Update README.md
Browse files
README.md
CHANGED
@@ -6,1944 +6,6 @@ tags:
|
|
6 |
- transformers
|
7 |
- mteb
|
8 |
license: apache-2.0
|
9 |
-
model-index:
|
10 |
-
- name: bge-en-icl
|
11 |
-
results:
|
12 |
-
- dataset:
|
13 |
-
config: en
|
14 |
-
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
-
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
16 |
-
split: test
|
17 |
-
type: mteb/amazon_counterfactual
|
18 |
-
metrics:
|
19 |
-
- type: accuracy
|
20 |
-
value: 93.1492537313433
|
21 |
-
- type: ap
|
22 |
-
value: 72.56132559564212
|
23 |
-
- type: f1
|
24 |
-
value: 89.71796898040243
|
25 |
-
- type: main_score
|
26 |
-
value: 93.1492537313433
|
27 |
-
task:
|
28 |
-
type: Classification
|
29 |
-
- dataset:
|
30 |
-
config: default
|
31 |
-
name: MTEB AmazonPolarityClassification
|
32 |
-
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
-
split: test
|
34 |
-
type: mteb/amazon_polarity
|
35 |
-
metrics:
|
36 |
-
- type: accuracy
|
37 |
-
value: 96.98372499999999
|
38 |
-
- type: ap
|
39 |
-
value: 95.62303091773919
|
40 |
-
- type: f1
|
41 |
-
value: 96.98308191715637
|
42 |
-
- type: main_score
|
43 |
-
value: 96.98372499999999
|
44 |
-
task:
|
45 |
-
type: Classification
|
46 |
-
- dataset:
|
47 |
-
config: en
|
48 |
-
name: MTEB AmazonReviewsClassification (en)
|
49 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
50 |
-
split: test
|
51 |
-
type: mteb/amazon_reviews_multi
|
52 |
-
metrics:
|
53 |
-
- type: accuracy
|
54 |
-
value: 61.461999999999996
|
55 |
-
- type: f1
|
56 |
-
value: 60.57257766583118
|
57 |
-
- type: main_score
|
58 |
-
value: 61.461999999999996
|
59 |
-
task:
|
60 |
-
type: Classification
|
61 |
-
- dataset:
|
62 |
-
config: default
|
63 |
-
name: MTEB ArguAna
|
64 |
-
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
65 |
-
split: test
|
66 |
-
type: mteb/arguana
|
67 |
-
metrics:
|
68 |
-
- type: main_score
|
69 |
-
value: 83.07967801208441
|
70 |
-
- type: ndcg_at_1
|
71 |
-
value: 66.50071123755335
|
72 |
-
- type: ndcg_at_3
|
73 |
-
value: 80.10869593172173
|
74 |
-
- type: ndcg_at_5
|
75 |
-
value: 81.89670542467924
|
76 |
-
- type: ndcg_at_10
|
77 |
-
value: 83.07967801208441
|
78 |
-
- type: ndcg_at_100
|
79 |
-
value: 83.5991349601075
|
80 |
-
- type: ndcg_at_1000
|
81 |
-
value: 83.5991349601075
|
82 |
-
- type: map_at_1
|
83 |
-
value: 66.50071123755335
|
84 |
-
- type: map_at_3
|
85 |
-
value: 76.83736367946898
|
86 |
-
- type: map_at_5
|
87 |
-
value: 77.8473210052158
|
88 |
-
- type: map_at_10
|
89 |
-
value: 78.35472690735851
|
90 |
-
- type: map_at_100
|
91 |
-
value: 78.47388207611678
|
92 |
-
- type: map_at_1000
|
93 |
-
value: 78.47388207611678
|
94 |
-
- type: precision_at_1
|
95 |
-
value: 66.50071123755335
|
96 |
-
- type: precision_at_3
|
97 |
-
value: 29.848269321953076
|
98 |
-
- type: precision_at_5
|
99 |
-
value: 18.762446657183045
|
100 |
-
- type: precision_at_10
|
101 |
-
value: 9.736842105262909
|
102 |
-
- type: precision_at_100
|
103 |
-
value: 0.9964438122332677
|
104 |
-
- type: precision_at_1000
|
105 |
-
value: 0.09964438122332549
|
106 |
-
- type: recall_at_1
|
107 |
-
value: 66.50071123755335
|
108 |
-
- type: recall_at_3
|
109 |
-
value: 89.5448079658606
|
110 |
-
- type: recall_at_5
|
111 |
-
value: 93.8122332859175
|
112 |
-
- type: recall_at_10
|
113 |
-
value: 97.36842105263158
|
114 |
-
- type: recall_at_100
|
115 |
-
value: 99.6443812233286
|
116 |
-
- type: recall_at_1000
|
117 |
-
value: 99.6443812233286
|
118 |
-
task:
|
119 |
-
type: Retrieval
|
120 |
-
- dataset:
|
121 |
-
config: default
|
122 |
-
name: MTEB ArxivClusteringP2P
|
123 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
124 |
-
split: test
|
125 |
-
type: mteb/arxiv-clustering-p2p
|
126 |
-
metrics:
|
127 |
-
- type: main_score
|
128 |
-
value: 54.43859683357485
|
129 |
-
- type: v_measure
|
130 |
-
value: 54.43859683357485
|
131 |
-
- type: v_measure_std
|
132 |
-
value: 14.511128158596337
|
133 |
-
task:
|
134 |
-
type: Clustering
|
135 |
-
- dataset:
|
136 |
-
config: default
|
137 |
-
name: MTEB ArxivClusteringS2S
|
138 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
139 |
-
split: test
|
140 |
-
type: mteb/arxiv-clustering-s2s
|
141 |
-
metrics:
|
142 |
-
- type: main_score
|
143 |
-
value: 49.33365996236564
|
144 |
-
- type: v_measure
|
145 |
-
value: 49.33365996236564
|
146 |
-
- type: v_measure_std
|
147 |
-
value: 14.61261944856548
|
148 |
-
task:
|
149 |
-
type: Clustering
|
150 |
-
- dataset:
|
151 |
-
config: default
|
152 |
-
name: MTEB AskUbuntuDupQuestions
|
153 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
154 |
-
split: test
|
155 |
-
type: mteb/askubuntudupquestions-reranking
|
156 |
-
metrics:
|
157 |
-
- type: main_score
|
158 |
-
value: 65.15263966490278
|
159 |
-
- type: map
|
160 |
-
value: 65.15263966490278
|
161 |
-
- type: mrr
|
162 |
-
value: 77.90331090885107
|
163 |
-
task:
|
164 |
-
type: Reranking
|
165 |
-
- dataset:
|
166 |
-
config: default
|
167 |
-
name: MTEB BIOSSES
|
168 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
169 |
-
split: test
|
170 |
-
type: mteb/biosses-sts
|
171 |
-
metrics:
|
172 |
-
- type: main_score
|
173 |
-
value: 86.47365710792691
|
174 |
-
- type: cosine_spearman
|
175 |
-
value: 86.47365710792691
|
176 |
-
- type: spearman
|
177 |
-
value: 86.47365710792691
|
178 |
-
task:
|
179 |
-
type: STS
|
180 |
-
- dataset:
|
181 |
-
config: default
|
182 |
-
name: MTEB Banking77Classification
|
183 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
184 |
-
split: test
|
185 |
-
type: mteb/banking77
|
186 |
-
metrics:
|
187 |
-
- type: accuracy
|
188 |
-
value: 91.48701298701299
|
189 |
-
- type: f1
|
190 |
-
value: 91.4733869423637
|
191 |
-
- type: main_score
|
192 |
-
value: 91.48701298701299
|
193 |
-
task:
|
194 |
-
type: Classification
|
195 |
-
- dataset:
|
196 |
-
config: default
|
197 |
-
name: MTEB BiorxivClusteringP2P
|
198 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
-
split: test
|
200 |
-
type: mteb/biorxiv-clustering-p2p
|
201 |
-
metrics:
|
202 |
-
- type: main_score
|
203 |
-
value: 53.050461108038036
|
204 |
-
- type: v_measure
|
205 |
-
value: 53.050461108038036
|
206 |
-
- type: v_measure_std
|
207 |
-
value: 0.9436104839012786
|
208 |
-
task:
|
209 |
-
type: Clustering
|
210 |
-
- dataset:
|
211 |
-
config: default
|
212 |
-
name: MTEB BiorxivClusteringS2S
|
213 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
214 |
-
split: test
|
215 |
-
type: mteb/biorxiv-clustering-s2s
|
216 |
-
metrics:
|
217 |
-
- type: main_score
|
218 |
-
value: 48.38215568371151
|
219 |
-
- type: v_measure
|
220 |
-
value: 48.38215568371151
|
221 |
-
- type: v_measure_std
|
222 |
-
value: 0.9104384504649026
|
223 |
-
task:
|
224 |
-
type: Clustering
|
225 |
-
- dataset:
|
226 |
-
config: default
|
227 |
-
name: MTEB CQADupstackRetrieval
|
228 |
-
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
229 |
-
split: test
|
230 |
-
type: mteb/cqadupstack
|
231 |
-
metrics:
|
232 |
-
- type: main_score
|
233 |
-
value: 47.308084499970704
|
234 |
-
- type: ndcg_at_1
|
235 |
-
value: 36.038578730542476
|
236 |
-
- type: ndcg_at_3
|
237 |
-
value: 41.931365356453036
|
238 |
-
- type: ndcg_at_5
|
239 |
-
value: 44.479015523894994
|
240 |
-
- type: ndcg_at_10
|
241 |
-
value: 47.308084499970704
|
242 |
-
- type: ndcg_at_100
|
243 |
-
value: 52.498062430513606
|
244 |
-
- type: ndcg_at_1000
|
245 |
-
value: 54.2908789514719
|
246 |
-
- type: map_at_1
|
247 |
-
value: 30.38821701528966
|
248 |
-
- type: map_at_3
|
249 |
-
value: 37.974871761903636
|
250 |
-
- type: map_at_5
|
251 |
-
value: 39.85399878507757
|
252 |
-
- type: map_at_10
|
253 |
-
value: 41.31456611036795
|
254 |
-
- type: map_at_100
|
255 |
-
value: 42.62907836655835
|
256 |
-
- type: map_at_1000
|
257 |
-
value: 42.737235870659845
|
258 |
-
- type: precision_at_1
|
259 |
-
value: 36.038578730542476
|
260 |
-
- type: precision_at_3
|
261 |
-
value: 19.39960180094633
|
262 |
-
- type: precision_at_5
|
263 |
-
value: 13.79264655952497
|
264 |
-
- type: precision_at_10
|
265 |
-
value: 8.399223517333388
|
266 |
-
- type: precision_at_100
|
267 |
-
value: 1.2992373779520896
|
268 |
-
- type: precision_at_1000
|
269 |
-
value: 0.16327170951909567
|
270 |
-
- type: recall_at_1
|
271 |
-
value: 30.38821701528966
|
272 |
-
- type: recall_at_3
|
273 |
-
value: 45.51645512564165
|
274 |
-
- type: recall_at_5
|
275 |
-
value: 52.06077167834868
|
276 |
-
- type: recall_at_10
|
277 |
-
value: 60.38864106788279
|
278 |
-
- type: recall_at_100
|
279 |
-
value: 82.76968509918343
|
280 |
-
- type: recall_at_1000
|
281 |
-
value: 94.84170217080344
|
282 |
-
task:
|
283 |
-
type: Retrieval
|
284 |
-
- dataset:
|
285 |
-
config: default
|
286 |
-
name: MTEB ClimateFEVER
|
287 |
-
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
288 |
-
split: test
|
289 |
-
type: mteb/climate-fever
|
290 |
-
metrics:
|
291 |
-
- type: main_score
|
292 |
-
value: 45.4272998284769
|
293 |
-
- type: ndcg_at_1
|
294 |
-
value: 44.36482084690554
|
295 |
-
- type: ndcg_at_3
|
296 |
-
value: 38.13005747178844
|
297 |
-
- type: ndcg_at_5
|
298 |
-
value: 40.83474510717123
|
299 |
-
- type: ndcg_at_10
|
300 |
-
value: 45.4272998284769
|
301 |
-
- type: ndcg_at_100
|
302 |
-
value: 52.880220707479516
|
303 |
-
- type: ndcg_at_1000
|
304 |
-
value: 55.364753427333
|
305 |
-
- type: map_at_1
|
306 |
-
value: 19.200868621064064
|
307 |
-
- type: map_at_3
|
308 |
-
value: 28.33785740137525
|
309 |
-
- type: map_at_5
|
310 |
-
value: 31.67162504524064
|
311 |
-
- type: map_at_10
|
312 |
-
value: 34.417673164090075
|
313 |
-
- type: map_at_100
|
314 |
-
value: 36.744753097028976
|
315 |
-
- type: map_at_1000
|
316 |
-
value: 36.91262189016135
|
317 |
-
- type: precision_at_1
|
318 |
-
value: 44.36482084690554
|
319 |
-
- type: precision_at_3
|
320 |
-
value: 29.14223669923975
|
321 |
-
- type: precision_at_5
|
322 |
-
value: 22.410423452768388
|
323 |
-
- type: precision_at_10
|
324 |
-
value: 14.293159609120309
|
325 |
-
- type: precision_at_100
|
326 |
-
value: 2.248859934853431
|
327 |
-
- type: precision_at_1000
|
328 |
-
value: 0.2722475570032542
|
329 |
-
- type: recall_at_1
|
330 |
-
value: 19.200868621064064
|
331 |
-
- type: recall_at_3
|
332 |
-
value: 34.132464712269176
|
333 |
-
- type: recall_at_5
|
334 |
-
value: 42.35613463626491
|
335 |
-
- type: recall_at_10
|
336 |
-
value: 52.50814332247546
|
337 |
-
- type: recall_at_100
|
338 |
-
value: 77.16178067318128
|
339 |
-
- type: recall_at_1000
|
340 |
-
value: 90.59174809989138
|
341 |
-
task:
|
342 |
-
type: Retrieval
|
343 |
-
- dataset:
|
344 |
-
config: default
|
345 |
-
name: MTEB DBPedia
|
346 |
-
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
347 |
-
split: test
|
348 |
-
type: mteb/dbpedia
|
349 |
-
metrics:
|
350 |
-
- type: main_score
|
351 |
-
value: 51.634197691802754
|
352 |
-
- type: ndcg_at_1
|
353 |
-
value: 64.375
|
354 |
-
- type: ndcg_at_3
|
355 |
-
value: 55.677549598242614
|
356 |
-
- type: ndcg_at_5
|
357 |
-
value: 53.44347199908503
|
358 |
-
- type: ndcg_at_10
|
359 |
-
value: 51.634197691802754
|
360 |
-
- type: ndcg_at_100
|
361 |
-
value: 56.202861267183415
|
362 |
-
- type: ndcg_at_1000
|
363 |
-
value: 63.146019108272576
|
364 |
-
- type: map_at_1
|
365 |
-
value: 9.789380503780919
|
366 |
-
- type: map_at_3
|
367 |
-
value: 16.146582195277016
|
368 |
-
- type: map_at_5
|
369 |
-
value: 19.469695222167193
|
370 |
-
- type: map_at_10
|
371 |
-
value: 24.163327344766145
|
372 |
-
- type: map_at_100
|
373 |
-
value: 35.47047690245571
|
374 |
-
- type: map_at_1000
|
375 |
-
value: 37.5147432331838
|
376 |
-
- type: precision_at_1
|
377 |
-
value: 76.25
|
378 |
-
- type: precision_at_3
|
379 |
-
value: 59.08333333333333
|
380 |
-
- type: precision_at_5
|
381 |
-
value: 52.24999999999997
|
382 |
-
- type: precision_at_10
|
383 |
-
value: 42.54999999999994
|
384 |
-
- type: precision_at_100
|
385 |
-
value: 13.460000000000008
|
386 |
-
- type: precision_at_1000
|
387 |
-
value: 2.4804999999999966
|
388 |
-
- type: recall_at_1
|
389 |
-
value: 9.789380503780919
|
390 |
-
- type: recall_at_3
|
391 |
-
value: 17.48487134027656
|
392 |
-
- type: recall_at_5
|
393 |
-
value: 22.312024269698806
|
394 |
-
- type: recall_at_10
|
395 |
-
value: 30.305380335237324
|
396 |
-
- type: recall_at_100
|
397 |
-
value: 62.172868946596424
|
398 |
-
- type: recall_at_1000
|
399 |
-
value: 85.32410301328747
|
400 |
-
task:
|
401 |
-
type: Retrieval
|
402 |
-
- dataset:
|
403 |
-
config: default
|
404 |
-
name: MTEB EmotionClassification
|
405 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
406 |
-
split: test
|
407 |
-
type: mteb/emotion
|
408 |
-
metrics:
|
409 |
-
- type: accuracy
|
410 |
-
value: 93.36
|
411 |
-
- type: f1
|
412 |
-
value: 89.73665936982262
|
413 |
-
- type: main_score
|
414 |
-
value: 93.36
|
415 |
-
task:
|
416 |
-
type: Classification
|
417 |
-
- dataset:
|
418 |
-
config: default
|
419 |
-
name: MTEB FEVER
|
420 |
-
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
421 |
-
split: test
|
422 |
-
type: mteb/fever
|
423 |
-
metrics:
|
424 |
-
- type: main_score
|
425 |
-
value: 92.82809814626805
|
426 |
-
- type: ndcg_at_1
|
427 |
-
value: 88.98889888988899
|
428 |
-
- type: ndcg_at_3
|
429 |
-
value: 91.82404417747676
|
430 |
-
- type: ndcg_at_5
|
431 |
-
value: 92.41785792357787
|
432 |
-
- type: ndcg_at_10
|
433 |
-
value: 92.82809814626805
|
434 |
-
- type: ndcg_at_100
|
435 |
-
value: 93.31730867509245
|
436 |
-
- type: ndcg_at_1000
|
437 |
-
value: 93.45171203408582
|
438 |
-
- type: map_at_1
|
439 |
-
value: 82.64125817343636
|
440 |
-
- type: map_at_3
|
441 |
-
value: 89.39970782792554
|
442 |
-
- type: map_at_5
|
443 |
-
value: 89.96799501378695
|
444 |
-
- type: map_at_10
|
445 |
-
value: 90.27479706587437
|
446 |
-
- type: map_at_100
|
447 |
-
value: 90.45185655778057
|
448 |
-
- type: map_at_1000
|
449 |
-
value: 90.46130471574544
|
450 |
-
- type: precision_at_1
|
451 |
-
value: 88.98889888988899
|
452 |
-
- type: precision_at_3
|
453 |
-
value: 34.923492349234245
|
454 |
-
- type: precision_at_5
|
455 |
-
value: 21.524152415244043
|
456 |
-
- type: precision_at_10
|
457 |
-
value: 11.033603360337315
|
458 |
-
- type: precision_at_100
|
459 |
-
value: 1.1521152115211895
|
460 |
-
- type: precision_at_1000
|
461 |
-
value: 0.11765676567657675
|
462 |
-
- type: recall_at_1
|
463 |
-
value: 82.64125817343636
|
464 |
-
- type: recall_at_3
|
465 |
-
value: 94.35195900542428
|
466 |
-
- type: recall_at_5
|
467 |
-
value: 95.9071323799047
|
468 |
-
- type: recall_at_10
|
469 |
-
value: 97.04234113887586
|
470 |
-
- type: recall_at_100
|
471 |
-
value: 98.77282371094255
|
472 |
-
- type: recall_at_1000
|
473 |
-
value: 99.5555567461508
|
474 |
-
task:
|
475 |
-
type: Retrieval
|
476 |
-
- dataset:
|
477 |
-
config: default
|
478 |
-
name: MTEB FiQA2018
|
479 |
-
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
480 |
-
split: test
|
481 |
-
type: mteb/fiqa
|
482 |
-
metrics:
|
483 |
-
- type: main_score
|
484 |
-
value: 59.67151242793314
|
485 |
-
- type: ndcg_at_1
|
486 |
-
value: 57.407407407407405
|
487 |
-
- type: ndcg_at_3
|
488 |
-
value: 53.79975378289304
|
489 |
-
- type: ndcg_at_5
|
490 |
-
value: 56.453379423655406
|
491 |
-
- type: ndcg_at_10
|
492 |
-
value: 59.67151242793314
|
493 |
-
- type: ndcg_at_100
|
494 |
-
value: 65.34055762539253
|
495 |
-
- type: ndcg_at_1000
|
496 |
-
value: 67.07707746043032
|
497 |
-
- type: map_at_1
|
498 |
-
value: 30.65887045053714
|
499 |
-
- type: map_at_3
|
500 |
-
value: 44.09107110881799
|
501 |
-
- type: map_at_5
|
502 |
-
value: 48.18573748068346
|
503 |
-
- type: map_at_10
|
504 |
-
value: 51.03680979612876
|
505 |
-
- type: map_at_100
|
506 |
-
value: 53.03165194566928
|
507 |
-
- type: map_at_1000
|
508 |
-
value: 53.16191096190861
|
509 |
-
- type: precision_at_1
|
510 |
-
value: 57.407407407407405
|
511 |
-
- type: precision_at_3
|
512 |
-
value: 35.493827160493886
|
513 |
-
- type: precision_at_5
|
514 |
-
value: 26.913580246913547
|
515 |
-
- type: precision_at_10
|
516 |
-
value: 16.435185185185155
|
517 |
-
- type: precision_at_100
|
518 |
-
value: 2.2685185185184986
|
519 |
-
- type: precision_at_1000
|
520 |
-
value: 0.25864197530863964
|
521 |
-
- type: recall_at_1
|
522 |
-
value: 30.65887045053714
|
523 |
-
- type: recall_at_3
|
524 |
-
value: 48.936723427464194
|
525 |
-
- type: recall_at_5
|
526 |
-
value: 58.55942925387371
|
527 |
-
- type: recall_at_10
|
528 |
-
value: 68.45128551147073
|
529 |
-
- type: recall_at_100
|
530 |
-
value: 88.24599311867836
|
531 |
-
- type: recall_at_1000
|
532 |
-
value: 98.18121693121691
|
533 |
-
task:
|
534 |
-
type: Retrieval
|
535 |
-
- dataset:
|
536 |
-
config: default
|
537 |
-
name: MTEB HotpotQA
|
538 |
-
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
539 |
-
split: test
|
540 |
-
type: mteb/hotpotqa
|
541 |
-
metrics:
|
542 |
-
- type: main_score
|
543 |
-
value: 85.13780800141961
|
544 |
-
- type: ndcg_at_1
|
545 |
-
value: 89.9392302498312
|
546 |
-
- type: ndcg_at_3
|
547 |
-
value: 81.2061569376288
|
548 |
-
- type: ndcg_at_5
|
549 |
-
value: 83.53311592078133
|
550 |
-
- type: ndcg_at_10
|
551 |
-
value: 85.13780800141961
|
552 |
-
- type: ndcg_at_100
|
553 |
-
value: 87.02630661625386
|
554 |
-
- type: ndcg_at_1000
|
555 |
-
value: 87.47294723601075
|
556 |
-
- type: map_at_1
|
557 |
-
value: 44.9696151249156
|
558 |
-
- type: map_at_3
|
559 |
-
value: 76.46972766148966
|
560 |
-
- type: map_at_5
|
561 |
-
value: 78.47749268512187
|
562 |
-
- type: map_at_10
|
563 |
-
value: 79.49792611170005
|
564 |
-
- type: map_at_100
|
565 |
-
value: 80.09409086274644
|
566 |
-
- type: map_at_1000
|
567 |
-
value: 80.11950878917663
|
568 |
-
- type: precision_at_1
|
569 |
-
value: 89.9392302498312
|
570 |
-
- type: precision_at_3
|
571 |
-
value: 53.261309925724234
|
572 |
-
- type: precision_at_5
|
573 |
-
value: 33.79338284942924
|
574 |
-
- type: precision_at_10
|
575 |
-
value: 17.69750168805041
|
576 |
-
- type: precision_at_100
|
577 |
-
value: 1.9141120864280805
|
578 |
-
- type: precision_at_1000
|
579 |
-
value: 0.19721809588118133
|
580 |
-
- type: recall_at_1
|
581 |
-
value: 44.9696151249156
|
582 |
-
- type: recall_at_3
|
583 |
-
value: 79.8919648885888
|
584 |
-
- type: recall_at_5
|
585 |
-
value: 84.48345712356516
|
586 |
-
- type: recall_at_10
|
587 |
-
value: 88.48750844024308
|
588 |
-
- type: recall_at_100
|
589 |
-
value: 95.70560432140446
|
590 |
-
- type: recall_at_1000
|
591 |
-
value: 98.60904794058068
|
592 |
-
task:
|
593 |
-
type: Retrieval
|
594 |
-
- dataset:
|
595 |
-
config: default
|
596 |
-
name: MTEB ImdbClassification
|
597 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
598 |
-
split: test
|
599 |
-
type: mteb/imdb
|
600 |
-
metrics:
|
601 |
-
- type: accuracy
|
602 |
-
value: 96.9144
|
603 |
-
- type: ap
|
604 |
-
value: 95.45276911068486
|
605 |
-
- type: f1
|
606 |
-
value: 96.91412729455966
|
607 |
-
- type: main_score
|
608 |
-
value: 96.9144
|
609 |
-
task:
|
610 |
-
type: Classification
|
611 |
-
- dataset:
|
612 |
-
config: default
|
613 |
-
name: MTEB MSMARCO
|
614 |
-
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
615 |
-
split: dev
|
616 |
-
type: mteb/msmarco
|
617 |
-
metrics:
|
618 |
-
- type: main_score
|
619 |
-
value: 46.78865753107054
|
620 |
-
- type: ndcg_at_1
|
621 |
-
value: 26.63323782234957
|
622 |
-
- type: ndcg_at_3
|
623 |
-
value: 38.497585804985754
|
624 |
-
- type: ndcg_at_5
|
625 |
-
value: 42.72761631631636
|
626 |
-
- type: ndcg_at_10
|
627 |
-
value: 46.78865753107054
|
628 |
-
- type: ndcg_at_100
|
629 |
-
value: 51.96170786623209
|
630 |
-
- type: ndcg_at_1000
|
631 |
-
value: 52.82713901970963
|
632 |
-
- type: map_at_1
|
633 |
-
value: 25.89063992359121
|
634 |
-
- type: map_at_3
|
635 |
-
value: 35.299466730340654
|
636 |
-
- type: map_at_5
|
637 |
-
value: 37.68771887933786
|
638 |
-
- type: map_at_10
|
639 |
-
value: 39.40908074468253
|
640 |
-
- type: map_at_100
|
641 |
-
value: 40.53444082323405
|
642 |
-
- type: map_at_1000
|
643 |
-
value: 40.57183037649452
|
644 |
-
- type: precision_at_1
|
645 |
-
value: 26.63323782234957
|
646 |
-
- type: precision_at_3
|
647 |
-
value: 16.265520534861793
|
648 |
-
- type: precision_at_5
|
649 |
-
value: 11.902578796562304
|
650 |
-
- type: precision_at_10
|
651 |
-
value: 7.262177650430416
|
652 |
-
- type: precision_at_100
|
653 |
-
value: 0.9819484240687512
|
654 |
-
- type: precision_at_1000
|
655 |
-
value: 0.10571633237823287
|
656 |
-
- type: recall_at_1
|
657 |
-
value: 25.89063992359121
|
658 |
-
- type: recall_at_3
|
659 |
-
value: 46.99737344794652
|
660 |
-
- type: recall_at_5
|
661 |
-
value: 57.160936007640906
|
662 |
-
- type: recall_at_10
|
663 |
-
value: 69.43409742120343
|
664 |
-
- type: recall_at_100
|
665 |
-
value: 92.86413562559697
|
666 |
-
- type: recall_at_1000
|
667 |
-
value: 99.3230659025788
|
668 |
-
task:
|
669 |
-
type: Retrieval
|
670 |
-
- dataset:
|
671 |
-
config: en
|
672 |
-
name: MTEB MTOPDomainClassification (en)
|
673 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
674 |
-
split: test
|
675 |
-
type: mteb/mtop_domain
|
676 |
-
metrics:
|
677 |
-
- type: accuracy
|
678 |
-
value: 98.42225262197901
|
679 |
-
- type: f1
|
680 |
-
value: 98.31652547061115
|
681 |
-
- type: main_score
|
682 |
-
value: 98.42225262197901
|
683 |
-
task:
|
684 |
-
type: Classification
|
685 |
-
- dataset:
|
686 |
-
config: en
|
687 |
-
name: MTEB MTOPIntentClassification (en)
|
688 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
689 |
-
split: test
|
690 |
-
type: mteb/mtop_intent
|
691 |
-
metrics:
|
692 |
-
- type: accuracy
|
693 |
-
value: 94.00136798905609
|
694 |
-
- type: f1
|
695 |
-
value: 82.7022316533099
|
696 |
-
- type: main_score
|
697 |
-
value: 94.00136798905609
|
698 |
-
task:
|
699 |
-
type: Classification
|
700 |
-
- dataset:
|
701 |
-
config: en
|
702 |
-
name: MTEB MassiveIntentClassification (en)
|
703 |
-
revision: 4672e20407010da34463acc759c162ca9734bca6
|
704 |
-
split: test
|
705 |
-
type: mteb/amazon_massive_intent
|
706 |
-
metrics:
|
707 |
-
- type: accuracy
|
708 |
-
value: 82.92535305985204
|
709 |
-
- type: f1
|
710 |
-
value: 79.885538231847
|
711 |
-
- type: main_score
|
712 |
-
value: 82.92535305985204
|
713 |
-
task:
|
714 |
-
type: Classification
|
715 |
-
- dataset:
|
716 |
-
config: en
|
717 |
-
name: MTEB MassiveScenarioClassification (en)
|
718 |
-
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
|
719 |
-
split: test
|
720 |
-
type: mteb/amazon_massive_scenario
|
721 |
-
metrics:
|
722 |
-
- type: accuracy
|
723 |
-
value: 85.60188298587758
|
724 |
-
- type: f1
|
725 |
-
value: 84.87416963499224
|
726 |
-
- type: main_score
|
727 |
-
value: 85.60188298587758
|
728 |
-
task:
|
729 |
-
type: Classification
|
730 |
-
- dataset:
|
731 |
-
config: default
|
732 |
-
name: MTEB MedrxivClusteringP2P
|
733 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
734 |
-
split: test
|
735 |
-
type: mteb/medrxiv-clustering-p2p
|
736 |
-
metrics:
|
737 |
-
- type: main_score
|
738 |
-
value: 45.86171497327639
|
739 |
-
- type: v_measure
|
740 |
-
value: 45.86171497327639
|
741 |
-
- type: v_measure_std
|
742 |
-
value: 1.551347259003324
|
743 |
-
task:
|
744 |
-
type: Clustering
|
745 |
-
- dataset:
|
746 |
-
config: default
|
747 |
-
name: MTEB MedrxivClusteringS2S
|
748 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
749 |
-
split: test
|
750 |
-
type: mteb/medrxiv-clustering-s2s
|
751 |
-
metrics:
|
752 |
-
- type: main_score
|
753 |
-
value: 44.33336692345644
|
754 |
-
- type: v_measure
|
755 |
-
value: 44.33336692345644
|
756 |
-
- type: v_measure_std
|
757 |
-
value: 1.5931408596404715
|
758 |
-
task:
|
759 |
-
type: Clustering
|
760 |
-
- dataset:
|
761 |
-
config: default
|
762 |
-
name: MTEB MindSmallReranking
|
763 |
-
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
|
764 |
-
split: test
|
765 |
-
type: mteb/mind_small
|
766 |
-
metrics:
|
767 |
-
- type: main_score
|
768 |
-
value: 30.597409734750503
|
769 |
-
- type: map
|
770 |
-
value: 30.597409734750503
|
771 |
-
- type: mrr
|
772 |
-
value: 31.397041548018457
|
773 |
-
task:
|
774 |
-
type: Reranking
|
775 |
-
- dataset:
|
776 |
-
config: default
|
777 |
-
name: MTEB NFCorpus
|
778 |
-
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
779 |
-
split: test
|
780 |
-
type: mteb/nfcorpus
|
781 |
-
metrics:
|
782 |
-
- type: main_score
|
783 |
-
value: 41.850870119787835
|
784 |
-
- type: ndcg_at_1
|
785 |
-
value: 52.47678018575851
|
786 |
-
- type: ndcg_at_3
|
787 |
-
value: 47.43993801247414
|
788 |
-
- type: ndcg_at_5
|
789 |
-
value: 45.08173173082719
|
790 |
-
- type: ndcg_at_10
|
791 |
-
value: 41.850870119787835
|
792 |
-
- type: ndcg_at_100
|
793 |
-
value: 37.79284946590978
|
794 |
-
- type: ndcg_at_1000
|
795 |
-
value: 46.58046062123418
|
796 |
-
- type: map_at_1
|
797 |
-
value: 6.892464464226138
|
798 |
-
- type: map_at_3
|
799 |
-
value: 12.113195798233127
|
800 |
-
- type: map_at_5
|
801 |
-
value: 13.968475602788812
|
802 |
-
- type: map_at_10
|
803 |
-
value: 16.47564069781326
|
804 |
-
- type: map_at_100
|
805 |
-
value: 20.671726065190025
|
806 |
-
- type: map_at_1000
|
807 |
-
value: 22.328875914012006
|
808 |
-
- type: precision_at_1
|
809 |
-
value: 53.86996904024768
|
810 |
-
- type: precision_at_3
|
811 |
-
value: 43.96284829721363
|
812 |
-
- type: precision_at_5
|
813 |
-
value: 38.69969040247682
|
814 |
-
- type: precision_at_10
|
815 |
-
value: 30.928792569659457
|
816 |
-
- type: precision_at_100
|
817 |
-
value: 9.507739938080498
|
818 |
-
- type: precision_at_1000
|
819 |
-
value: 2.25882352941176
|
820 |
-
- type: recall_at_1
|
821 |
-
value: 6.892464464226138
|
822 |
-
- type: recall_at_3
|
823 |
-
value: 13.708153358278407
|
824 |
-
- type: recall_at_5
|
825 |
-
value: 16.651919797359145
|
826 |
-
- type: recall_at_10
|
827 |
-
value: 21.01801714352559
|
828 |
-
- type: recall_at_100
|
829 |
-
value: 37.01672102843443
|
830 |
-
- type: recall_at_1000
|
831 |
-
value: 69.8307270724072
|
832 |
-
task:
|
833 |
-
type: Retrieval
|
834 |
-
- dataset:
|
835 |
-
config: default
|
836 |
-
name: MTEB NQ
|
837 |
-
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
838 |
-
split: test
|
839 |
-
type: mteb/nq
|
840 |
-
metrics:
|
841 |
-
- type: main_score
|
842 |
-
value: 73.88350836507092
|
843 |
-
- type: ndcg_at_1
|
844 |
-
value: 57.0683661645423
|
845 |
-
- type: ndcg_at_3
|
846 |
-
value: 67.89935813080585
|
847 |
-
- type: ndcg_at_5
|
848 |
-
value: 71.47769719452941
|
849 |
-
- type: ndcg_at_10
|
850 |
-
value: 73.88350836507092
|
851 |
-
- type: ndcg_at_100
|
852 |
-
value: 75.76561068060907
|
853 |
-
- type: ndcg_at_1000
|
854 |
-
value: 75.92437662684215
|
855 |
-
- type: map_at_1
|
856 |
-
value: 51.00424874468904
|
857 |
-
- type: map_at_3
|
858 |
-
value: 63.87359984550011
|
859 |
-
- type: map_at_5
|
860 |
-
value: 66.23696407879494
|
861 |
-
- type: map_at_10
|
862 |
-
value: 67.42415446608673
|
863 |
-
- type: map_at_100
|
864 |
-
value: 67.92692839842621
|
865 |
-
- type: map_at_1000
|
866 |
-
value: 67.93437922640133
|
867 |
-
- type: precision_at_1
|
868 |
-
value: 57.0683661645423
|
869 |
-
- type: precision_at_3
|
870 |
-
value: 29.692931633836416
|
871 |
-
- type: precision_at_5
|
872 |
-
value: 20.046349942062854
|
873 |
-
- type: precision_at_10
|
874 |
-
value: 10.950173812283
|
875 |
-
- type: precision_at_100
|
876 |
-
value: 1.1995944380069687
|
877 |
-
- type: precision_at_1000
|
878 |
-
value: 0.12146581691772171
|
879 |
-
- type: recall_at_1
|
880 |
-
value: 51.00424874468904
|
881 |
-
- type: recall_at_3
|
882 |
-
value: 75.93665507918116
|
883 |
-
- type: recall_at_5
|
884 |
-
value: 83.95133256083433
|
885 |
-
- type: recall_at_10
|
886 |
-
value: 90.78794901506375
|
887 |
-
- type: recall_at_100
|
888 |
-
value: 98.61915797605253
|
889 |
-
- type: recall_at_1000
|
890 |
-
value: 99.7827346465817
|
891 |
-
task:
|
892 |
-
type: Retrieval
|
893 |
-
- dataset:
|
894 |
-
config: default
|
895 |
-
name: MTEB QuoraRetrieval
|
896 |
-
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
|
897 |
-
split: test
|
898 |
-
type: mteb/quora
|
899 |
-
metrics:
|
900 |
-
- type: main_score
|
901 |
-
value: 90.95410848372035
|
902 |
-
- type: ndcg_at_1
|
903 |
-
value: 84.61999999999999
|
904 |
-
- type: ndcg_at_3
|
905 |
-
value: 88.57366734033212
|
906 |
-
- type: ndcg_at_5
|
907 |
-
value: 89.89804048972175
|
908 |
-
- type: ndcg_at_10
|
909 |
-
value: 90.95410848372035
|
910 |
-
- type: ndcg_at_100
|
911 |
-
value: 91.83227134455773
|
912 |
-
- type: ndcg_at_1000
|
913 |
-
value: 91.88368412611601
|
914 |
-
- type: map_at_1
|
915 |
-
value: 73.4670089207039
|
916 |
-
- type: map_at_3
|
917 |
-
value: 84.87862925508942
|
918 |
-
- type: map_at_5
|
919 |
-
value: 86.68002324701408
|
920 |
-
- type: map_at_10
|
921 |
-
value: 87.7165466015312
|
922 |
-
- type: map_at_100
|
923 |
-
value: 88.28718809614146
|
924 |
-
- type: map_at_1000
|
925 |
-
value: 88.29877148480672
|
926 |
-
- type: precision_at_1
|
927 |
-
value: 84.61999999999999
|
928 |
-
- type: precision_at_3
|
929 |
-
value: 38.82333333333838
|
930 |
-
- type: precision_at_5
|
931 |
-
value: 25.423999999998642
|
932 |
-
- type: precision_at_10
|
933 |
-
value: 13.787999999998583
|
934 |
-
- type: precision_at_100
|
935 |
-
value: 1.5442999999999767
|
936 |
-
- type: precision_at_1000
|
937 |
-
value: 0.15672999999997972
|
938 |
-
- type: recall_at_1
|
939 |
-
value: 73.4670089207039
|
940 |
-
- type: recall_at_3
|
941 |
-
value: 89.98389854832143
|
942 |
-
- type: recall_at_5
|
943 |
-
value: 93.88541046010576
|
944 |
-
- type: recall_at_10
|
945 |
-
value: 96.99779417520634
|
946 |
-
- type: recall_at_100
|
947 |
-
value: 99.80318763957743
|
948 |
-
- type: recall_at_1000
|
949 |
-
value: 99.99638888888889
|
950 |
-
task:
|
951 |
-
type: Retrieval
|
952 |
-
- dataset:
|
953 |
-
config: default
|
954 |
-
name: MTEB RedditClustering
|
955 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
956 |
-
split: test
|
957 |
-
type: mteb/reddit-clustering
|
958 |
-
metrics:
|
959 |
-
- type: main_score
|
960 |
-
value: 72.33008348681277
|
961 |
-
- type: v_measure
|
962 |
-
value: 72.33008348681277
|
963 |
-
- type: v_measure_std
|
964 |
-
value: 2.9203215463933008
|
965 |
-
task:
|
966 |
-
type: Clustering
|
967 |
-
- dataset:
|
968 |
-
config: default
|
969 |
-
name: MTEB RedditClusteringP2P
|
970 |
-
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
|
971 |
-
split: test
|
972 |
-
type: mteb/reddit-clustering-p2p
|
973 |
-
metrics:
|
974 |
-
- type: main_score
|
975 |
-
value: 72.72079657828903
|
976 |
-
- type: v_measure
|
977 |
-
value: 72.72079657828903
|
978 |
-
- type: v_measure_std
|
979 |
-
value: 11.930271663428735
|
980 |
-
task:
|
981 |
-
type: Clustering
|
982 |
-
- dataset:
|
983 |
-
config: default
|
984 |
-
name: MTEB SCIDOCS
|
985 |
-
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
|
986 |
-
split: test
|
987 |
-
type: mteb/scidocs
|
988 |
-
metrics:
|
989 |
-
- type: main_score
|
990 |
-
value: 25.25865384510787
|
991 |
-
- type: ndcg_at_1
|
992 |
-
value: 28.7
|
993 |
-
- type: ndcg_at_3
|
994 |
-
value: 23.61736427940938
|
995 |
-
- type: ndcg_at_5
|
996 |
-
value: 20.845690325673885
|
997 |
-
- type: ndcg_at_10
|
998 |
-
value: 25.25865384510787
|
999 |
-
- type: ndcg_at_100
|
1000 |
-
value: 36.18596641088721
|
1001 |
-
- type: ndcg_at_1000
|
1002 |
-
value: 41.7166868935345
|
1003 |
-
- type: map_at_1
|
1004 |
-
value: 5.828333333333361
|
1005 |
-
- type: map_at_3
|
1006 |
-
value: 10.689166666666676
|
1007 |
-
- type: map_at_5
|
1008 |
-
value: 13.069916666666668
|
1009 |
-
- type: map_at_10
|
1010 |
-
value: 15.4901164021164
|
1011 |
-
- type: map_at_100
|
1012 |
-
value: 18.61493245565425
|
1013 |
-
- type: map_at_1000
|
1014 |
-
value: 18.99943478016456
|
1015 |
-
- type: precision_at_1
|
1016 |
-
value: 28.7
|
1017 |
-
- type: precision_at_3
|
1018 |
-
value: 22.30000000000006
|
1019 |
-
- type: precision_at_5
|
1020 |
-
value: 18.55999999999997
|
1021 |
-
- type: precision_at_10
|
1022 |
-
value: 13.289999999999946
|
1023 |
-
- type: precision_at_100
|
1024 |
-
value: 2.905000000000005
|
1025 |
-
- type: precision_at_1000
|
1026 |
-
value: 0.4218999999999946
|
1027 |
-
- type: recall_at_1
|
1028 |
-
value: 5.828333333333361
|
1029 |
-
- type: recall_at_3
|
1030 |
-
value: 13.548333333333387
|
1031 |
-
- type: recall_at_5
|
1032 |
-
value: 18.778333333333308
|
1033 |
-
- type: recall_at_10
|
1034 |
-
value: 26.939999999999902
|
1035 |
-
- type: recall_at_100
|
1036 |
-
value: 58.91333333333344
|
1037 |
-
- type: recall_at_1000
|
1038 |
-
value: 85.57499999999972
|
1039 |
-
task:
|
1040 |
-
type: Retrieval
|
1041 |
-
- dataset:
|
1042 |
-
config: default
|
1043 |
-
name: MTEB SICK-R
|
1044 |
-
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
|
1045 |
-
split: test
|
1046 |
-
type: mteb/sickr-sts
|
1047 |
-
metrics:
|
1048 |
-
- type: main_score
|
1049 |
-
value: 83.86733787791422
|
1050 |
-
- type: cosine_spearman
|
1051 |
-
value: 83.86733787791422
|
1052 |
-
- type: spearman
|
1053 |
-
value: 83.86733787791422
|
1054 |
-
task:
|
1055 |
-
type: STS
|
1056 |
-
- dataset:
|
1057 |
-
config: default
|
1058 |
-
name: MTEB STS12
|
1059 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1060 |
-
split: test
|
1061 |
-
type: mteb/sts12-sts
|
1062 |
-
metrics:
|
1063 |
-
- type: main_score
|
1064 |
-
value: 78.14269330480724
|
1065 |
-
- type: cosine_spearman
|
1066 |
-
value: 78.14269330480724
|
1067 |
-
- type: spearman
|
1068 |
-
value: 78.14269330480724
|
1069 |
-
task:
|
1070 |
-
type: STS
|
1071 |
-
- dataset:
|
1072 |
-
config: default
|
1073 |
-
name: MTEB STS13
|
1074 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1075 |
-
split: test
|
1076 |
-
type: mteb/sts13-sts
|
1077 |
-
metrics:
|
1078 |
-
- type: main_score
|
1079 |
-
value: 86.58640009300751
|
1080 |
-
- type: cosine_spearman
|
1081 |
-
value: 86.58640009300751
|
1082 |
-
- type: spearman
|
1083 |
-
value: 86.58640009300751
|
1084 |
-
task:
|
1085 |
-
type: STS
|
1086 |
-
- dataset:
|
1087 |
-
config: default
|
1088 |
-
name: MTEB STS14
|
1089 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1090 |
-
split: test
|
1091 |
-
type: mteb/sts14-sts
|
1092 |
-
metrics:
|
1093 |
-
- type: main_score
|
1094 |
-
value: 82.8292579957437
|
1095 |
-
- type: cosine_spearman
|
1096 |
-
value: 82.8292579957437
|
1097 |
-
- type: spearman
|
1098 |
-
value: 82.8292579957437
|
1099 |
-
task:
|
1100 |
-
type: STS
|
1101 |
-
- dataset:
|
1102 |
-
config: default
|
1103 |
-
name: MTEB STS15
|
1104 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1105 |
-
split: test
|
1106 |
-
type: mteb/sts15-sts
|
1107 |
-
metrics:
|
1108 |
-
- type: main_score
|
1109 |
-
value: 87.77203714228862
|
1110 |
-
- type: cosine_spearman
|
1111 |
-
value: 87.77203714228862
|
1112 |
-
- type: spearman
|
1113 |
-
value: 87.77203714228862
|
1114 |
-
task:
|
1115 |
-
type: STS
|
1116 |
-
- dataset:
|
1117 |
-
config: default
|
1118 |
-
name: MTEB STS16
|
1119 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
1120 |
-
split: test
|
1121 |
-
type: mteb/sts16-sts
|
1122 |
-
metrics:
|
1123 |
-
- type: main_score
|
1124 |
-
value: 87.0439304006969
|
1125 |
-
- type: cosine_spearman
|
1126 |
-
value: 87.0439304006969
|
1127 |
-
- type: spearman
|
1128 |
-
value: 87.0439304006969
|
1129 |
-
task:
|
1130 |
-
type: STS
|
1131 |
-
- dataset:
|
1132 |
-
config: en-en
|
1133 |
-
name: MTEB STS17 (en-en)
|
1134 |
-
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
1135 |
-
split: test
|
1136 |
-
type: mteb/sts17-crosslingual-sts
|
1137 |
-
metrics:
|
1138 |
-
- type: main_score
|
1139 |
-
value: 91.24736138013424
|
1140 |
-
- type: cosine_spearman
|
1141 |
-
value: 91.24736138013424
|
1142 |
-
- type: spearman
|
1143 |
-
value: 91.24736138013424
|
1144 |
-
task:
|
1145 |
-
type: STS
|
1146 |
-
- dataset:
|
1147 |
-
config: en
|
1148 |
-
name: MTEB STS22 (en)
|
1149 |
-
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
1150 |
-
split: test
|
1151 |
-
type: mteb/sts22-crosslingual-sts
|
1152 |
-
metrics:
|
1153 |
-
- type: main_score
|
1154 |
-
value: 70.07326214706
|
1155 |
-
- type: cosine_spearman
|
1156 |
-
value: 70.07326214706
|
1157 |
-
- type: spearman
|
1158 |
-
value: 70.07326214706
|
1159 |
-
task:
|
1160 |
-
type: STS
|
1161 |
-
- dataset:
|
1162 |
-
config: default
|
1163 |
-
name: MTEB STSBenchmark
|
1164 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
1165 |
-
split: test
|
1166 |
-
type: mteb/stsbenchmark-sts
|
1167 |
-
metrics:
|
1168 |
-
- type: main_score
|
1169 |
-
value: 88.42076443255168
|
1170 |
-
- type: cosine_spearman
|
1171 |
-
value: 88.42076443255168
|
1172 |
-
- type: spearman
|
1173 |
-
value: 88.42076443255168
|
1174 |
-
task:
|
1175 |
-
type: STS
|
1176 |
-
- dataset:
|
1177 |
-
config: default
|
1178 |
-
name: MTEB SciDocsRR
|
1179 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
1180 |
-
split: test
|
1181 |
-
type: mteb/scidocs-reranking
|
1182 |
-
metrics:
|
1183 |
-
- type: main_score
|
1184 |
-
value: 86.9584489124583
|
1185 |
-
- type: map
|
1186 |
-
value: 86.9584489124583
|
1187 |
-
- type: mrr
|
1188 |
-
value: 96.59475328592976
|
1189 |
-
task:
|
1190 |
-
type: Reranking
|
1191 |
-
- dataset:
|
1192 |
-
config: default
|
1193 |
-
name: MTEB SciFact
|
1194 |
-
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
1195 |
-
split: test
|
1196 |
-
type: mteb/scifact
|
1197 |
-
metrics:
|
1198 |
-
- type: main_score
|
1199 |
-
value: 79.09159079425369
|
1200 |
-
- type: ndcg_at_1
|
1201 |
-
value: 66.0
|
1202 |
-
- type: ndcg_at_3
|
1203 |
-
value: 74.98853481223065
|
1204 |
-
- type: ndcg_at_5
|
1205 |
-
value: 77.29382051205019
|
1206 |
-
- type: ndcg_at_10
|
1207 |
-
value: 79.09159079425369
|
1208 |
-
- type: ndcg_at_100
|
1209 |
-
value: 80.29692802526776
|
1210 |
-
- type: ndcg_at_1000
|
1211 |
-
value: 80.55210036585547
|
1212 |
-
- type: map_at_1
|
1213 |
-
value: 62.994444444444454
|
1214 |
-
- type: map_at_3
|
1215 |
-
value: 71.7425925925926
|
1216 |
-
- type: map_at_5
|
1217 |
-
value: 73.6200925925926
|
1218 |
-
- type: map_at_10
|
1219 |
-
value: 74.50223544973547
|
1220 |
-
- type: map_at_100
|
1221 |
-
value: 74.82438594015447
|
1222 |
-
- type: map_at_1000
|
1223 |
-
value: 74.83420474892468
|
1224 |
-
- type: precision_at_1
|
1225 |
-
value: 66.0
|
1226 |
-
- type: precision_at_3
|
1227 |
-
value: 29.44444444444439
|
1228 |
-
- type: precision_at_5
|
1229 |
-
value: 19.40000000000008
|
1230 |
-
- type: precision_at_10
|
1231 |
-
value: 10.366666666666715
|
1232 |
-
- type: precision_at_100
|
1233 |
-
value: 1.0999999999999928
|
1234 |
-
- type: precision_at_1000
|
1235 |
-
value: 0.11200000000000007
|
1236 |
-
- type: recall_at_1
|
1237 |
-
value: 62.994444444444454
|
1238 |
-
- type: recall_at_3
|
1239 |
-
value: 80.89999999999998
|
1240 |
-
- type: recall_at_5
|
1241 |
-
value: 86.72777777777779
|
1242 |
-
- type: recall_at_10
|
1243 |
-
value: 91.88888888888887
|
1244 |
-
- type: recall_at_100
|
1245 |
-
value: 97.0
|
1246 |
-
- type: recall_at_1000
|
1247 |
-
value: 99.0
|
1248 |
-
task:
|
1249 |
-
type: Retrieval
|
1250 |
-
- dataset:
|
1251 |
-
config: default
|
1252 |
-
name: MTEB SprintDuplicateQuestions
|
1253 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
1254 |
-
split: test
|
1255 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
1256 |
-
metrics:
|
1257 |
-
- type: main_score
|
1258 |
-
value: 97.26819027722253
|
1259 |
-
- type: cos_sim_accuracy
|
1260 |
-
value: 99.88019801980198
|
1261 |
-
- type: cos_sim_accuracy_threshold
|
1262 |
-
value: 76.67685151100159
|
1263 |
-
- type: cos_sim_ap
|
1264 |
-
value: 97.23260568085786
|
1265 |
-
- type: cos_sim_f1
|
1266 |
-
value: 93.91824526420737
|
1267 |
-
- type: cos_sim_f1_threshold
|
1268 |
-
value: 75.82710981369019
|
1269 |
-
- type: cos_sim_precision
|
1270 |
-
value: 93.63817097415506
|
1271 |
-
- type: cos_sim_recall
|
1272 |
-
value: 94.19999999999999
|
1273 |
-
- type: dot_accuracy
|
1274 |
-
value: 99.88019801980198
|
1275 |
-
- type: dot_accuracy_threshold
|
1276 |
-
value: 76.67686343193054
|
1277 |
-
- type: dot_ap
|
1278 |
-
value: 97.23260568085786
|
1279 |
-
- type: dot_f1
|
1280 |
-
value: 93.91824526420737
|
1281 |
-
- type: dot_f1_threshold
|
1282 |
-
value: 75.8271336555481
|
1283 |
-
- type: dot_precision
|
1284 |
-
value: 93.63817097415506
|
1285 |
-
- type: dot_recall
|
1286 |
-
value: 94.19999999999999
|
1287 |
-
- type: euclidean_accuracy
|
1288 |
-
value: 99.88019801980198
|
1289 |
-
- type: euclidean_accuracy_threshold
|
1290 |
-
value: 68.29807758331299
|
1291 |
-
- type: euclidean_ap
|
1292 |
-
value: 97.23259982599497
|
1293 |
-
- type: euclidean_f1
|
1294 |
-
value: 93.91824526420737
|
1295 |
-
- type: euclidean_f1_threshold
|
1296 |
-
value: 69.53110694885254
|
1297 |
-
- type: euclidean_precision
|
1298 |
-
value: 93.63817097415506
|
1299 |
-
- type: euclidean_recall
|
1300 |
-
value: 94.19999999999999
|
1301 |
-
- type: manhattan_accuracy
|
1302 |
-
value: 99.87821782178217
|
1303 |
-
- type: manhattan_accuracy_threshold
|
1304 |
-
value: 3482.6908111572266
|
1305 |
-
- type: manhattan_ap
|
1306 |
-
value: 97.26819027722253
|
1307 |
-
- type: manhattan_f1
|
1308 |
-
value: 93.92592592592592
|
1309 |
-
- type: manhattan_f1_threshold
|
1310 |
-
value: 3555.5641174316406
|
1311 |
-
- type: manhattan_precision
|
1312 |
-
value: 92.78048780487805
|
1313 |
-
- type: manhattan_recall
|
1314 |
-
value: 95.1
|
1315 |
-
- type: max_accuracy
|
1316 |
-
value: 99.88019801980198
|
1317 |
-
- type: max_ap
|
1318 |
-
value: 97.26819027722253
|
1319 |
-
- type: max_f1
|
1320 |
-
value: 93.92592592592592
|
1321 |
-
task:
|
1322 |
-
type: PairClassification
|
1323 |
-
- dataset:
|
1324 |
-
config: default
|
1325 |
-
name: MTEB StackExchangeClustering
|
1326 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
1327 |
-
split: test
|
1328 |
-
type: mteb/stackexchange-clustering
|
1329 |
-
metrics:
|
1330 |
-
- type: main_score
|
1331 |
-
value: 81.32419328350603
|
1332 |
-
- type: v_measure
|
1333 |
-
value: 81.32419328350603
|
1334 |
-
- type: v_measure_std
|
1335 |
-
value: 2.666861121694755
|
1336 |
-
task:
|
1337 |
-
type: Clustering
|
1338 |
-
- dataset:
|
1339 |
-
config: default
|
1340 |
-
name: MTEB StackExchangeClusteringP2P
|
1341 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
1342 |
-
split: test
|
1343 |
-
type: mteb/stackexchange-clustering-p2p
|
1344 |
-
metrics:
|
1345 |
-
- type: main_score
|
1346 |
-
value: 46.048387963107565
|
1347 |
-
- type: v_measure
|
1348 |
-
value: 46.048387963107565
|
1349 |
-
- type: v_measure_std
|
1350 |
-
value: 1.4102848576321703
|
1351 |
-
task:
|
1352 |
-
type: Clustering
|
1353 |
-
- dataset:
|
1354 |
-
config: default
|
1355 |
-
name: MTEB StackOverflowDupQuestions
|
1356 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
1357 |
-
split: test
|
1358 |
-
type: mteb/stackoverflowdupquestions-reranking
|
1359 |
-
metrics:
|
1360 |
-
- type: main_score
|
1361 |
-
value: 56.70574900554072
|
1362 |
-
- type: map
|
1363 |
-
value: 56.70574900554072
|
1364 |
-
- type: mrr
|
1365 |
-
value: 57.517109116373824
|
1366 |
-
task:
|
1367 |
-
type: Reranking
|
1368 |
-
- dataset:
|
1369 |
-
config: default
|
1370 |
-
name: MTEB SummEval
|
1371 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
1372 |
-
split: test
|
1373 |
-
type: mteb/summeval
|
1374 |
-
metrics:
|
1375 |
-
- type: main_score
|
1376 |
-
value: 30.76932903185174
|
1377 |
-
- type: cosine_spearman
|
1378 |
-
value: 30.76932903185174
|
1379 |
-
- type: spearman
|
1380 |
-
value: 30.76932903185174
|
1381 |
-
task:
|
1382 |
-
type: Summarization
|
1383 |
-
- dataset:
|
1384 |
-
config: default
|
1385 |
-
name: MTEB TRECCOVID
|
1386 |
-
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
|
1387 |
-
split: test
|
1388 |
-
type: mteb/trec-covid
|
1389 |
-
metrics:
|
1390 |
-
- type: main_score
|
1391 |
-
value: 79.07987651251462
|
1392 |
-
- type: ndcg_at_1
|
1393 |
-
value: 83.0
|
1394 |
-
- type: ndcg_at_3
|
1395 |
-
value: 79.86598407528447
|
1396 |
-
- type: ndcg_at_5
|
1397 |
-
value: 79.27684428714952
|
1398 |
-
- type: ndcg_at_10
|
1399 |
-
value: 79.07987651251462
|
1400 |
-
- type: ndcg_at_100
|
1401 |
-
value: 64.55029164391163
|
1402 |
-
- type: ndcg_at_1000
|
1403 |
-
value: 59.42333857860492
|
1404 |
-
- type: map_at_1
|
1405 |
-
value: 0.226053732680979
|
1406 |
-
- type: map_at_3
|
1407 |
-
value: 0.644034626013194
|
1408 |
-
- type: map_at_5
|
1409 |
-
value: 1.045196967937728
|
1410 |
-
- type: map_at_10
|
1411 |
-
value: 2.0197496659905085
|
1412 |
-
- type: map_at_100
|
1413 |
-
value: 13.316018005224159
|
1414 |
-
- type: map_at_1000
|
1415 |
-
value: 33.784766957424104
|
1416 |
-
- type: precision_at_1
|
1417 |
-
value: 88.0
|
1418 |
-
- type: precision_at_3
|
1419 |
-
value: 86.66666666666667
|
1420 |
-
- type: precision_at_5
|
1421 |
-
value: 85.20000000000002
|
1422 |
-
- type: precision_at_10
|
1423 |
-
value: 84.19999999999997
|
1424 |
-
- type: precision_at_100
|
1425 |
-
value: 67.88000000000001
|
1426 |
-
- type: precision_at_1000
|
1427 |
-
value: 26.573999999999998
|
1428 |
-
- type: recall_at_1
|
1429 |
-
value: 0.226053732680979
|
1430 |
-
- type: recall_at_3
|
1431 |
-
value: 0.6754273711472734
|
1432 |
-
- type: recall_at_5
|
1433 |
-
value: 1.1168649828059245
|
1434 |
-
- type: recall_at_10
|
1435 |
-
value: 2.2215081031265207
|
1436 |
-
- type: recall_at_100
|
1437 |
-
value: 16.694165236664727
|
1438 |
-
- type: recall_at_1000
|
1439 |
-
value: 56.7022214857503
|
1440 |
-
task:
|
1441 |
-
type: Retrieval
|
1442 |
-
- dataset:
|
1443 |
-
config: default
|
1444 |
-
name: MTEB Touche2020
|
1445 |
-
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
1446 |
-
split: test
|
1447 |
-
type: mteb/touche2020
|
1448 |
-
metrics:
|
1449 |
-
- type: main_score
|
1450 |
-
value: 30.47934263207554
|
1451 |
-
- type: ndcg_at_1
|
1452 |
-
value: 33.6734693877551
|
1453 |
-
- type: ndcg_at_3
|
1454 |
-
value: 34.36843900446739
|
1455 |
-
- type: ndcg_at_5
|
1456 |
-
value: 32.21323786731918
|
1457 |
-
- type: ndcg_at_10
|
1458 |
-
value: 30.47934263207554
|
1459 |
-
- type: ndcg_at_100
|
1460 |
-
value: 41.49598869753928
|
1461 |
-
- type: ndcg_at_1000
|
1462 |
-
value: 52.32963949183662
|
1463 |
-
- type: map_at_1
|
1464 |
-
value: 3.0159801678718168
|
1465 |
-
- type: map_at_3
|
1466 |
-
value: 7.13837927642557
|
1467 |
-
- type: map_at_5
|
1468 |
-
value: 9.274004610363466
|
1469 |
-
- type: map_at_10
|
1470 |
-
value: 12.957368366814324
|
1471 |
-
- type: map_at_100
|
1472 |
-
value: 19.3070585127604
|
1473 |
-
- type: map_at_1000
|
1474 |
-
value: 20.809777161133532
|
1475 |
-
- type: precision_at_1
|
1476 |
-
value: 34.69387755102041
|
1477 |
-
- type: precision_at_3
|
1478 |
-
value: 36.054421768707485
|
1479 |
-
- type: precision_at_5
|
1480 |
-
value: 32.24489795918368
|
1481 |
-
- type: precision_at_10
|
1482 |
-
value: 27.142857142857146
|
1483 |
-
- type: precision_at_100
|
1484 |
-
value: 8.326530612244898
|
1485 |
-
- type: precision_at_1000
|
1486 |
-
value: 1.5755102040816336
|
1487 |
-
- type: recall_at_1
|
1488 |
-
value: 3.0159801678718168
|
1489 |
-
- type: recall_at_3
|
1490 |
-
value: 8.321771388428257
|
1491 |
-
- type: recall_at_5
|
1492 |
-
value: 11.737532394366069
|
1493 |
-
- type: recall_at_10
|
1494 |
-
value: 19.49315139822179
|
1495 |
-
- type: recall_at_100
|
1496 |
-
value: 50.937064145519685
|
1497 |
-
- type: recall_at_1000
|
1498 |
-
value: 83.4358283484675
|
1499 |
-
task:
|
1500 |
-
type: Retrieval
|
1501 |
-
- dataset:
|
1502 |
-
config: default
|
1503 |
-
name: MTEB ToxicConversationsClassification
|
1504 |
-
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
|
1505 |
-
split: test
|
1506 |
-
type: mteb/toxic_conversations_50k
|
1507 |
-
metrics:
|
1508 |
-
- type: accuracy
|
1509 |
-
value: 93.173828125
|
1510 |
-
- type: ap
|
1511 |
-
value: 46.040184641424396
|
1512 |
-
- type: f1
|
1513 |
-
value: 80.77280549412752
|
1514 |
-
- type: main_score
|
1515 |
-
value: 93.173828125
|
1516 |
-
task:
|
1517 |
-
type: Classification
|
1518 |
-
- dataset:
|
1519 |
-
config: default
|
1520 |
-
name: MTEB TweetSentimentExtractionClassification
|
1521 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
1522 |
-
split: test
|
1523 |
-
type: mteb/tweet_sentiment_extraction
|
1524 |
-
metrics:
|
1525 |
-
- type: accuracy
|
1526 |
-
value: 79.9320882852292
|
1527 |
-
- type: f1
|
1528 |
-
value: 80.22638685975485
|
1529 |
-
- type: main_score
|
1530 |
-
value: 79.9320882852292
|
1531 |
-
task:
|
1532 |
-
type: Classification
|
1533 |
-
- dataset:
|
1534 |
-
config: default
|
1535 |
-
name: MTEB TwentyNewsgroupsClustering
|
1536 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
1537 |
-
split: test
|
1538 |
-
type: mteb/twentynewsgroups-clustering
|
1539 |
-
metrics:
|
1540 |
-
- type: main_score
|
1541 |
-
value: 68.98152919711418
|
1542 |
-
- type: v_measure
|
1543 |
-
value: 68.98152919711418
|
1544 |
-
- type: v_measure_std
|
1545 |
-
value: 1.2519720970652428
|
1546 |
-
task:
|
1547 |
-
type: Clustering
|
1548 |
-
- dataset:
|
1549 |
-
config: default
|
1550 |
-
name: MTEB TwitterSemEval2015
|
1551 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
1552 |
-
split: test
|
1553 |
-
type: mteb/twittersemeval2015-pairclassification
|
1554 |
-
metrics:
|
1555 |
-
- type: main_score
|
1556 |
-
value: 79.34189681158234
|
1557 |
-
- type: cos_sim_accuracy
|
1558 |
-
value: 87.68552184538356
|
1559 |
-
- type: cos_sim_accuracy_threshold
|
1560 |
-
value: 76.06316804885864
|
1561 |
-
- type: cos_sim_ap
|
1562 |
-
value: 79.34189149773933
|
1563 |
-
- type: cos_sim_f1
|
1564 |
-
value: 72.16386554621849
|
1565 |
-
- type: cos_sim_f1_threshold
|
1566 |
-
value: 73.62890243530273
|
1567 |
-
- type: cos_sim_precision
|
1568 |
-
value: 71.82435964453737
|
1569 |
-
- type: cos_sim_recall
|
1570 |
-
value: 72.5065963060686
|
1571 |
-
- type: dot_accuracy
|
1572 |
-
value: 87.68552184538356
|
1573 |
-
- type: dot_accuracy_threshold
|
1574 |
-
value: 76.06316208839417
|
1575 |
-
- type: dot_ap
|
1576 |
-
value: 79.34189231911259
|
1577 |
-
- type: dot_f1
|
1578 |
-
value: 72.16386554621849
|
1579 |
-
- type: dot_f1_threshold
|
1580 |
-
value: 73.62889647483826
|
1581 |
-
- type: dot_precision
|
1582 |
-
value: 71.82435964453737
|
1583 |
-
- type: dot_recall
|
1584 |
-
value: 72.5065963060686
|
1585 |
-
- type: euclidean_accuracy
|
1586 |
-
value: 87.68552184538356
|
1587 |
-
- type: euclidean_accuracy_threshold
|
1588 |
-
value: 69.19080018997192
|
1589 |
-
- type: euclidean_ap
|
1590 |
-
value: 79.34189681158234
|
1591 |
-
- type: euclidean_f1
|
1592 |
-
value: 72.16386554621849
|
1593 |
-
- type: euclidean_f1_threshold
|
1594 |
-
value: 72.62383103370667
|
1595 |
-
- type: euclidean_precision
|
1596 |
-
value: 71.82435964453737
|
1597 |
-
- type: euclidean_recall
|
1598 |
-
value: 72.5065963060686
|
1599 |
-
- type: manhattan_accuracy
|
1600 |
-
value: 87.661679680515
|
1601 |
-
- type: manhattan_accuracy_threshold
|
1602 |
-
value: 3408.807373046875
|
1603 |
-
- type: manhattan_ap
|
1604 |
-
value: 79.29617544165136
|
1605 |
-
- type: manhattan_f1
|
1606 |
-
value: 72.1957671957672
|
1607 |
-
- type: manhattan_f1_threshold
|
1608 |
-
value: 3597.7684020996094
|
1609 |
-
- type: manhattan_precision
|
1610 |
-
value: 72.38726790450929
|
1611 |
-
- type: manhattan_recall
|
1612 |
-
value: 72.00527704485488
|
1613 |
-
- type: max_accuracy
|
1614 |
-
value: 87.68552184538356
|
1615 |
-
- type: max_ap
|
1616 |
-
value: 79.34189681158234
|
1617 |
-
- type: max_f1
|
1618 |
-
value: 72.1957671957672
|
1619 |
-
task:
|
1620 |
-
type: PairClassification
|
1621 |
-
- dataset:
|
1622 |
-
config: default
|
1623 |
-
name: MTEB TwitterURLCorpus
|
1624 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
1625 |
-
split: test
|
1626 |
-
type: mteb/twitterurlcorpus-pairclassification
|
1627 |
-
metrics:
|
1628 |
-
- type: main_score
|
1629 |
-
value: 87.8635519535718
|
1630 |
-
- type: cos_sim_accuracy
|
1631 |
-
value: 89.80672953778088
|
1632 |
-
- type: cos_sim_accuracy_threshold
|
1633 |
-
value: 73.09532165527344
|
1634 |
-
- type: cos_sim_ap
|
1635 |
-
value: 87.84251379545145
|
1636 |
-
- type: cos_sim_f1
|
1637 |
-
value: 80.25858884373845
|
1638 |
-
- type: cos_sim_f1_threshold
|
1639 |
-
value: 70.57080268859863
|
1640 |
-
- type: cos_sim_precision
|
1641 |
-
value: 77.14103110353643
|
1642 |
-
- type: cos_sim_recall
|
1643 |
-
value: 83.63874345549738
|
1644 |
-
- type: dot_accuracy
|
1645 |
-
value: 89.80672953778088
|
1646 |
-
- type: dot_accuracy_threshold
|
1647 |
-
value: 73.09532761573792
|
1648 |
-
- type: dot_ap
|
1649 |
-
value: 87.84251881260793
|
1650 |
-
- type: dot_f1
|
1651 |
-
value: 80.25858884373845
|
1652 |
-
- type: dot_f1_threshold
|
1653 |
-
value: 70.57079076766968
|
1654 |
-
- type: dot_precision
|
1655 |
-
value: 77.14103110353643
|
1656 |
-
- type: dot_recall
|
1657 |
-
value: 83.63874345549738
|
1658 |
-
- type: euclidean_accuracy
|
1659 |
-
value: 89.80672953778088
|
1660 |
-
- type: euclidean_accuracy_threshold
|
1661 |
-
value: 73.3548641204834
|
1662 |
-
- type: euclidean_ap
|
1663 |
-
value: 87.84251335039049
|
1664 |
-
- type: euclidean_f1
|
1665 |
-
value: 80.25858884373845
|
1666 |
-
- type: euclidean_f1_threshold
|
1667 |
-
value: 76.71923041343689
|
1668 |
-
- type: euclidean_precision
|
1669 |
-
value: 77.14103110353643
|
1670 |
-
- type: euclidean_recall
|
1671 |
-
value: 83.63874345549738
|
1672 |
-
- type: manhattan_accuracy
|
1673 |
-
value: 89.78150347343501
|
1674 |
-
- type: manhattan_accuracy_threshold
|
1675 |
-
value: 3702.7603149414062
|
1676 |
-
- type: manhattan_ap
|
1677 |
-
value: 87.8635519535718
|
1678 |
-
- type: manhattan_f1
|
1679 |
-
value: 80.27105660516332
|
1680 |
-
- type: manhattan_f1_threshold
|
1681 |
-
value: 3843.5962677001953
|
1682 |
-
- type: manhattan_precision
|
1683 |
-
value: 76.9361101306036
|
1684 |
-
- type: manhattan_recall
|
1685 |
-
value: 83.90822297505389
|
1686 |
-
- type: max_accuracy
|
1687 |
-
value: 89.80672953778088
|
1688 |
-
- type: max_ap
|
1689 |
-
value: 87.8635519535718
|
1690 |
-
- type: max_f1
|
1691 |
-
value: 80.27105660516332
|
1692 |
-
task:
|
1693 |
-
type: PairClassification
|
1694 |
---
|
1695 |
|
1696 |
-
|
1697 |
-
<h1 align="center">FlagEmbedding</h1>
|
1698 |
-
|
1699 |
-
|
1700 |
-
|
1701 |
-
|
1702 |
-
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
1703 |
-
|
1704 |
-
**BGE-EN-ICL** primarily demonstrates the following capabilities:
|
1705 |
-
- In-context learning ability: By providing few-shot examples in the query, it can significantly enhance the model's ability to handle new tasks.
|
1706 |
-
- Outstanding performance: The model has achieved state-of-the-art (SOTA) performance on both BEIR and AIR-Bench.
|
1707 |
-
|
1708 |
-
|
1709 |
-
## 📑 Open-source Plan
|
1710 |
-
|
1711 |
-
- [x] Checkpoint
|
1712 |
-
- [x] Training Data
|
1713 |
-
- [x] Technical Report
|
1714 |
-
- [ ] Evaluation Pipeline
|
1715 |
-
|
1716 |
-
The technical report for **BGE-EN-ICL** can be found in [Making Text Embedders Few-Shot Learners](https://arxiv.org/abs/2409.15700)
|
1717 |
-
|
1718 |
-
## Data List
|
1719 |
-
|
1720 |
-
| Data | Introduction |
|
1721 |
-
| ------------------------------------------------------------ | ------------------------------------------------------------ |
|
1722 |
-
| [public-data](https://huggingface.co/datasets/cfli/bge-e5data) | Public data identical to [e5-mistral](https://huggingface.co/intfloat/e5-mistral-7b-instruct) |
|
1723 |
-
| [full-data](https://huggingface.co/datasets/cfli/bge-full-data) | The full dataset we used for training |
|
1724 |
-
|
1725 |
-
## Usage
|
1726 |
-
|
1727 |
-
### Using FlagEmbedding
|
1728 |
-
```
|
1729 |
-
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
1730 |
-
cd FlagEmbedding
|
1731 |
-
pip install -e .
|
1732 |
-
```
|
1733 |
-
|
1734 |
-
```python
|
1735 |
-
from FlagEmbedding import FlagICLModel
|
1736 |
-
queries = ["how much protein should a female eat", "summit define"]
|
1737 |
-
documents = [
|
1738 |
-
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
1739 |
-
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
1740 |
-
]
|
1741 |
-
examples = [
|
1742 |
-
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
|
1743 |
-
'query': 'what is a virtual interface',
|
1744 |
-
'response': "A virtual interface is a software-defined abstraction that mimics the behavior and characteristics of a physical network interface. It allows multiple logical network connections to share the same physical network interface, enabling efficient utilization of network resources. Virtual interfaces are commonly used in virtualization technologies such as virtual machines and containers to provide network connectivity without requiring dedicated hardware. They facilitate flexible network configurations and help in isolating network traffic for security and management purposes."},
|
1745 |
-
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
|
1746 |
-
'query': 'causes of back pain in female for a week',
|
1747 |
-
'response': "Back pain in females lasting a week can stem from various factors. Common causes include muscle strain due to lifting heavy objects or improper posture, spinal issues like herniated discs or osteoporosis, menstrual cramps causing referred pain, urinary tract infections, or pelvic inflammatory disease. Pregnancy-related changes can also contribute. Stress and lack of physical activity may exacerbate symptoms. Proper diagnosis by a healthcare professional is crucial for effective treatment and management."}
|
1748 |
-
]
|
1749 |
-
model = FlagICLModel('BAAI/bge-en-icl',
|
1750 |
-
query_instruction_for_retrieval="Given a web search query, retrieve relevant passages that answer the query.",
|
1751 |
-
examples_for_task=examples, # set `examples_for_task=None` to use model without examples
|
1752 |
-
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
1753 |
-
embeddings_1 = model.encode_queries(queries)
|
1754 |
-
embeddings_2 = model.encode_corpus(documents)
|
1755 |
-
similarity = embeddings_1 @ embeddings_2.T
|
1756 |
-
print(similarity)
|
1757 |
-
```
|
1758 |
-
|
1759 |
-
By default, FlagICLModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
1760 |
-
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
1761 |
-
|
1762 |
-
|
1763 |
-
### Using HuggingFace Transformers
|
1764 |
-
|
1765 |
-
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
1766 |
-
|
1767 |
-
```python
|
1768 |
-
import torch
|
1769 |
-
import torch.nn.functional as F
|
1770 |
-
|
1771 |
-
from torch import Tensor
|
1772 |
-
from transformers import AutoTokenizer, AutoModel
|
1773 |
-
|
1774 |
-
|
1775 |
-
def last_token_pool(last_hidden_states: Tensor,
|
1776 |
-
attention_mask: Tensor) -> Tensor:
|
1777 |
-
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
1778 |
-
if left_padding:
|
1779 |
-
return last_hidden_states[:, -1]
|
1780 |
-
else:
|
1781 |
-
sequence_lengths = attention_mask.sum(dim=1) - 1
|
1782 |
-
batch_size = last_hidden_states.shape[0]
|
1783 |
-
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
1784 |
-
|
1785 |
-
|
1786 |
-
def get_detailed_instruct(task_description: str, query: str) -> str:
|
1787 |
-
return f'<instruct>{task_description}\n<query>{query}'
|
1788 |
-
|
1789 |
-
def get_detailed_example(task_description: str, query: str, response: str) -> str:
|
1790 |
-
return f'<instruct>{task_description}\n<query>{query}\n<response>{response}'
|
1791 |
-
|
1792 |
-
def get_new_queries(queries, query_max_len, examples_prefix, tokenizer):
|
1793 |
-
inputs = tokenizer(
|
1794 |
-
queries,
|
1795 |
-
max_length=query_max_len - len(tokenizer('<s>', add_special_tokens=False)['input_ids']) - len(
|
1796 |
-
tokenizer('\n<response></s>', add_special_tokens=False)['input_ids']),
|
1797 |
-
return_token_type_ids=False,
|
1798 |
-
truncation=True,
|
1799 |
-
return_tensors=None,
|
1800 |
-
add_special_tokens=False
|
1801 |
-
)
|
1802 |
-
prefix_ids = tokenizer(examples_prefix, add_special_tokens=False)['input_ids']
|
1803 |
-
suffix_ids = tokenizer('\n<response>', add_special_tokens=False)['input_ids']
|
1804 |
-
new_max_length = (len(prefix_ids) + len(suffix_ids) + query_max_len + 8) // 8 * 8 + 8
|
1805 |
-
new_queries = tokenizer.batch_decode(inputs['input_ids'])
|
1806 |
-
for i in range(len(new_queries)):
|
1807 |
-
new_queries[i] = examples_prefix + new_queries[i] + '\n<response>'
|
1808 |
-
return new_max_length, new_queries
|
1809 |
-
|
1810 |
-
task = 'Given a web search query, retrieve relevant passages that answer the query.'
|
1811 |
-
examples = [
|
1812 |
-
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
|
1813 |
-
'query': 'what is a virtual interface',
|
1814 |
-
'response': "A virtual interface is a software-defined abstraction that mimics the behavior and characteristics of a physical network interface. It allows multiple logical network connections to share the same physical network interface, enabling efficient utilization of network resources. Virtual interfaces are commonly used in virtualization technologies such as virtual machines and containers to provide network connectivity without requiring dedicated hardware. They facilitate flexible network configurations and help in isolating network traffic for security and management purposes."},
|
1815 |
-
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
|
1816 |
-
'query': 'causes of back pain in female for a week',
|
1817 |
-
'response': "Back pain in females lasting a week can stem from various factors. Common causes include muscle strain due to lifting heavy objects or improper posture, spinal issues like herniated discs or osteoporosis, menstrual cramps causing referred pain, urinary tract infections, or pelvic inflammatory disease. Pregnancy-related changes can also contribute. Stress and lack of physical activity may exacerbate symptoms. Proper diagnosis by a healthcare professional is crucial for effective treatment and management."}
|
1818 |
-
]
|
1819 |
-
examples = [get_detailed_example(e['instruct'], e['query'], e['response']) for e in examples]
|
1820 |
-
examples_prefix = '\n\n'.join(examples) + '\n\n' # if there not exists any examples, just set examples_prefix = ''
|
1821 |
-
queries = [
|
1822 |
-
get_detailed_instruct(task, 'how much protein should a female eat'),
|
1823 |
-
get_detailed_instruct(task, 'summit define')
|
1824 |
-
]
|
1825 |
-
documents = [
|
1826 |
-
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
1827 |
-
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
1828 |
-
]
|
1829 |
-
query_max_len, doc_max_len = 512, 512
|
1830 |
-
|
1831 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-en-icl')
|
1832 |
-
model = AutoModel.from_pretrained('BAAI/bge-en-icl')
|
1833 |
-
model.eval()
|
1834 |
-
|
1835 |
-
new_query_max_len, new_queries = get_new_queries(queries, query_max_len, examples_prefix, tokenizer)
|
1836 |
-
|
1837 |
-
query_batch_dict = tokenizer(new_queries, max_length=new_query_max_len, padding=True, truncation=True, return_tensors='pt')
|
1838 |
-
doc_batch_dict = tokenizer(documents, max_length=doc_max_len, padding=True, truncation=True, return_tensors='pt')
|
1839 |
-
|
1840 |
-
with torch.no_grad():
|
1841 |
-
query_outputs = model(**query_batch_dict)
|
1842 |
-
query_embeddings = last_token_pool(query_outputs.last_hidden_state, query_batch_dict['attention_mask'])
|
1843 |
-
doc_outputs = model(**doc_batch_dict)
|
1844 |
-
doc_embeddings = last_token_pool(doc_outputs.last_hidden_state, doc_batch_dict['attention_mask'])
|
1845 |
-
|
1846 |
-
# normalize embeddings
|
1847 |
-
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
1848 |
-
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
|
1849 |
-
scores = (query_embeddings @ doc_embeddings.T) * 100
|
1850 |
-
print(scores.tolist())
|
1851 |
-
```
|
1852 |
-
|
1853 |
-
|
1854 |
-
## Evaluation
|
1855 |
-
|
1856 |
-
`bge-en-icl` achieve **state-of-the-art performance on both MTEB and AIR-Bench leaderboard!**
|
1857 |
-
|
1858 |
-
- **[MTEB](https://huggingface.co/spaces/mteb/leaderboard)**:
|
1859 |
-
|
1860 |
-
![BEIR](./results/MTEB.png)
|
1861 |
-
|
1862 |
-
- **[BEIR](https://huggingface.co/spaces/mteb/leaderboard)**:
|
1863 |
-
|
1864 |
-
![BEIR](./results/BEIR.png)
|
1865 |
-
|
1866 |
-
- **[AIR-Bench](https://huggingface.co/spaces/AIR-Bench/leaderboard)**:
|
1867 |
-
|
1868 |
-
**QA (en, nDCG@10):**
|
1869 |
-
|
1870 |
-
| AIR-Bench_24.04 | wiki | web | news | healthcare | law | finance | arxiv | msmarco | ALL (8) |
|
1871 |
-
| :--------------------------: | :-------: | :-------: | :-------: | :--------: | :-------: | :-------: | :-------: | :-------: | :-------: |
|
1872 |
-
| **e5-mistral-7b-instruct** | 61.67 | 44.41 | 48.18 | 56.32 | 19.32 | 54.79 | 44.78 | 59.03 | 48.56 |
|
1873 |
-
| **SFR-Embedding-Mistral** | 63.46 | 51.27 | 52.21 | 58.76 | 23.27 | 56.94 | 47.75 | 58.99 | 51.58 |
|
1874 |
-
| **NV-Embed-v1** | 62.84 | 50.42 | 51.46 | 58.53 | 20.65 | 49.89 | 46.10 | 60.27 | 50.02 |
|
1875 |
-
| **Linq-Embed-Mistral** | 61.04 | 48.41 | 49.44 | **60.18** | 20.34 | 50.04 | 47.56 | 60.50 | 49.69 |
|
1876 |
-
| **gte-Qwen2-7B-instruct** | 63.46 | 51.20 | 54.07 | 54.20 | 22.31 | **58.20** | 40.27 | 58.39 | 50.26 |
|
1877 |
-
| **stella_en_1.5B_v5** | 61.99 | 50.88 | 53.87 | 58.81 | 23.22 | 57.26 | 44.81 | 61.38 | 51.53 |
|
1878 |
-
| **bge-en-icl zero-shot** | 64.61 | 54.40 | 55.11 | 57.25 | 25.10 | 54.81 | 48.46 | 63.71 | 52.93 |
|
1879 |
-
| **bge-en-icl few-shot** | **64.94** | **55.11** | **56.02** | 58.85 | **28.29** | 57.16 | **50.04** | **64.50** | **54.36** |
|
1880 |
-
|
1881 |
-
**Long-Doc (en, Recall@10):**
|
1882 |
-
|
1883 |
-
| AIR-Bench_24.04 | arxiv (4) | book (2) | healthcare (5) | law (4) | ALL (15) |
|
1884 |
-
| :--------------------------: | :-------: | :-------: | :------------: | :-------: | :-------: |
|
1885 |
-
| **text-embedding-3-large** | 74.53 | 73.16 | 65.83 | 64.47 | 68.77 |
|
1886 |
-
| **e5-mistral-7b-instruct** | 72.14 | 72.44 | 68.44 | 62.92 | 68.49 |
|
1887 |
-
| **SFR-Embedding-Mistral** | 72.79 | 72.41 | 67.94 | 64.83 | 69.00 |
|
1888 |
-
| **NV-Embed-v1** | 77.65 | 75.49 | 72.38 | **69.55** | 73.45 |
|
1889 |
-
| **Linq-Embed-Mistral** | 75.46 | 73.81 | 71.58 | 68.58 | 72.11 |
|
1890 |
-
| **gte-Qwen2-7B-instruct** | 63.93 | 68.51 | 65.59 | 65.26 | 65.45 |
|
1891 |
-
| **stella_en_1.5B_v5** | 73.17 | 74.38 | 70.02 | 69.32 | 71.25 |
|
1892 |
-
| **bge-en-icl zero-shot** | 78.30 | 78.21 | 73.65 | 67.09 | 73.75 |
|
1893 |
-
| **bge-en-icl few-shot** | **79.63** | **79.36** | **74.80** | 67.79 | **74.83** |
|
1894 |
-
|
1895 |
-
|
1896 |
-
## Model List
|
1897 |
-
|
1898 |
-
`bge` is short for `BAAI general embedding`.
|
1899 |
-
|
1900 |
-
| Model | Language | | Description | query instruction for retrieval [1] |
|
1901 |
-
|:--------------------------------------------------------------------------|:-------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|
|
1902 |
-
| [BAAI/bge-en-icl](https://huggingface.co/BAAI/bge-en-icl) | English | - | A LLM-based embedding model with in-context learning capabilities, which can fully leverage the model's potential based on a few shot examples | Provide instructions and few-shot examples freely based on the given task. |
|
1903 |
-
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
|
1904 |
-
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
|
1905 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
1906 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
1907 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
1908 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
1909 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
1910 |
-
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
1911 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
1912 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
1913 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
1914 |
-
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
1915 |
-
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
1916 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
1917 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
1918 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
1919 |
-
|
1920 |
-
|
1921 |
-
|
1922 |
-
|
1923 |
-
|
1924 |
-
## Citation
|
1925 |
-
|
1926 |
-
If you find this repository useful, please consider giving a star :star: and citation
|
1927 |
-
|
1928 |
-
```
|
1929 |
-
@misc{li2024makingtextembeddersfewshot,
|
1930 |
-
title={Making Text Embedders Few-Shot Learners},
|
1931 |
-
author={Chaofan Li and MingHao Qin and Shitao Xiao and Jianlyu Chen and Kun Luo and Yingxia Shao and Defu Lian and Zheng Liu},
|
1932 |
-
year={2024},
|
1933 |
-
eprint={2409.15700},
|
1934 |
-
archivePrefix={arXiv},
|
1935 |
-
primaryClass={cs.IR},
|
1936 |
-
url={https://arxiv.org/abs/2409.15700},
|
1937 |
-
}
|
1938 |
-
@misc{bge_embedding,
|
1939 |
-
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
1940 |
-
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
1941 |
-
year={2023},
|
1942 |
-
eprint={2309.07597},
|
1943 |
-
archivePrefix={arXiv},
|
1944 |
-
primaryClass={cs.CL}
|
1945 |
-
}
|
1946 |
-
```
|
1947 |
-
|
1948 |
-
## License
|
1949 |
-
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE).
|
|
|
6 |
- transformers
|
7 |
- mteb
|
8 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
Unofficial bf16 Implementation of bge-en-icl.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|