Upload PoNetForPreTraining (#1)
Browse files- Upload PoNetForPreTraining (ff32cbdcfa90b14ca85c98f2134ccfb29b6ccf40)
- config.json +9 -3
- configuration_ponet.py +149 -0
- modeling_ponet.py +1000 -0
- pytorch_model.bin +2 -2
config.json
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "ponet
|
3 |
"architectures": [
|
4 |
"PoNetForPreTraining"
|
5 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"gradient_checkpointing": false,
|
7 |
"hidden_act": "gelu",
|
8 |
"hidden_dropout_prob": 0.1,
|
@@ -16,9 +22,9 @@
|
|
16 |
"num_hidden_layers": 12,
|
17 |
"pad_token_id": 0,
|
18 |
"position_embedding_type": "absolute",
|
19 |
-
"
|
|
|
20 |
"type_vocab_size": 2,
|
21 |
"use_cache": true,
|
22 |
-
"clsgsepg": true,
|
23 |
"vocab_size": 30522
|
24 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "ponet",
|
3 |
"architectures": [
|
4 |
"PoNetForPreTraining"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_ponet.PoNetConfig",
|
8 |
+
"AutoModelForPreTraining": "modeling_ponet.PoNetForPreTraining"
|
9 |
+
},
|
10 |
+
"classifier_dropout": null,
|
11 |
+
"clsgsepg": true,
|
12 |
"gradient_checkpointing": false,
|
13 |
"hidden_act": "gelu",
|
14 |
"hidden_dropout_prob": 0.1,
|
|
|
22 |
"num_hidden_layers": 12,
|
23 |
"pad_token_id": 0,
|
24 |
"position_embedding_type": "absolute",
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.28.0.dev0",
|
27 |
"type_vocab_size": 2,
|
28 |
"use_cache": true,
|
|
|
29 |
"vocab_size": 30522
|
30 |
}
|
configuration_ponet.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PONET model configuration"""
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
PONET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
+
"chtan/ponet-base-uncased": "https://huggingface.co/chtan/ponet-base-uncased/resolve/main/config.json",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
class PoNetConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`PoNetModel`] or a [`TFPoNetModel`]. It is used to
|
35 |
+
instantiate a PONET model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the PONET
|
37 |
+
[chtan/ponet-base-uncased](https://huggingface.co/chtan/ponet-base-uncased) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
45 |
+
Vocabulary size of the PONET model. Defines the number of different tokens that can be represented by the
|
46 |
+
`inputs_ids` passed when calling [`PoNetModel`] or [`TFPoNetModel`].
|
47 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
48 |
+
Dimensionality of the encoder layers and the pooler layer.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
54 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
55 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
58 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
64 |
+
The vocabulary size of the `token_type_ids` passed when calling [`PoNetModel`] or [`TFPoNetModel`].
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
70 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
71 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
72 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
73 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
74 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
75 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
79 |
+
relevant if `config.is_decoder=True`.
|
80 |
+
classifier_dropout (`float`, *optional*):
|
81 |
+
The dropout ratio for the classification head.
