hpprc commited on
Commit
b87807c
1 Parent(s): 585d603

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ datasets:
9
+ - wiki40b
10
+ ---
11
+
12
+ # {MODEL_NAME}
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+
18
+ ## Usage (Sentence-Transformers)
19
+
20
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
+
22
+ ```
23
+ pip install -U sentence-transformers
24
+ ```
25
+
26
+ Then you can use the model like this:
27
+
28
+ ```python
29
+ from sentence_transformers import SentenceTransformer
30
+ sentences = ["This is an example sentence", "Each sentence is converted"]
31
+
32
+ model = SentenceTransformer('{MODEL_NAME}')
33
+ embeddings = model.encode(sentences)
34
+ print(embeddings)
35
+ ```
36
+
37
+
38
+
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ def cls_pooling(model_output, attention_mask):
48
+ return model_output[0][:,0]
49
+
50
+
51
+ # Sentences we want sentence embeddings for
52
+ sentences = ['This is an example sentence', 'Each sentence is converted']
53
+
54
+ # Load model from HuggingFace Hub
55
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
56
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
57
+
58
+ # Tokenize sentences
59
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
60
+
61
+ # Compute token embeddings
62
+ with torch.no_grad():
63
+ model_output = model(**encoded_input)
64
+
65
+ # Perform pooling. In this case, cls pooling.
66
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
67
+
68
+ print("Sentence embeddings:")
69
+ print(sentence_embeddings)
70
+ ```
71
+
72
+
73
+
74
+ ## Evaluation Results
75
+
76
+ <!--- Describe how your model was evaluated -->
77
+
78
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
79
+
80
+
81
+
82
+ ## Full Model Architecture
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
87
+ )
88
+ ```
89
+
90
+ ## Citing & Authors
91
+
92
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cl-tohoku/bert-base-japanese-v3",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.28.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "2.0.1+cu118"
6
+ }
7
+ }
dev-metrics.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "best-epoch": 0,
3
+ "best-step": 2816,
4
+ "best-dev": 79.14925054212402
5
+ }
log.csv ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,step,loss,sts-dev
2
+ 0,0,inf,51.37411795900895
3
+ 0,256,0.0375348776578903,55.5997536647364
4
+ 0,512,0.0017691701650619,58.32817940768812
5
+ 0,768,0.0006307438015937,59.3974185060456
6
+ 0,1024,0.0003144387155771,60.754689631552935
7
+ 0,1280,0.0004976624622941,67.08745072940616
8
+ 0,1536,0.0002566464245319,68.1524768645118
9
+ 0,1792,0.0002705361694097,69.40357586993056
10
+ 0,2048,0.0001239106059074,70.00059301214966
11
+ 0,2304,0.0003662584349513,75.31010320876732
12
+ 0,2560,0.0009017521515488,76.00143228736593
13
+ 0,2816,0.000157325528562,79.14925054212402
14
+ 0,3072,7.141055539250374e-05,79.03881731254904
15
+ 0,3328,6.363820284605026e-05,78.44641639262007
16
+ 0,3584,0.0003677839413285,69.92161167599382
17
+ 0,3840,0.0001026871614158,68.42750644636237
18
+ 0,4096,9.204680100083352e-05,70.72705620298922
19
+ 0,4352,0.0001523927785456,71.94724540351626
20
+ 0,4608,5.27617521584034e-05,73.47894342360826
21
+ 0,4864,0.0004469738341867,66.93028259965841
22
