episodic_length", np.mean(jax.device_get(episode_stats.returned_episode_lengths)), global_step
|
464 |
+
)
|
465 |
+
writer.add_scalar("charts/learning_rate", agent_state.opt_state[1].hyperparams["learning_rate"].item(), global_step)
|
466 |
+
writer.add_scalar("losses/value_loss", v_loss[-1, -1].item(), global_step)
|
467 |
+
writer.add_scalar("losses/policy_loss", pg_loss[-1, -1].item(), global_step)
|
468 |
+
writer.add_scalar("losses/entropy", entropy_loss[-1, -1].item(), global_step)
|
469 |
+
writer.add_scalar("losses/approx_kl", approx_kl[-1, -1].item(), global_step)
|
470 |
+
writer.add_scalar("losses/loss", loss[-1, -1].item(), global_step)
|
471 |
+
print("SPS:", int(global_step / (time.time() - start_time)))
|
472 |
+
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
|
473 |
+
writer.add_scalar(
|
474 |
+
"charts/SPS_update", int(args.num_envs * args.num_steps / (time.time() - update_time_start)), global_step
|
475 |
+
)
|
476 |
+
|
477 |
+
if args.save_model:
|
478 |
+
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
|
479 |
+
with open(model_path, "wb") as f:
|
480 |
+
f.write(
|
481 |
+
flax.serialization.to_bytes(
|
482 |
+
[
|
483 |
+
vars(args),
|
484 |
+
[
|
485 |
+
agent_state.params.network_params,
|
486 |
+
agent_state.params.actor_params,
|
487 |
+
agent_state.params.critic_params,
|
488 |
+
],
|
489 |
+
]
|
490 |
+
)
|
491 |
+
)
|
492 |
+
print(f"model saved to {model_path}")
|
493 |
+
from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
|
494 |
+
|
495 |
+
episodic_returns = evaluate(
|
496 |
+
model_path,
|
497 |
+
make_env,
|
498 |
+
args.env_id,
|
499 |
+
eval_episodes=10,
|
500 |
+
run_name=f"{run_name}-eval",
|
501 |
+
Model=(Network, Actor, Critic),
|
502 |
+
)
|
503 |
+
for idx, episodic_return in enumerate(episodic_returns):
|
504 |
+
writer.add_scalar("eval/episodic_return", episodic_return, idx)
|
505 |
+
|
506 |
+
if args.upload_model:
|
507 |
+
from cleanrl_utils.huggingface import push_to_hub
|
508 |
+
|
509 |
+
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
|
510 |
+
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
|
511 |
+
push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")
|
512 |
+
|
513 |
+
envs.close()
|
514 |
+
writer.close()
|
pyproject.toml
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "cleanrl-test"
|
3 |
+
version = "1.1.0"
|
4 |
+
description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
|
5 |
+
authors = ["Costa Huang <costa.huang@outlook.com>"]
|
6 |
+
packages = [
|
7 |
+
{ include = "cleanrl" },
|
8 |
+
{ include = "cleanrl_utils" },
|
9 |
+
]
|
10 |
+
keywords = ["reinforcement", "machine", "learning", "research"]
|
11 |
+
license="MIT"
|
12 |
+
readme = "README.md"
|
13 |
+
|
14 |
+
[tool.poetry.dependencies]
|
15 |
+
python = ">=3.7.1,<3.10"
|
16 |
+
tensorboard = "^2.10.0"
|
17 |
+
wandb = "^0.13.6"
|
18 |
+
gym = "0.23.1"
|
19 |
+
torch = ">=1.12.1"
|
20 |
+
stable-baselines3 = "1.2.0"
|
21 |
+
gymnasium = "^0.26.3"
|
22 |
+
moviepy = "^1.0.3"
|
23 |
+
pygame = "2.1.0"
|
24 |
+
huggingface-hub = "^0.11.1"
|
25 |
+
|
26 |
+
ale-py = {version = "0.7.4", optional = true}
|
27 |
+
AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
|
28 |
+
opencv-python = {version = "^4.6.0.66", optional = true}
|
29 |
+
pybullet = {version = "3.1.8", optional = true}
|
30 |
+
procgen = {version = "^0.10.7", optional = true}
|
31 |
+
pytest = {version = "^7.1.3", optional = true}
|
32 |
+
mujoco = {version = "^2.2", optional = true}
|
33 |
+
imageio = {version = "^2.14.1", optional = true}
|
34 |
+
free-mujoco-py = {version = "^2.1.6", optional = true}
|
35 |
+
mkdocs-material = {version = "^8.4.3", optional = true}
|
36 |
+
markdown-include = {version = "^0.7.0", optional = true}
|
37 |
+
jax = {version = "^0.3.17", optional = true}
|
38 |
+
jaxlib = {version = "^0.3.15", optional = true}
|
39 |
+
flax = {version = "^0.6.0", optional = true}
|
40 |
+
optuna = {version = "^3.0.1", optional = true}
|
41 |
+
optuna-dashboard = {version = "^0.7.2", optional = true}
|
42 |
+
rich = {version = "<12.0", optional = true}
|
43 |
+
envpool = {version = "^0.6.4", optional = true}
|
44 |
+
PettingZoo = {version = "1.18.1", optional = true}
|
45 |
+
SuperSuit = {version = "3.4.0", optional = true}
|
46 |
+
multi-agent-ale-py = {version = "0.1.11", optional = true}
|
47 |
+
boto3 = {version = "^1.24.70", optional = true}
|
48 |
+
awscli = {version = "^1.25.71", optional = true}
|
49 |
+
shimmy = {version = "^0.1.0", optional = true}
|
50 |
+
dm-control = {version = "^1.0.8", optional = true}
|
51 |
+
|
52 |
+
[tool.poetry.group.dev.dependencies]
|
53 |
+
pre-commit = "^2.20.0"
|
54 |
+
|
55 |
+
[tool.poetry.group.atari]
|
56 |
+
optional = true
|
57 |
+
[tool.poetry.group.atari.dependencies]
|
58 |
+
ale-py = "0.7.4"
|
59 |
+
AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
|
60 |
+
opencv-python = "^4.6.0.66"
|
61 |
+
|
62 |
+
[tool.poetry.group.pybullet]
|
63 |
+
optional = true
|
64 |
+
[tool.poetry.group.pybullet.dependencies]
|
65 |
+
pybullet = "3.1.8"
|
66 |
+
|
67 |
+
[tool.poetry.group.procgen]
|
68 |
+
optional = true
|
69 |
+
[tool.poetry.group.procgen.dependencies]
|
70 |
+
procgen = "^0.10.7"
|
71 |
+
|
72 |
+
[tool.poetry.group.pytest]
|
73 |
+
optional = true
|
74 |
+
[tool.poetry.group.pytest.dependencies]
|
75 |
+
pytest = "^7.1.3"
|
76 |
+
|
77 |
+
[tool.poetry.group.mujoco]
|
78 |
+
optional = true
|
79 |
+
[tool.poetry.group.mujoco.dependencies]
|
80 |
+
mujoco = "^2.2"
|
81 |
+
imageio = "^2.14.1"
|
82 |
+
|
83 |
+
[tool.poetry.group.mujoco_py]
|
84 |
+
optional = true
|
85 |
+
[tool.poetry.group.mujoco_py.dependencies]
|
86 |
+
free-mujoco-py = "^2.1.6"
|
87 |
+
|
88 |
+
[tool.poetry.group.docs]
|
89 |
+
optional = true
|
90 |
+
[tool.poetry.group.docs.dependencies]
|
91 |
+
mkdocs-material = "^8.4.3"
|
92 |
+
markdown-include = "^0.7.0"
|
93 |
+
|
94 |
+
[tool.poetry.group.jax]
|
95 |
+
optional = true
|
96 |
+
[tool.poetry.group.jax.dependencies]
|
97 |
+
jax = "^0.3.17"
|
98 |
+
jaxlib = "^0.3.15"
|
99 |
+
flax = "^0.6.0"
|
100 |
+
|
101 |
+
[tool.poetry.group.optuna]
|
102 |
+
optional = true
|
103 |
+
[tool.poetry.group.optuna.dependencies]
|
104 |
+
optuna = "^3.0.1"
|
105 |
+
optuna-dashboard = "^0.7.2"
|
106 |
+
rich = "<12.0"
|
107 |
+
|
108 |
+
[tool.poetry.group.envpool]
|
109 |
+
optional = true
|
110 |
+
[tool.poetry.group.envpool.dependencies]
|
111 |
+
envpool = "^0.6.4"
|
112 |
+
|
113 |
+
[tool.poetry.group.pettingzoo]
|
114 |
+
optional = true
|
115 |
+
[tool.poetry.group.pettingzoo.dependencies]
|
116 |
+
PettingZoo = "1.18.1"
|
117 |
+
SuperSuit = "3.4.0"
|
118 |
+
multi-agent-ale-py = "0.1.11"
|
119 |
+
|
120 |
+
[tool.poetry.group.cloud]
|
121 |
+
optional = true
|
122 |
+
[tool.poetry.group.cloud.dependencies]
|
123 |
+
boto3 = "^1.24.70"
|
124 |
+
awscli = "^1.25.71"
|
125 |
+
|
126 |
+
[tool.poetry.group.isaacgym]
|
127 |
+
optional = true
|
128 |
+
[tool.poetry.group.isaacgym.dependencies]
|
129 |
+
isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry"}
|
130 |
+
isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
|
131 |
+
|
132 |
+
[tool.poetry.group.dm_control]
|
133 |
+
optional = true
|
134 |
+
[tool.poetry.group.dm_control.dependencies]
|
135 |
+
shimmy = "^0.1.0"
|
136 |
+
dm-control = "^1.0.8"
|
137 |
+
mujoco = "^2.2"
|
138 |
+
|
139 |
+
[build-system]
|
140 |
+
requires = ["poetry-core"]
|
141 |
+
build-backend = "poetry.core.masonry.api"
|
142 |
+
|
143 |
+
[tool.poetry.extras]
|
144 |
+
atari = ["ale-py", "AutoROM", "opencv-python"]
|
145 |
+
pybullet = ["pybullet"]
|
146 |
+
procgen = ["procgen"]
|
147 |
+
plot = ["pandas", "seaborn"]
|
148 |
+
pytest = ["pytest"]
|
149 |
+
mujoco = ["mujoco", "imageio"]
|
150 |
+
mujoco_py = ["free-mujoco-py"]
|
151 |
+
jax = ["jax", "jaxlib", "flax"]
|
152 |
+
docs = ["mkdocs-material", "markdown-include"]
|
153 |
+
envpool = ["envpool"]
|
154 |
+
optuna = ["optuna", "optuna-dashboard", "rich"]
|
155 |
+
pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
|
156 |
+
cloud = ["boto3", "awscli"]
|
157 |
+
dm_control = ["shimmy", "dm-control", "mujoco"]
|
158 |
+
|
159 |
+
# dependencies for algorithm variant (useful when you want to run a specific algorithm)
|
160 |
+
dqn = []
|
161 |
+
dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
|
162 |
+
dqn_jax = ["jax", "jaxlib", "flax"]
|
163 |
+
dqn_atari_jax = [
|
164 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
165 |
+
"jax", "jaxlib", "flax" # jax
|
166 |
+
]
|
167 |
+
c51 = []
|
168 |
+
c51_atari = ["ale-py", "AutoROM", "opencv-python"]
|
169 |
+
c51_jax = ["jax", "jaxlib", "flax"]
|
170 |
+
c51_atari_jax = [
|
171 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
172 |
+
"jax", "jaxlib", "flax" # jax
|
173 |
+
]
|
174 |
+
ppo_atari_envpool_xla_jax_scan = [
|
175 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
176 |
+
"jax", "jaxlib", "flax", # jax
|
177 |
+
"envpool", # envpool
|
178 |
+
]
|
replay.mp4
ADDED
Binary file (149 kB). View file
|
|
videos/Breakout-v5__ppo_atari_envpool_xla_jax_scan__1__1672533099-eval/0.mp4
ADDED
Binary file (149 kB). View file
|
|