|
82 |
+
|
83 |
+
Examples:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import PoNetConfig, PoNetModel
|
87 |
+
|
88 |
+
>>> # Initializing a PONET chtan/ponet-base-uncased style configuration
|
89 |
+
>>> configuration = PoNetConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the chtan/ponet-base-uncased style configuration
|
92 |
+
>>> model = PoNetModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
model_type = "ponet"
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_size=30522,
|
102 |
+
hidden_size=768,
|
103 |
+
num_hidden_layers=12,
|
104 |
+
num_attention_heads=12,
|
105 |
+
intermediate_size=3072,
|
106 |
+
hidden_act="gelu",
|
107 |
+
hidden_dropout_prob=0.1,
|
108 |
+
max_position_embeddings=512,
|
109 |
+
type_vocab_size=2,
|
110 |
+
initializer_range=0.02,
|
111 |
+
layer_norm_eps=1e-12,
|
112 |
+
pad_token_id=0,
|
113 |
+
position_embedding_type="absolute",
|
114 |
+
use_cache=True,
|
115 |
+
classifier_dropout=None,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
119 |
+
|
120 |
+
self.vocab_size = vocab_size
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
self.hidden_act = hidden_act
|
125 |
+
self.intermediate_size = intermediate_size
|
126 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
127 |
+
self.max_position_embeddings = max_position_embeddings
|
128 |
+
self.type_vocab_size = type_vocab_size
|
129 |
+
self.initializer_range = initializer_range
|
130 |
+
self.layer_norm_eps = layer_norm_eps
|
131 |
+
self.position_embedding_type = position_embedding_type
|
132 |
+
self.use_cache = use_cache
|
133 |
+
self.classifier_dropout = classifier_dropout
|
134 |
+
|
135 |
+
|
136 |
+
class PoNetOnnxConfig(OnnxConfig):
|
137 |
+
@property
|
138 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
139 |
+
if self.task == "multiple-choice":
|
140 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
141 |
+
else:
|
142 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
143 |
+
return OrderedDict(
|
144 |
+
[
|
145 |
+
("input_ids", dynamic_axis),
|
146 |
+
("attention_mask", dynamic_axis),
|
147 |
+
("token_type_ids", dynamic_axis),
|
148 |
+
]
|
149 |
+
)
|
modeling_ponet.py
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch PONET model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPooling,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
)
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
36 |
+
from transformers.utils import (
|
37 |
+
ModelOutput,
|
38 |
+
add_code_sample_docstrings,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_ponet import PoNetConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CHECKPOINT_FOR_DOC = "ponet-base"
|
50 |
+
_CONFIG_FOR_DOC = "PoNetConfig"
|
51 |
+
|
52 |
+
|
53 |
+
PONET_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
54 |
+
"chtan/ponet-base-uncased",
|
55 |
+
# See all PoNet models at https://huggingface.co/models?filter=ponet
|
56 |
+
]
|
57 |
+
|
58 |
+
# XXX: get from tokenizer
|
59 |
+
CLS_ID = 101
|
60 |
+
EOS_ID = 102
|
61 |
+
|
62 |
+
|
63 |
+
def segment_max(src, index, dim=1):
|
64 |
+
out = torch.zeros_like(src).scatter_reduce(
|
65 |
+
dim, index.unsqueeze(-1).expand_as(src), src, reduce="amax", include_self=False
|
66 |
+
)
|
67 |
+
dummy = index.unsqueeze(-1).expand(*index.shape[:2], out.size(-1))
|
68 |
+
return torch.gather(out, dim, dummy).to(dtype=src.dtype)
|
69 |
+
|
70 |
+
|
71 |
+
def get_segment_index(input_ids, cls_id=CLS_ID, eos_id=EOS_ID):
|
72 |
+
mask = (input_ids == cls_id).to(dtype=torch.long) + (input_ids == eos_id).to(dtype=torch.long)
|
73 |
+
mask = mask + torch.cat([torch.zeros_like(mask[:, 0:1]), mask[:, :-1]], dim=1)
|
74 |
+
num_segments = input_ids[:, :1] == cls_id
|
75 |
+
segment_idx = mask.cumsum(dim=1)
|
76 |
+
return torch.where(num_segments == 0, segment_idx, segment_idx - 1)
|
77 |
+
|
78 |
+
|
79 |
+
def get_token_type_mask(input_ids, cls_id=CLS_ID, eos_id=EOS_ID):
|
80 |
+
mask = (input_ids == cls_id) | (input_ids == eos_id)
|
81 |
+
return mask
|
82 |
+
|
83 |
+
|
84 |
+
def get_win_max(hidden_states, kernel_size=3):
|
85 |
+
m = nn.MaxPool1d(kernel_size, stride=1, padding=kernel_size // 2)
|
86 |
+
out = m(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
