hpprc commited on
Commit
6e43f2d
1 Parent(s): aa9370e

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ datasets:
9
+ - wiki40b
10
+ ---
11
+
12
+ # {MODEL_NAME}
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+
18
+ ## Usage (Sentence-Transformers)
19
+
20
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
+
22
+ ```
23
+ pip install -U sentence-transformers
24
+ ```
25
+
26
+ Then you can use the model like this:
27
+
28
+ ```python
29
+ from sentence_transformers import SentenceTransformer
30
+ sentences = ["This is an example sentence", "Each sentence is converted"]
31
+
32
+ model = SentenceTransformer('{MODEL_NAME}')
33
+ embeddings = model.encode(sentences)
34
+ print(embeddings)
35
+ ```
36
+
37
+
38
+
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ def cls_pooling(model_output, attention_mask):
48
+ return model_output[0][:,0]
49
+
50
+
51
+ # Sentences we want sentence embeddings for
52
+ sentences = ['This is an example sentence', 'Each sentence is converted']
53
+
54
+ # Load model from HuggingFace Hub
55
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
56
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
57
+
58
+ # Tokenize sentences
59
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
60
+
61
+ # Compute token embeddings
62
+ with torch.no_grad():
63
+ model_output = model(**encoded_input)
64
+
65
+ # Perform pooling. In this case, cls pooling.
66
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
67
+
68
+ print("Sentence embeddings:")
69
+ print(sentence_embeddings)
70
+ ```
71
+
72
+
73
+
74
+ ## Evaluation Results
75
+
76
+ <!--- Describe how your model was evaluated -->
77
+
78
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
79
+
80
+
81
+
82
+ ## Full Model Architecture
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
87
+ )
88
+ ```
89
+
90
+ ## Citing & Authors
91
+
92
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cl-tohoku/bert-large-japanese-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.28.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "2.0.1+cu118"
6
+ }
7
+ }
dev-metrics.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "best-epoch": 0,
3
+ "best-step": 14848,
4
+ "best-dev": 79.89326362092076
5
+ }
log.csv ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,step,loss,sts-dev
2
+ 0,0,inf,46.70784718045186
3
+ 0,256,0.1804292798042297,52.72027437941158
4
+ 0,512,0.0020474940538406,54.16706057378039
5
+ 0,768,0.0009167678654193,54.97971089516359
6
+ 0,1024,0.000422166660428,55.25231988293338
7
+ 0,1280,0.0003259554505348,57.31856344751787
8
+ 0,1536,0.0002286350354552,58.87054645225247
9
+ 0,1792,0.0001499559730291,60.728810953166615
10
+ 0,2048,0.0001791073009371,61.57247985363832
11
+ 0,2304,0.0001186188310384,64.60548209276658
12
+ 0,2560,0.0001095095649361,63.10229448214084
13
+ 0,2816,0.0001485776156187,64.8266343938356
14
+ 0,3072,5.192495882511139e-05,64.93407974180886
15
+ 0,3328,5.085254088044167e-05,65.81752870539546
16
+ 0,3584,4.379916936159134e-05,67.45208926863944
17
+ 0,3840,4.599476233124733e-05,68.05788327988445
18
+ 0,4096,4.309089854359627e-05,69.45097516603441
19
+ 0,4352,3.668293356895447e-05,68.1476778494779
20
+ 0,4608,9.581120684742928e-05,69.92317914058378
21
+ 0,4864,2.981838770210743e-05,70.9661656639272
22
