Sentence Similarity
Safetensors
Japanese
distilbert
feature-extraction
hpprc commited on
Commit
8e9818e
1 Parent(s): b8bd366

Upload 17 files

Browse files
result/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7991935990685706,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.907725321888412,
9
+ "macro_f1": 0.6109654998349738
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9206008583690987,
13
+ "macro_f1": 0.7553180921566123
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.930406852248394,
19
+ "macro_f1": 0.7991935990685706
20
+ }
21
+ }
22
+ }
23
+ }
result/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.556129066893332,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4216,
9
+ "macro_f1": 0.4121755235351596
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.5632,
13
+ "macro_f1": 0.5591904800064202
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.56,
19
+ "macro_f1": 0.556129066893332
20
+ }
21
+ }
22
+ }
23
+ }
result/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8148895285345188,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7875061485489424,
9
+ "macro_f1": 0.735126286885438
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8573536645351697,
13
+ "macro_f1": 0.838740737492276
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8362474781439139,
19
+ "macro_f1": 0.8148895285345188
20
+ }
21
+ }
22
+ }
23
+ }
result/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8787774569382543,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8691588785046729,
9
+ "macro_f1": 0.8610209884671544
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8986719134284309,
13
+ "macro_f1": 0.8915311881559682
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8823133826496301,
19
+ "macro_f1": 0.8787774569382543
20
+ }
21
+ }
22
+ }
23
+ }
result/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5096442244018489,
4
+ "details": {
5
+ "optimal_clustering_model_name": "AgglomerativeClustering",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5155149790434675,
9
+ "homogeneity_score": 0.5040878200105626,
10
+ "completeness_score": 0.5274722391130744
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5484270601867571,
14
+ "homogeneity_score": 0.5369394189236333,
15
+ "completeness_score": 0.5604169964554391
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.5376784533072557,
19
+ "homogeneity_score": 0.5361001139672913,
20
+ "completeness_score": 0.5392661137083645
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5458063802733484,
24
+ "homogeneity_score": 0.5349834585205275,
25
+ "completeness_score": 0.5570762476737373
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "AgglomerativeClustering": {
30
+ "v_measure_score": 0.5096442244018489,
31
+ "homogeneity_score": 0.5079528634930609,
32
+ "completeness_score": 0.5113468865915328
33
+ }
34
+ }
35
+ }
36
+ }
result/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5141045788711239,
4
+ "details": {
5
+ "optimal_clustering_model_name": "MiniBatchKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.543899400881209,
9
+ "homogeneity_score": 0.5955190874170961,
10
+ "completeness_score": 0.5005147085855427
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5163023738694377,
14
+ "homogeneity_score": 0.5635562478103336,
15
+ "completeness_score": 0.47635986731721597
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.48694697274293186,
19
+ "homogeneity_score": 0.5307503463138618,
20
+ "completeness_score": 0.4498226457773539
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5163023738694377,
24
+ "homogeneity_score": 0.5635562478103336,
25
+ "completeness_score": 0.476359867317216
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "MiniBatchKMeans": {
30
+ "v_measure_score": 0.5141045788711239,
31
+ "homogeneity_score": 0.5421348978484514,
32
+ "completeness_score": 0.48883029887612817
33
+ }
34
+ }
35
+ }
36
+ }
result/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6211267605633802,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distances",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": 0.6759790182113647,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.5985,
15
+ "accuracy_threshold": 30.971534729003906,
16
+ "binary_f1": 0.6019760056457304,
17
+ "binary_f1_threshold": 342.1531982421875
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.598,
21
+ "accuracy_threshold": 1.3944740295410156,
22
+ "binary_f1": 0.6020444131124427,
23
+ "binary_f1_threshold": 16.84113311767578
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.573,
27
+ "accuracy_threshold": 548.4661254882812,
28
+ "binary_f1": 0.6016949152542372,
29
+ "binary_f1_threshold": 415.54345703125
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distances": {
34
+ "accuracy": 0.5645,
35
+ "accuracy_threshold": 1.3944740295410156,
36
+ "binary_f1": 0.6211267605633802,
37
+ "binary_f1_threshold": 16.84113311767578
38
+ }
39
+ }
40
+ }
41
+ }
result/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9300177985352138,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.944144892024604,
9
+ "ndcg@20": 0.9566345571684772,
10
+ "ndcg@40": 0.9640441285073341
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9297352149986512,
14
+ "ndcg@20": 0.9448677352764289,
15
+ "ndcg@40": 0.9537077347945042
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9446577914383755,
19
+ "ndcg@20": 0.9569052614162316,
20
+ "ndcg@40": 0.9643388177037328
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "euclidean_distance": {
25
+ "ndcg@10": 0.9300177985352138,
26
+ "ndcg@20": 0.9471226984711035,
27
+ "ndcg@40": 0.9564853495563737
28
+ }
29
+ }
30
+ }
31
+ }
result/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.736494039429321,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.584381398069611,
9
+ "accuracy@3": 0.766890903773033,
10
+ "accuracy@5": 0.8215852588476162,
11
+ "accuracy@10": 0.8748171980111143,
12
+ "ndcg@10": 0.7326724272945226,
13
+ "mrr@10": 0.6867933397401084
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.3275811640830652,
17
+ "accuracy@3": 0.49575899385785316,
18
+ "accuracy@5": 0.5560105293945599,
19
+ "accuracy@10": 0.6326411231354198,
20
+ "ndcg@10": 0.47570376078893195,
21
+ "mrr@10": 0.4260534037150003
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5867212635273472,
25
+ "accuracy@3": 0.7712781515062884,
26
+ "accuracy@5": 0.8248025738520035,
27
+ "accuracy@10": 0.870722433460076,
28
+ "ndcg@10": 0.733274373935001,
29
+ "mrr@10": 0.688727094620631
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.5929824561403508,
35
+ "accuracy@3": 0.7713450292397661,
36
+ "accuracy@5": 0.8190058479532164,
37
+ "accuracy@10": 0.8730994152046784,
38
+ "ndcg@10": 0.736494039429321,
39
+ "mrr@10": 0.6924176181193723
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.484437639428696,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.32964824120603015,
9
+ "accuracy@3": 0.49246231155778897,
10
+ "accuracy@5": 0.5718592964824121,
11
+ "accuracy@10": 0.6522613065326633,
12
+ "ndcg@10": 0.48355974964323734,
13
+ "mrr@10": 0.4303046980936424
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.1306532663316583,
17
+ "accuracy@3": 0.24824120603015076,
18
+ "accuracy@5": 0.3005025125628141,
19
+ "accuracy@10": 0.4120603015075377,
20
+ "ndcg@10": 0.2557712936565093,
21
+ "mrr@10": 0.20779014118210082
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.32663316582914576,
25
+ "accuracy@3": 0.4864321608040201,
26
+ "accuracy@5": 0.5618090452261306,
27
+ "accuracy@10": 0.6462311557788945,
28
+ "ndcg@10": 0.47854687532079854,
29
+ "mrr@10": 0.4257059105049051
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.31995987963891676,
35
+ "accuracy@3": 0.4954864593781344,
36
+ "accuracy@5": 0.5777331995987964,
37
+ "accuracy@10": 0.6619859578736209,
38
+ "ndcg@10": 0.484437639428696,
39
+ "mrr@10": 0.4284834662718312
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.3342716158897666,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.21551724137931033,
9
+ "accuracy@3": 0.3609913793103448,
10
+ "accuracy@5": 0.42995689655172414,
11
+ "accuracy@10": 0.509698275862069,
12
+ "ndcg@10": 0.3532634556091773,
13
+ "mrr@10": 0.30418462643678146
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.04310344827586207,
17
+ "accuracy@3": 0.08836206896551724,
18
+ "accuracy@5": 0.11530172413793104,
19
+ "accuracy@10": 0.15301724137931033,
20
+ "ndcg@10": 0.09304385842795544,
21
+ "mrr@10": 0.0744680487137384
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.2252155172413793,
25
+ "accuracy@3": 0.3760775862068966,
26
+ "accuracy@5": 0.4418103448275862,
27
+ "accuracy@10": 0.53125,
28
+ "ndcg@10": 0.3684043180071825,
29
+ "mrr@10": 0.31742739121510655
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.2013888888888889,
35
+ "accuracy@3": 0.375,
36
+ "accuracy@5": 0.4638888888888889,
37
+ "accuracy@10": 0.5541666666666667,
38
+ "ndcg@10": 0.3342716158897666,
39
+ "mrr@10": 0.30838458994708995
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.8768878489670099,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.82,
9
+ "accuracy@3": 0.94,
10
+ "accuracy@5": 0.96,
11
+ "accuracy@10": 0.96,
12
+ "ndcg@10": 0.8990879114471843,
13
+ "mrr@10": 0.8783333333333333
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.68,
17
+ "accuracy@3": 0.81,
18
+ "accuracy@5": 0.88,
19
+ "accuracy@10": 0.96,
20
+ "ndcg@10": 0.8092872591620544,
21
+ "mrr@10": 0.7623293650793651
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.85,
25
+ "accuracy@3": 0.94,
26
+ "accuracy@5": 0.96,
27
+ "accuracy@10": 0.97,
28
+ "ndcg@10": 0.9113031320591165,
29
+ "mrr@10": 0.8921666666666667
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.801980198019802,
35
+ "accuracy@3": 0.8935643564356436,
36
+ "accuracy@5": 0.9331683168316832,
37
+ "accuracy@10": 0.948019801980198,
38
+ "ndcg@10": 0.8768878489670099,
39
+ "mrr@10": 0.8536637592330663
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9716879343439146,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9,
9
+ "accuracy@3": 0.96,
10
+ "accuracy@5": 0.97,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 0.9491865865926399,
13
+ "mrr@10": 0.933095238095238
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.68,
17
+ "accuracy@3": 0.86,
18
+ "accuracy@5": 0.92,
19
+ "accuracy@10": 0.92,
20
+ "ndcg@10": 0.8106756888962013,
21
+ "mrr@10": 0.774
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9,
25
+ "accuracy@3": 0.96,
26
+ "accuracy@5": 0.97,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 0.9493652711581159,
29
+ "mrr@10": 0.9332738095238095
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.9381188118811881,
35
+ "accuracy@3": 0.9826732673267327,
36
+ "accuracy@5": 0.9925742574257426,
37
+ "accuracy@10": 0.9975247524752475,
38
+ "ndcg@10": 0.9716879343439146,
39
+ "mrr@10": 0.9630225522552256
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7608660955794895,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.63,
9
+ "accuracy@3": 0.8,
10
+ "accuracy@5": 0.85,
11
+ "accuracy@10": 0.89,
12
+ "ndcg@10": 0.763548354665835,
13
+ "mrr@10": 0.7226944444444446
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.39,
17
+ "accuracy@3": 0.64,
18
+ "accuracy@5": 0.7,
19
+ "accuracy@10": 0.83,
20
+ "ndcg@10": 0.6048238230337044,
21
+ "mrr@10": 0.5335158730158731
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.63,
25
+ "accuracy@3": 0.8,
26
+ "accuracy@5": 0.85,
27
+ "accuracy@10": 0.88,
28
+ "ndcg@10": 0.7605380547091953,
29
+ "mrr@10": 0.7215833333333335
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.655940594059406,
35
+ "accuracy@3": 0.7821782178217822,
36
+ "accuracy@5": 0.8341584158415841,
37
+ "accuracy@10": 0.8638613861386139,
38
+ "ndcg@10": 0.7608660955794895,
39
+ "mrr@10": 0.7275842762847713
40
+ }
41
+ }
42
+ }
43
+ }
result/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8343927017558587,
4
+ "details": {
5
+ "optimal_similarity_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8446183563656585,
9
+ "spearman": 0.8367170844896946
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8472993028173297,
13
+ "spearman": 0.8343797412370403
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8472993028173297,
17
+ "spearman": 0.8343797412370403
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8211250471651956,
21
+ "spearman": 0.8029357210718526
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "cosine_similarity": {
26
+ "pearson": 0.8400443214276277,
27
+ "spearman": 0.8343927017558587
28
+ }
29
+ }
30
+ }
31
+ }
result/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8213297790184827,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8341982404976528,
9
+ "spearman": 0.7825049368314301
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8221562123952046,
13
+ "spearman": 0.7830096343603999
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8221562123952046,
17
+ "spearman": 0.7830096343603999
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8056563438618474,
21
+ "spearman": 0.7471043843298736
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8556382223713024,
27
+ "spearman": 0.8213297790184827
28
+ }
29
+ }
30
+ }
31
+ }
result/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.7991935990685706
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.556129066893332
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.8148895285345188
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.8787774569382543
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9300177985352138
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.736494039429321
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.484437639428696
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.3342716158897666
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.8768878489670099
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9716879343439146
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.7608660955794895
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.8343927017558587
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8213297790184827
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.5096442244018489
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.5141045788711239
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6211267605633802
60
+ }
61
+ }
62
+ }