|
87 |
+
return out
|
88 |
+
|
89 |
+
|
90 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->PoNet
|
91 |
+
class PoNetEmbeddings(nn.Module):
|
92 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
93 |
+
|
94 |
+
def __init__(self, config):
|
95 |
+
super().__init__()
|
96 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
97 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
98 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
99 |
+
|
100 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
101 |
+
# any TensorFlow checkpoint file
|
102 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
103 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
104 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
105 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
106 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
107 |
+
self.register_buffer(
|
108 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
input_ids: Optional[torch.LongTensor] = None,
|
114 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
115 |
+
position_ids: Optional[torch.LongTensor] = None,
|
116 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
117 |
+
past_key_values_length: int = 0,
|
118 |
+
) -> torch.Tensor:
|
119 |
+
if input_ids is not None:
|
120 |
+
input_shape = input_ids.size()
|
121 |
+
else:
|
122 |
+
input_shape = inputs_embeds.size()[:-1]
|
123 |
+
|
124 |
+
seq_length = input_shape[1]
|
125 |
+
|
126 |
+
if position_ids is None:
|
127 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
128 |
+
|
129 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
130 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
131 |
+
# issue #5664
|
132 |
+
if token_type_ids is None:
|
133 |
+
if hasattr(self, "token_type_ids"):
|
134 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
135 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
136 |
+
token_type_ids = buffered_token_type_ids_expanded
|
137 |
+
else:
|
138 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
139 |
+
|
140 |
+
if inputs_embeds is None:
|
141 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
142 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
143 |
+
|
144 |
+
embeddings = inputs_embeds + token_type_embeddings
|
145 |
+
if self.position_embedding_type == "absolute":
|
146 |
+
position_embeddings = self.position_embeddings(position_ids)
|
147 |
+
embeddings += position_embeddings
|
148 |
+
embeddings = self.LayerNorm(embeddings)
|
149 |
+
embeddings = self.dropout(embeddings)
|
150 |
+
return embeddings
|
151 |
+
|
152 |
+
|
153 |
+
class PoNetSelfAttention(nn.Module):
|
154 |
+
def __init__(self, config):
|
155 |
+
super().__init__()
|
156 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
157 |
+
raise ValueError(
|
158 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
159 |
+
f"heads ({config.num_attention_heads})"
|
160 |
+
)
|
161 |
+
self.clsgsepg = getattr(config, "clsgsepg", True)
|
162 |
+
|
163 |
+
self.num_attention_heads = config.num_attention_heads
|
164 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
165 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
166 |
+
|
167 |
+
self.dense_local = nn.Linear(config.hidden_size, config.hidden_size)
|
168 |
+
self.dense_segment = nn.Linear(config.hidden_size, config.hidden_size)
|
169 |
+
|
170 |
+
self.dense_q = nn.Linear(config.hidden_size, self.all_head_size)
|
171 |
+
self.dense_k = nn.Linear(config.hidden_size, self.all_head_size)
|
172 |
+
self.dense_o = nn.Linear(config.hidden_size, self.all_head_size)
|
173 |
+
|
174 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
175 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
176 |
+
x = x.view(new_x_shape)
|
177 |
+
return x.permute(0, 2, 1, 3)
|
178 |
+
|
179 |
+
def forward(
|
180 |
+
self,
|
181 |
+
hidden_states: torch.Tensor,
|
182 |
+
segment_index: torch.LongTensor,
|
183 |
+
token_type_mask: torch.LongTensor,
|
184 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
185 |
+
output_attentions: Optional[bool] = False,
|
186 |
+
) -> Tuple[torch.Tensor]:
|
187 |
+
context_layer_q = self.transpose_for_scores(self.dense_q(hidden_states))
|
188 |
+
context_layer_k = self.transpose_for_scores(self.dense_k(hidden_states))
|
189 |
+
context_layer_v = context_layer_k
|
190 |
+
context_layer_o = self.transpose_for_scores(self.dense_o(hidden_states))
|
191 |
+
|
192 |
+
if attention_mask is not None:
|
193 |
+
_attention_mask = attention_mask.squeeze(1).unsqueeze(-1) < -1
|
194 |
+
|
195 |
+
if attention_mask is not None:
|
196 |
+
context_layer_q.masked_fill_(_attention_mask, 0.0)
|
197 |
+
q = context_layer_q.sum(dim=-2) / torch.ones_like(_attention_mask).to(
|
198 |
+
dtype=context_layer_q.dtype
|
199 |
+
).masked_fill(_attention_mask, 0.0).sum(dim=-2)
|
200 |
+
else:
|
201 |
+
q = context_layer_q.mean(dim=-2)
|
202 |
+
att = torch.einsum("bdh,bdlh -> bdl", q, context_layer_k) / math.sqrt(context_layer_q.shape[-1])
|
203 |
+
if attention_mask is not None:
|
204 |
+
att = att + attention_mask.squeeze(1)
|
205 |
+
att_prob = att.softmax(dim=-1)
|
206 |
+
v = torch.einsum("bdlh,bdl->bdh", context_layer_v, att_prob)
|
207 |
+
|
208 |
+
context_layer_segment = self.dense_segment(hidden_states)
|
209 |
+
context_layer_local = self.dense_local(hidden_states)
|
210 |
+
if attention_mask is not None:
|
211 |
+
context_layer_local.masked_fill_(_attention_mask.squeeze(1), -10000)
|
212 |
+
context_layer_segment.masked_fill_(_attention_mask.squeeze(1), -10000)
|
213 |
+
|
214 |
+
if self.clsgsepg:
|
215 |
+
# XXX: a trick to make sure the segment and local information will not leak
|
216 |
+
context_layer_local = get_win_max(
|
217 |
+
context_layer_local.masked_fill(token_type_mask.unsqueeze(dim=-1), -10000)
|
218 |
+
)
|
219 |
+
context_layer_segment = segment_max(context_layer_segment, index=segment_index)
|
220 |
+
|
221 |
+
context_layer_segment.masked_fill_(token_type_mask.unsqueeze(dim=-1), 0.0)
|
222 |
+
context_layer_local.masked_fill_(token_type_mask.unsqueeze(dim=-1), 0.0)
|
223 |
+
else:
|
224 |
+
context_layer_local = get_win_max(context_layer_local)
|
225 |
+
context_layer_segment = segment_max(context_layer_segment, index=segment_index)
|
226 |
+
|
227 |
+
context_layer_local = self.transpose_for_scores(context_layer_local)
|
228 |
+
context_layer_segment = self.transpose_for_scores(context_layer_segment)
|
229 |
+
|
230 |
+
context_layer = (v.unsqueeze(dim=-2) + context_layer_segment) * context_layer_o + context_layer_local
|
231 |
+
context_layer = context_layer.permute(0, 2, 1, 3).reshape(*hidden_states.shape[:2], -1)
|
232 |
+
|
233 |
+
if attention_mask is not None:
|
234 |
+
context_layer.masked_fill_(_attention_mask.squeeze(1), 0.0)
|
235 |
+
|
236 |
+
outputs = (context_layer, att_prob) if output_attentions else (context_layer,)
|
237 |
+
return outputs
|
238 |
+
|
239 |
+
|
240 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->PoNet
|
241 |
+
class PoNetSelfOutput(nn.Module):
|
242 |
+
def __init__(self, config):
|
243 |
+
super().__init__()
|
244 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
245 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
246 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
247 |
+
|
248 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
249 |
+
hidden_states = self.dense(hidden_states)
|
250 |
+
hidden_states = self.dropout(hidden_states)
|
251 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
252 |
+
return hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
class PoNetAttention(nn.Module):
|
256 |
+
def __init__(self, config):
|
257 |
+
super().__init__()
|
258 |
+
self.self = PoNetSelfAttention(config)
|
259 |
+
self.output = PoNetSelfOutput(config)
|
260 |
+
self.pruned_heads = set()
|
261 |
+
|
262 |
+
def prune_heads(self, heads):
|
263 |
+
if len(heads) == 0:
|
264 |
+
return
|
265 |
+
heads, index = find_pruneable_heads_and_indices(
|
266 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
267 |
+
)
|
268 |
+
|
269 |
+
# Prune linear layers
|
270 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
271 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
272 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
273 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
274 |
+
|
275 |
+
# Update hyper params and store pruned heads
|
276 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
