TajaKuzman commited on
Commit
ba197cf
·
verified ·
1 Parent(s): fc64d8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -7
README.md CHANGED
@@ -128,6 +128,8 @@ base_model:
128
  News topic classification model based on [`xlm-roberta-large`](https://huggingface.co/FacebookAI/xlm-roberta-large)
129
  and fine-tuned on a [news corpus in 4 languages](http://hdl.handle.net/11356/1991) (Croatian, Slovenian, Catalan and Greek), annotated with the [top-level IPTC
130
  Media Topic NewsCodes labels](https://www.iptc.org/std/NewsCodes/treeview/mediatopic/mediatopic-en-GB.html).
 
 
131
 
132
  The model can be used for classification into topic labels from the
133
  [IPTC NewsCodes schema](https://iptc.org/std/NewsCodes/guidelines/#_what_are_the_iptc_newscodes) and can be
@@ -316,15 +318,19 @@ model_args ={
316
 
317
  ## Citation
318
 
319
- Paper with the details on the model is currently in submission. If you use the model, please cite [this paper](https://arxiv.org/abs/2411.19638):
320
 
321
  ```
322
- @article{kuzman2024llmteacherstudent,
323
- title={{LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification}},
324
- author={Kuzman, Taja and Ljube{\v{s}}i{\'c}, Nikola},
325
- journal={arXiv preprint arXiv:2411.19638},
326
- year={2024}
327
- }
 
 
 
 
328
  ```
329
 
330
  ## Funding
 
128
  News topic classification model based on [`xlm-roberta-large`](https://huggingface.co/FacebookAI/xlm-roberta-large)
129
  and fine-tuned on a [news corpus in 4 languages](http://hdl.handle.net/11356/1991) (Croatian, Slovenian, Catalan and Greek), annotated with the [top-level IPTC
130
  Media Topic NewsCodes labels](https://www.iptc.org/std/NewsCodes/treeview/mediatopic/mediatopic-en-GB.html).
131
+ The development and evaluation of the model is described in the paper
132
+ [LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification](https://doi.org/10.1109/ACCESS.2025.3544814) (Kuzman and Ljubešić, 2025).
133
 
134
  The model can be used for classification into topic labels from the
135
  [IPTC NewsCodes schema](https://iptc.org/std/NewsCodes/guidelines/#_what_are_the_iptc_newscodes) and can be
 
318
 
319
  ## Citation
320
 
321
+ If you use the model, please cite [this paper](https://doi.org/10.1109/ACCESS.2025.3544814):
322
 
323
  ```
324
+ @ARTICLE{10900365,
325
+ author={Kuzman, Taja and Ljubešić, Nikola},
326
+ journal={IEEE Access},
327
+ title={LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification},
328
+ year={2025},
329
+ volume={},
330
+ number={},
331
+ pages={1-1},
332
+ keywords={Data models;Annotations;Media;Manuals;Multilingual;Computational modeling;Training;Training data;Transformers;Text categorization;Multilingual text classification;IPTC;large language models;LLMs;news topic;topic classification;training data preparation;data annotation},
333
+ doi={10.1109/ACCESS.2025.3544814}}
334
  ```
335
 
336
  ## Funding