chuuhtetnaing
commited on
Commit
•
cbe5f88
1
Parent(s):
a65cac0
Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,12 @@ metrics:
|
|
8 |
model-index:
|
9 |
- name: whisper-tiny-myanmar
|
10 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -15,24 +21,28 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# whisper-tiny-myanmar
|
17 |
|
18 |
-
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the
|
19 |
It achieves the following results on the evaluation set:
|
20 |
- Loss: 0.2353
|
21 |
- Wer: 61.8878
|
22 |
|
23 |
-
##
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
## Training procedure
|
36 |
|
37 |
### Training hyperparameters
|
38 |
|
@@ -88,4 +98,4 @@ The following hyperparameters were used during training:
|
|
88 |
- Transformers 4.35.2
|
89 |
- Pytorch 2.1.1+cu121
|
90 |
- Datasets 2.14.5
|
91 |
-
- Tokenizers 0.15.1
|
|
|
8 |
model-index:
|
9 |
- name: whisper-tiny-myanmar
|
10 |
results: []
|
11 |
+
datasets:
|
12 |
+
- chuuhtetnaing/myanmar-speech-dataset-openslr-80
|
13 |
+
language:
|
14 |
+
- my
|
15 |
+
pipeline_tag: automatic-speech-recognition
|
16 |
+
library_name: transformers
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
21 |
|
22 |
# whisper-tiny-myanmar
|
23 |
|
24 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the [chuuhtetnaing/myanmar-speech-dataset-openslr-80](https://huggingface.co/datasets/chuuhtetnaing/myanmar-speech-dataset-openslr-80) dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
- Loss: 0.2353
|
27 |
- Wer: 61.8878
|
28 |
|
29 |
+
## Usage
|
30 |
|
31 |
+
```python
|
32 |
+
from datasets import Audio, load_dataset
|
33 |
+
from transformers import pipeline
|
34 |
|
35 |
+
# Load a sample audio
|
36 |
+
dataset = load_dataset("chuuhtetnaing/myanmar-speech-dataset-openslr-80")
|
37 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
38 |
+
test_dataset = dataset['test']
|
39 |
+
input_speech = test_dataset[42]['audio']
|
40 |
|
41 |
+
pipe = pipeline(model='chuuhtetnaing/whisper-tiny-myanmar')
|
42 |
|
43 |
+
output = pipe(input_speech, generate_kwargs={"language": "myanmar", "task": "transcribe"})
|
44 |
+
print(output['text']) # ကျွန်မ ပြည်ပ မှာ ပညာ သင် တော့ စာမြီးပွဲ ကို တပတ်တခါ စစ်တယ်
|
45 |
+
```
|
|
|
|
|
46 |
|
47 |
### Training hyperparameters
|
48 |
|
|
|
98 |
- Transformers 4.35.2
|
99 |
- Pytorch 2.1.1+cu121
|
100 |
- Datasets 2.14.5
|
101 |
+
- Tokenizers 0.15.1
|