Added use examples
Browse files
README.md
CHANGED
@@ -38,4 +38,25 @@ Comparison with `xlm-roberta-base`:
|
|
38 |
| --- | --- | --- |
|
39 |
|Wilcoxon|0.00781|0.00781|
|
40 |
|Mann Whithney U test|0.00108|0.00108|
|
41 |
-
|Student t-test |9.46e-11|6.94e-11|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
| --- | --- | --- |
|
39 |
|Wilcoxon|0.00781|0.00781|
|
40 |
|Mann Whithney U test|0.00108|0.00108|
|
41 |
+
|Student t-test |9.46e-11|6.94e-11|
|
42 |
+
## Use examples
|
43 |
+
|
44 |
+
```python
|
45 |
+
from simpletransformers.classification import ClassificationModel
|
46 |
+
model_args = {
|
47 |
+
"num_train_epochs": 14,
|
48 |
+
"learning_rate": 1e-5,
|
49 |
+
"train_batch_size": 21,
|
50 |
+
}
|
51 |
+
|
52 |
+
model = ClassificationModel(
|
53 |
+
"bert", "5roop/bcms-bertic-frenk-hate", use_cuda=True,
|
54 |
+
args=model_args
|
55 |
+
|
56 |
+
)
|
57 |
+
|
58 |
+
predictions, logit_output = model.predict(["Silva, ti si grda in neprijazna.", "Naša hiša ima dimnik."])
|
59 |
+
predictions
|
60 |
+
### Output:
|
61 |
+
### array([1, 0])
|
62 |
+
```
|