camenduru commited on
Commit
08d62b0
·
verified ·
1 Parent(s): 7a2b162

thanks to Alpha-VLLM ❤

Browse files
README.md ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - text-to-image
5
+ - safetensors
6
+ ---
7
+
8
+ # Lumina-Next-SFT
9
+
10
+ The `Lumina-Next-SFT` is a Next-DiT model containing 2B parameters and utilizes [Gemma-2B](https://huggingface.co/google/gemma-2b) as the text encoder, enhanced through high-quality supervised fine-tuning (SFT).
11
+
12
+ Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai.
13
+
14
+ - Generation Model: Next-DiT
15
+ - Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b)
16
+ - VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae)
17
+
18
+ [paper](https://arxiv.org/abs/2405.05945)
19
+
20
+ ## 📰 News
21
+
22
+ - [2024-06-08] 🎉🎉🎉 We have released the `Lumina-Next-SFT` model.
23
+
24
+ - [2024-05-28] We updated the `Lumina-Next-T2I` model to support 2K Resolution image generation.
25
+
26
+ - [2024-05-16] We have converted the `.pth` weights to `.safetensors` weights. Please pull the latest code to use `demo.py` for inference.
27
+
28
+ - [2024-05-12] We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model.
29
+
30
+ ## 🎮 Model Zoo
31
+
32
+ More checkpoints of our model will be released soon~
33
+
34
+ | Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL |
35
+ | ---------- | ----------------------- | ------------ | -----------|-------------- |
36
+ | 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT) |
37
+
38
+ ## Installation
39
+
40
+ Before installation, ensure that you have a working ``nvcc``
41
+
42
+ ```bash
43
+ # The command should work and show the same version number as in our case. (12.1 in our case).
44
+ nvcc --version
45
+ ```
46
+
47
+ On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of
48
+ ``gcc`` is available
49
+
50
+ ```bash
51
+ # The command should work and show a version of at least 6.0.
52
+ # If not, consult distro-specific tutorials to obtain a newer version or build manually.
53
+ gcc --version
54
+ ```
55
+
56
+ Downloading Lumina-T2X repo from GitHub:
57
+
58
+ ```bash
59
+ git clone https://github.com/Alpha-VLLM/Lumina-T2X
60
+ ```
61
+
62
+ ### 1. Create a conda environment and install PyTorch
63
+
64
+ Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
65
+
66
+ ```bash
67
+ conda create -n Lumina_T2X -y
68
+ conda activate Lumina_T2X
69
+ conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
70
+ ```
71
+
72
+ ### 2. Install dependencies
73
+
74
+ ```bash
75
+ pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click
76
+ ```
77
+
78
+ or you can use
79
+
80
+ ```bash
81
+ cd lumina_next_t2i
82
+ pip install -r requirements.txt
83
+ ```
84
+
85
+ ### 3. Install ``flash-attn``
86
+
87
+ ```bash
88
+ pip install flash-attn --no-build-isolation
89
+ ```
90
+
91
+ ### 4. Install [nvidia apex](https://github.com/nvidia/apex) (optional)
92
+
93
+ >[!Warning]
94
+ > While Apex can improve efficiency, it is *not* a must to make Lumina-T2X work.
95
+ >
96
+ > Note that Lumina-T2X works smoothly with either:
97
+ > + Apex not installed at all; OR
98
+ > + Apex successfully installed with CUDA and C++ extensions.
99
+ >
100
+ > However, it will fail when:
101
+ > + A Python-only build of Apex is installed.
102
+ >
103
+ > If the error `No module named 'fused_layer_norm_cuda'` appears, it typically means you are using a Python-only build of Apex. To resolve this, please run `pip uninstall apex`, and Lumina-T2X should then function correctly.
104
+
105
+ You can clone the repo and install following the official guidelines (note that we expect a full
106
+ build, i.e., with CUDA and C++ extensions)
107
+
108
+ ```bash
109
+ pip install ninja
110
+ git clone https://github.com/NVIDIA/apex
111
+ cd apex
112
+ # if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
113
+ pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
114
+ # otherwise
115
+ pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
116
+ ```
117
+
118
+ ## Inference
119
+
120
+ To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.
121
+
122
+ ### CLI
123
+
124
+ 1. Install Lumina-Next-T2I
125
+
126
+ ```bash
127
+ pip install -e .