+ 0,5120,0.0005747117102146,62.61976106536561
23
+ 0,5376,9.74196009337902e-05,64.04559706437584
24
+ 0,5632,0.0015562903136014,69.92255616122571
25
+ 0,5888,0.0010261721909046,61.98660674368782
26
+ 0,6144,0.0001530339941382,63.50736446491301
27
+ 0,6400,8.464325219392776e-05,65.00607265185072
28
+ 0,6656,0.0001220507547259,64.11445092781186
29
+ 0,6912,7.890071719884872e-05,66.22976181708123
30
+ 0,7168,9.68356616795063e-05,65.92655281556975
31
+ 0,7424,8.580600842833519e-05,65.17092915065315
32
+ 0,7680,0.0001265667378902,65.30866918870973
33
+ 0,7936,6.173737347126007e-05,66.90631113844152
34
+ 0,8192,0.0001264261081814,66.40594180975687
35
+ 0,8448,0.0001129913143813,65.82487123637435
36
+ 0,8704,6.541237235069275e-05,66.07900519557332
37
+ 0,8960,3.945222124457359e-05,66.91985335070422
38
+ 0,9216,0.0003336034715175,60.87154559005693
39
+ 0,9472,6.768666207790375e-05,62.93127257528387
40
+ 0,9728,5.523348227143288e-05,62.83898335246322
41
+ 0,9984,0.0001294771209359,63.87235436545296
42
+ 0,10240,0.0001297239214181,71.55534428591778
43
+ 0,10496,5.560088902711868e-05,72.26094985542503
44
+ 0,10752,0.0002071415074169,67.9768502124699
45
+ 0,11008,7.525458931922913e-05,70.44867140163949
46
+ 0,11264,0.0001133475452661,73.38390697765232
47
+ 0,11520,8.798344060778618e-05,73.5864667379101
48
+ 0,11776,4.829838871955872e-05,73.398043540928
49
+ 0,12032,3.966083750128746e-05,73.17604312647413
50
+ 0,12288,0.000146017409861,73.03065062945811
51
+ 0,12544,0.0001280489377677,73.41318767441048
52
+ 0,12800,3.561563789844513e-05,72.99900370616899
53
+ 0,13056,3.670249134302139e-05,73.3663132648536
54
+ 0,13312,3.159511834383011e-05,73.28953413824371
55
+ 0,13568,3.014621324837208e-05,73.1532624579162
56
+ 0,13824,6.573181599378586e-05,72.19940893582316
57
+ 0,14080,2.860999666154385e-05,72.19998744238026
58
+ 0,14336,4.158122465014458e-05,71.95310234208006
59
+ 0,14592,2.8798123821616173e-05,72.24484132141129
60
+ 0,14848,6.46631233394146e-05,71.71260103237086
61
+ 0,15104,2.8088223189115524e-05,72.05196625094614
62
+ 0,15360,2.8930604457855225e-05,72.30732956907381
63
+ 0,15616,2.897414378821849e-05,72.5329350302894
64
+ 1,15872,2.837018109858036e-05,72.58699593041659
65
+ 1,16128,8.221296593546867e-05,72.68198072076807
66
+ 1,16384,2.6318710297346115e-05,72.70427711066239
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b51be3aac3b2f84cc5fec4632604eec977c8a6c152a72d46368fed9e336f8110
3
+ size 444897069
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
sts-metrics.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "jsick": 79.01221347847088,
3
+ "jsts-val": 78.94769808578855,
4
+ "jsts-train": 74.47873985273404,
5
+ "avg": 77.47955047233116
6
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": false,
5
+ "do_subword_tokenize": true,
6
+ "do_word_tokenize": true,
7
+ "jumanpp_kwargs": null,
8
+ "mask_token": "[MASK]",
9
+ "mecab_kwargs": {
10
+ "mecab_dic": "unidic_lite"
11
+ },
12
+ "model_max_length": 512,
13
+ "never_split": null,
14
+ "pad_token": "[PAD]",
15
+ "sep_token": "[SEP]",
16
+ "subword_tokenizer_type": "wordpiece",
17
+ "sudachi_kwargs": null,
18
+ "tokenizer_class": "BertJapaneseTokenizer",
19
+ "unk_token": "[UNK]",
20
+ "word_tokenizer_type": "mecab"
21
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff