mdizak commited on
Commit
c3d8366
1 Parent(s): d6c6834
0_WordEmbeddings/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d819348e583fca49cf3980e34505d52a3f842064ebd9dc255484125357771240
3
+ size 480002027
0_WordEmbeddings/rust_model.ot ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f38aa391aa79e8a59e1041e4b4ac42382159704a145490ded69b162cfe035a0a
3
+ size 480003215
0_WordEmbeddings/whitespacetokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
0_WordEmbeddings/wordembedding_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "sentence_transformers.models.tokenizer.WhitespaceTokenizer.WhitespaceTokenizer",
3
+ "update_embeddings": false,
4
+ "max_seq_length": 1000000
5
+ }
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 300,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,71 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ pipeline_tag: sentence-similarity
9
  ---
10
+
11
+ # average_word_embeddings_glove.6B.300d
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Evaluation Results
39
+
40
+
41
+
42
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/average_word_embeddings_glove.6B.300d)
43
+
44
+
45
+
46
+ ## Full Model Architecture
47
+ ```
48
+ SentenceTransformer(
49
+ (0): WordEmbeddings(
50
+ (emb_layer): Embedding(400001, 300)
51
+ )
52
+ (1): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
53
+ )
54
+ ```
55
+
56
+ ## Citing & Authors
57
+
58
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
59
+
60
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
61
+ ```bibtex
62
+ @inproceedings{reimers-2019-sentence-bert,
63
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
64
+ author = "Reimers, Nils and Gurevych, Iryna",
65
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
66
+ month = "11",
67
+ year = "2019",
68
+ publisher = "Association for Computational Linguistics",
69
+ url = "http://arxiv.org/abs/1908.10084",
70
+ }
71
+ ```
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_WordEmbeddings",
6
+ "type": "sentence_transformers.models.WordEmbeddings"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
vocab.txt ADDED
The diff for this file is too large to render. See raw diff