128
+ ```
129
+
130
+ 2. Prepare the pre-trained model
131
+
132
+ ⭐⭐ (Recommended) you can use huggingface_cli to download our model:
133
+
134
+ ```bash
135
+ huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-T2I --local-dir /path/to/ckpt
136
+ ```
137
+
138
+ or using git for cloning the model you want to use:
139
+
140
+ ```bash
141
+ git clone https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I
142
+ ```
143
+
144
+ 1. Setting your personal inference configuration
145
+
146
+ Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
147
+
148
+ > `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
149
+
150
+ ```yaml
151
+ - settings:
152
+
153
+ model:
154
+ ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
155
+ ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
156
+ token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.
157
+
158
+ transport:
159
+ path_type: "Linear" # option: ["Linear", "GVP", "VP"]
160
+ prediction: "velocity" # option: ["velocity", "score", "noise"]
161
+ loss_weight: "velocity" # option: [None, "velocity", "likelihood"]
162
+ sample_eps: 0.1
163
+ train_eps: 0.2
164
+
165
+ ode:
166
+ atol: 1e-6 # Absolute tolerance
167
+ rtol: 1e-3 # Relative tolerance
168
+ reverse: false # option: true or false
169
+ likelihood: false # option: true or false
170
+
171
+ infer:
172
+ resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
173
+ num_sampling_steps: 60 # range: 1-1000
174
+ cfg_scale: 4. # range: 1-20
175
+ solver: "euler" # option: ["euler", "dopri5", "dopri8"]
176
+ t_shift: 4 # range: 1-20 (int only)
177
+ ntk_scaling: true # option: true or false
178
+ proportional_attn: true # option: true or false
179
+ seed: 0 # rnage: any number
180
+ ```
181
+
182
+ - model:
183
+ - `ckpt`: lumina-next-t2i checkpoint path from [huggingface repo](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) containing `consolidated*.pth` and `model_args.pth`.
184
+ - `ckpt_lm`: LLM checkpoint.
185
+ - `token`: huggingface access token for accessing gated repo.
186
+ - transport:
187
+ - `path_type`: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).
188
+ - `prediction`: the prediction model for the transport dynamics.
189
+ - `loss_weight`: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting
190
+ - `sample_eps`: sampling in the transport model.
191
+ - `train_eps`: training to stabilize the learning process.
192
+ - ode:
193
+ - `atol`: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"])
194
+ - `rtol`: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"])
195
+ - `reverse`: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"])
196
+ - `likelihood`: Enable calculation of likelihood during the ODE solving process.
197
+ - infer
198
+ - `resolution`: generated image resolution.
199
+ - `num_sampling_steps`: sampling step for generating image.
200
+ - `cfg_scale`: classifier-free guide scaling factor
201
+ - `solver`: solver for image generation.
202
+ - `t_shift`: time shift factor.
203
+ - `ntk_scaling`: ntk rope scaling factor.
204
+ - `proportional_attn`: Whether to use proportional attention.
205
+ - `seed`: random initialization seeds.
206
+
207
+ 1. Run with CLI
208
+
209
+ inference command:
210
+ ```bash
211
+ lumina_next infer -c <config_path> <caption_here> <output_dir>
212
+ ```
213
+
214
+ e.g. Demo command:
215
+
216
+ ```bash
217
+ cd lumina_next_t2i
218
+ lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs"
219
+ ```
220
+
221
+ ### Web Demo
222
+
223
+ To host a local gradio demo for interactive inference, run the following command:
224
+
225
+ ```bash
226
+ # `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
227
+
228
+ # default
229
+ python -u demo.py --ckpt "/path/to/ckpt"
230
+
231
+ # the demo by default uses bf16 precision. to switch to fp32:
232
+ python -u demo.py --ckpt "/path/to/ckpt" --precision fp32
233
+
234
+ # use ema model
235
+ python -u demo.py --ckpt "/path/to/ckpt" --ema
236
+ ```
consolidated.00-of-01.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3028903c4a16927594380420c16bf9414417f623e4f3ecd30d530af25ea21fc6
3
+ size 6509604840
consolidated_ema.00-of-01.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5f3a7b0d0d6a12b5051ccb5d319f6954e2fb514fef4e284a4a9d7b350b493af
3
+ size 6509604840
model_args.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81224af670d1ff56139096c6ac782732a890a25b7e1c61db8940c810fd588110
3
+ size 1132