hpprc commited on
Commit
19fae3f
1 Parent(s): f9d7ada

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ base_model: tohoku-nlp/bert-base-japanese-v3
9
+ widget: []
10
+ pipeline_tag: sentence-similarity
11
+ ---
12
+
13
+ # SentenceTransformer based on tohoku-nlp/bert-base-japanese-v3
14
+
15
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+ - **Model Type:** Sentence Transformer
21
+ - **Base model:** [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3) <!-- at revision 65243d6e5629b969c77309f217bd7b1a79d43c7e -->
22
+ - **Maximum Sequence Length:** 512 tokens
23
+ - **Output Dimensionality:** 768 tokens
24
+ - **Similarity Function:** Cosine Similarity
25
+ <!-- - **Training Dataset:** Unknown -->
26
+ <!-- - **Language:** Unknown -->
27
+ <!-- - **License:** Unknown -->
28
+
29
+ ### Model Sources
30
+
31
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
32
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
33
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
34
+
35
+ ### Full Model Architecture
36
+
37
+ ```
38
+ MySentenceTransformer(
39
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
40
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
41
+ )
42
+ ```
43
+
44
+ ## Usage
45
+
46
+ ### Direct Usage (Sentence Transformers)
47
+
48
+ First install the Sentence Transformers library:
49
+
50
+ ```bash
51
+ pip install -U sentence-transformers
52
+ ```
53
+
54
+ Then you can load this model and run inference.
55
+ ```python
56
+ from sentence_transformers import SentenceTransformer
57
+
58
+ # Download from the 🤗 Hub
59
+ model = SentenceTransformer("sentence_transformers_model_id")
60
+ # Run inference
61
+ sentences = [
62
+ 'The weather is lovely today.',
63
+ "It's so sunny outside!",
64
+ 'He drove to the stadium.',
65
+ ]
66
+ embeddings = model.encode(sentences)
67
+ print(embeddings.shape)
68
+ # [3, 768]
69
+
70
+ # Get the similarity scores for the embeddings
71
+ similarities = model.similarity(embeddings, embeddings)
72
+ print(similarities.shape)
73
+ # [3, 3]
74
+ ```
75
+
76
+ <!--
77
+ ### Direct Usage (Transformers)
78
+
79
+ <details><summary>Click to see the direct usage in Transformers</summary>
80
+
81
+ </details>
82
+ -->
83
+
84
+ <!--
85
+ ### Downstream Usage (Sentence Transformers)
86
+
87
+ You can finetune this model on your own dataset.
88
+
89
+ <details><summary>Click to expand</summary>
90
+
91
+ </details>
92
+ -->
93
+
94
+ <!--
95
+ ### Out-of-Scope Use
96
+
97
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
98
+ -->
99
+
100
+ <!--
101
+ ## Bias, Risks and Limitations
102
+
103
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
104
+ -->
105
+
106
+ <!--
107
+ ### Recommendations
108
+
109
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
110
+ -->
111
+
112
+ ## Training Details
113
+
114
+ ### Framework Versions
115
+ - Python: 3.10.13
116
+ - Sentence Transformers: 3.0.0
117
+ - Transformers: 4.41.2
118
+ - PyTorch: 2.3.1+cu118
119
+ - Accelerate: 0.30.1
120
+ - Datasets: 2.19.1
121
+ - Tokenizers: 0.19.1
122
+
123
+ ## Citation
124
+
125
+ ### BibTeX
126
+
127
+ <!--
128
+ ## Glossary
129
+
130
+ *Clearly define terms in order to be accessible across audiences.*
131
+ -->
132
+
133
+ <!--
134
+ ## Model Card Authors
135
+
136
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
137
+ -->
138
+
139
+ <!--
140
+ ## Model Card Contact
141
+
142
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
143
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "outputs/pt/cl-tohoku__bert-base-japanese-v3/B8192E1LR5e-05L256Temp0.01/21",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.41.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34134d2e748f250a12b865956b595df3cf2b8b4790f3ccdcd5dc8fa23b3c337f
3
+ size 444851048
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "jumanpp_kwargs": null,
50
+ "mask_token": "[MASK]",
51
+ "mecab_kwargs": {
52
+ "mecab_dic": "unidic_lite"
53
+ },
54
+ "model_max_length": 512,
55
+ "never_split": null,
56
+ "pad_token": "[PAD]",
57
+ "sep_token": "[SEP]",
58
+ "subword_tokenizer_type": "wordpiece",
59
+ "sudachi_kwargs": null,
60
+ "tokenizer_class": "BertJapaneseTokenizer",
61
+ "unk_token": "[UNK]",
62
+ "word_tokenizer_type": "mecab"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff