|
import pandas as pd |
|
import numpy as np |
|
import os |
|
from tqdm import tqdm |
|
import timm |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
import torch |
|
from typing import List |
|
|
|
def is_gpu_available(): |
|
"""Check if the python package `onnxruntime-gpu` is installed.""" |
|
return torch.cuda.is_available() |
|
|
|
class PytorchWorker: |
|
"""Run inference using ONNX runtime.""" |
|
|
|
def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605): |
|
|
|
def _load_model(model_name, model_path): |
|
|
|
print("Setting up Pytorch Model") |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
print(f"Using devide: {self.device}") |
|
|
|
model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False) |
|
weights = torch.load(model_path, map_location=self.device) |
|
model.load_state_dict({w.replace("model.", ""): v for w, v in weights.items()}) |
|
|
|
return model.to(self.device).eval() |
|
|
|
self.model = _load_model(model_name, model_path) |
|
|
|
self.transforms = T.Compose([T.Resize((224, 224)), |
|
T.ToTensor(), |
|
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) |
|
|
|
|
|
def predict_image(self, image: np.ndarray): |
|
"""Run inference using ONNX runtime. |
|
|
|
:param image: Input image as numpy array. |
|
:return: A list with logits and confidences. |
|
""" |
|
|
|
logits = self.model(self.transforms(image).unsqueeze(0).to(self.device)) |
|
|
|
return logits.tolist() |
|
|
|
|
|
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"): |
|
"""Make submission with given """ |
|
|
|
model = PytorchWorker(model_path, model_name) |
|
|
|
predictions = [] |
|
|
|
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)): |
|
image_path = os.path.join(images_root_path, row.image_path) |
|
|
|
test_image = Image.open(image_path).convert("RGB") |
|
|
|
logits = model.predict_image(test_image) |
|
|
|
predictions.append(np.argmax(logits)) |
|
|
|
test_metadata["class_id"] = predictions |
|
|
|
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first") |
|
|
|
for ix, row in user_pred_df.iterrows(): |
|
if row['class_id'] == 1604: |
|
user_pred_df.loc[ix, 'class_id'] = -1 |
|
|
|
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None) |
|
|
|
if __name__ == "__main__": |
|
|
|
MODEL_PATH = "metaformer-s-224.pth" |
|
MODEL_NAME = "caformer_s18.sail_in22k" |
|
|
|
|
|
import zipfile |
|
|
|
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref: |
|
zip_ref.extractall("/tmp/data") |
|
|
|
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv" |
|
test_metadata = pd.read_csv(metadata_file_path) |
|
|
|
make_submission( |
|
test_metadata=test_metadata, |
|
model_path=MODEL_PATH, |
|
model_name=MODEL_NAME |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|