+ 0,5120,2.7928035706281665e-05,70.94022380977198
23
+ 0,5376,2.4954788386821747e-05,71.95443935736876
24
+ 0,5632,0.0002523055300116,64.31970216926345
25
+ 0,5888,8.713500574231148e-05,69.52938449247287
26
+ 0,6144,0.0014079879038035,70.47003750847361
27
+ 0,6400,0.000243455171585,71.59856983457301
28
+ 0,6656,0.000127900391817,74.68453275823876
29
+ 0,6912,0.0001000803895294,75.77340285188441
30
+ 0,7168,4.809629172086716e-05,76.39808954543045
31
+ 0,7424,7.226737216114998e-05,77.21090146846127
32
+ 0,7680,5.386536940932274e-05,77.35177080166082
33
+ 0,7936,6.202561780810356e-05,78.88216498082295
34
+ 0,8192,4.967162385582924e-05,78.44234060894145
35
+ 0,8448,8.730334229767323e-05,77.11248318696224
36
+ 0,8704,3.610621206462383e-05,77.38938397378755
37
+ 0,8960,3.122887574136257e-05,77.82144371150366
38
+ 0,9216,2.6472844183444977e-05,77.64439577421061
39
+ 0,9472,3.739865496754646e-05,77.82867263629335
40
+ 0,9728,6.275856867432594e-05,77.78532545057863
41
+ 0,9984,0.0001052424777299,77.68747091778894
42
+ 0,10240,6.868503987789154e-05,78.50513744745713
43
+ 0,10496,2.1886546164751053e-05,78.41693329853474
44
+ 0,10752,2.1351734176278114e-05,78.40869491745303
45
+ 0,11008,6.39175996184349e-05,77.34029669023184
46
+ 0,11264,2.041761763393879e-05,77.46689545708392
47
+ 0,11520,1.9822735339403152e-05,77.56863484544071
48
+ 0,11776,0.0001011767890304,76.97902467846677
49
+ 0,12032,1.891795545816421e-05,77.33079748604983
50
+ 0,12288,2.008024603128433e-05,77.43681879408709
51
+ 0,12544,1.6340520232915878e-05,77.87685933905435
52
+ 0,12800,1.8035294488072395e-05,78.98472505927285
53
+ 0,13056,1.5516066923737526e-05,79.37901670816368
54
+ 0,13312,1.7801765352487564e-05,79.09891287263548
55
+ 0,13568,1.2751086615025995e-05,79.24946296985583
56
+ 0,13824,2.7165631763637062e-05,79.63705481260891
57
+ 0,14080,9.27936052903533e-05,79.62363077978016
58
+ 0,14336,1.8229475244879723e-05,79.80480156914284
59
+ 0,14592,1.4328979887068272e-05,79.78896480741983
60
+ 0,14848,1.1875061318278313e-05,79.89326362092076
61
+ 0,15104,1.981784589588642e-05,79.06084666759766
62
+ 0,15360,1.3236538507044315e-05,79.40354417627844
63
+ 0,15616,4.09658532589674e-05,79.15875606571835
64
+ 1,15872,1.979898661375045e-05,79.18473415613285
65
+ 1,16128,4.3475418351590633e-05,79.22740284079154
66
+ 1,16384,1.6250647604465485e-05,79.1942526682348
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16a74528fe4d664be1b409f3143180d40a61f9b854875fcfd193dc5e5bf3aee0
3
+ size 1349897965
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
sts-metrics.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "jsick": 79.61770842846016,
3
+ "jsts-val": 81.40370972668754,
4
+ "jsts-train": 77.77128665725087,
5
+ "avg": 79.59756827079953
6
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": false,
5
+ "do_subword_tokenize": true,
6
+ "do_word_tokenize": true,
7
+ "jumanpp_kwargs": null,
8
+ "mask_token": "[MASK]",
9
+ "mecab_kwargs": {
10
+ "mecab_dic": "unidic_lite"
11
+ },
12
+ "model_max_length": 512,
13
+ "never_split": null,
14
+ "pad_token": "[PAD]",
15
+ "sep_token": "[SEP]",
16
+ "subword_tokenizer_type": "wordpiece",
17
+ "sudachi_kwargs": null,
18
+ "tokenizer_class": "BertJapaneseTokenizer",
19
+ "unk_token": "[UNK]",
20
+ "word_tokenizer_type": "mecab"
21
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff