miteshkotak7
commited on
Custom endpoint handler
Browse filescustom handler to revert label names from endpoint
- handler.py +74 -0
handler.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from setfit import SetFitModel
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class EndpointHandler:
|
7 |
+
def __init__(self, path=""):
|
8 |
+
# load model
|
9 |
+
self.model = SetFitModel.from_pretrained(path)
|
10 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
11 |
+
"""
|
12 |
+
data args:
|
13 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
14 |
+
kwargs
|
15 |
+
Return:
|
16 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
17 |
+
"""
|
18 |
+
|
19 |
+
# get inputs
|
20 |
+
inputs = data.pop("inputs", data)
|
21 |
+
if isinstance(inputs, str):
|
22 |
+
inputs = [inputs]
|
23 |
+
|
24 |
+
|
25 |
+
exerciselabels = ['positive experience',
|
26 |
+
'power posing',
|
27 |
+
'worry vs rumination',
|
28 |
+
'self-confidence',
|
29 |
+
'negative emotions',
|
30 |
+
'sleep',
|
31 |
+
'loneliness',
|
32 |
+
'imaginary friend',
|
33 |
+
'perfectionism',
|
34 |
+
'negative self-talk',
|
35 |
+
'woop',
|
36 |
+
'venting',
|
37 |
+
'worry window',
|
38 |
+
'act of kindness',
|
39 |
+
'blowing balloons',
|
40 |
+
'feeling on anger',
|
41 |
+
'power of smile',
|
42 |
+
'body scan',
|
43 |
+
'stress enhancing thoughts',
|
44 |
+
'anger ball of fire',
|
45 |
+
'emotions',
|
46 |
+
'lean against wall',
|
47 |
+
'breathing',
|
48 |
+
'crossed arms']
|
49 |
+
|
50 |
+
# run normal prediction
|
51 |
+
preds = self.model.predict(inputs)
|
52 |
+
scores = self.model.predict_proba(inputs)
|
53 |
+
|
54 |
+
label = [[el for el, p in zip(exerciselabels, ps) if p] for ps in preds]
|
55 |
+
|
56 |
+
# Modify the label array
|
57 |
+
modified_label = label[0]
|
58 |
+
|
59 |
+
# Extract the positives probabilities from each inner array
|
60 |
+
modified_proba = [[inner[0][1]] for item, inner in zip(scores, scores)]
|
61 |
+
|
62 |
+
|
63 |
+
score = [[el for el, p in zip(modified_proba, ps) if p] for ps in preds]
|
64 |
+
|
65 |
+
# Modify the score array
|
66 |
+
modified_score = score[0]
|
67 |
+
|
68 |
+
|
69 |
+
combined_dict = {key: value for key, value in zip(modified_label, modified_score)}
|
70 |
+
|
71 |
+
output_array = [combined_dict]
|
72 |
+
|
73 |
+
# for element in combined_array:
|
74 |
+
return output_array
|