277 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
278 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
279 |
+
|
280 |
+
def forward(
|
281 |
+
self,
|
282 |
+
hidden_states: torch.Tensor,
|
283 |
+
segment_index: torch.LongTensor,
|
284 |
+
token_type_mask: torch.LongTensor,
|
285 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
286 |
+
output_attentions: Optional[bool] = False,
|
287 |
+
) -> Tuple[torch.Tensor]:
|
288 |
+
self_outputs = self.self(
|
289 |
+
hidden_states,
|
290 |
+
segment_index,
|
291 |
+
token_type_mask,
|
292 |
+
attention_mask,
|
293 |
+
output_attentions,
|
294 |
+
)
|
295 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
296 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
297 |
+
return outputs
|
298 |
+
|
299 |
+
|
300 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->PoNet
|
301 |
+
class PoNetIntermediate(nn.Module):
|
302 |
+
def __init__(self, config):
|
303 |
+
super().__init__()
|
304 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
305 |
+
if isinstance(config.hidden_act, str):
|
306 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
307 |
+
else:
|
308 |
+
self.intermediate_act_fn = config.hidden_act
|
309 |
+
|
310 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
311 |
+
hidden_states = self.dense(hidden_states)
|
312 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
313 |
+
return hidden_states
|
314 |
+
|
315 |
+
|
316 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->PoNet
|
317 |
+
class PoNetOutput(nn.Module):
|
318 |
+
def __init__(self, config):
|
319 |
+
super().__init__()
|
320 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
321 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
322 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
323 |
+
|
324 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
325 |
+
hidden_states = self.dense(hidden_states)
|
326 |
+
hidden_states = self.dropout(hidden_states)
|
327 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
328 |
+
return hidden_states
|
329 |
+
|
330 |
+
|
331 |
+
class PoNetLayer(nn.Module):
|
332 |
+
def __init__(self, config):
|
333 |
+
super().__init__()
|
334 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
335 |
+
self.seq_len_dim = 1
|
336 |
+
self.attention = PoNetAttention(config)
|
337 |
+
|
338 |
+
config.is_decoder = False # XXX: Decoder is not yet impletemented.
|
339 |
+
self.is_decoder = config.is_decoder
|
340 |
+
|
341 |
+
self.intermediate = PoNetIntermediate(config)
|
342 |
+
self.output = PoNetOutput(config)
|
343 |
+
|
344 |
+
def forward(
|
345 |
+
self,
|
346 |
+
hidden_states: torch.Tensor,
|
347 |
+
segment_index: torch.LongTensor,
|
348 |
+
token_type_mask: torch.LongTensor,
|
349 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
350 |
+
output_attentions: Optional[bool] = False,
|
351 |
+
) -> Tuple[torch.Tensor]:
|
352 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
353 |
+
self_attention_outputs = self.attention(
|
354 |
+
hidden_states,
|
355 |
+
segment_index,
|
356 |
+
token_type_mask,
|
357 |
+
attention_mask,
|
358 |
+
output_attentions=output_attentions,
|
359 |
+
)
|
360 |
+
attention_output = self_attention_outputs[0]
|
361 |
+
|
362 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
363 |
+
|
364 |
+
layer_output = apply_chunking_to_forward(
|
365 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
366 |
+
)
|
367 |
+
outputs = (layer_output,) + outputs
|
368 |
+
|
369 |
+
return outputs
|
370 |
+
|
371 |
+
def feed_forward_chunk(self, attention_output):
|
372 |
+
intermediate_output = self.intermediate(attention_output)
|
373 |
+
layer_output = self.output(intermediate_output, attention_output)
|
374 |
+
return layer_output
|
375 |
+
|
376 |
+
|
377 |
+
class PoNetEncoder(nn.Module):
|
378 |
+
def __init__(self, config):
|
379 |
+
super().__init__()
|
380 |
+
self.config = config
|
381 |
+
self.layer = nn.ModuleList([PoNetLayer(config) for _ in range(config.num_hidden_layers)])
|
382 |
+
self.gradient_checkpointing = False
|
383 |
+
|
384 |
+
def forward(
|
385 |
+
self,
|
386 |
+
hidden_states: torch.Tensor,
|
387 |
+
segment_index: torch.LongTensor,
|
388 |
+
token_type_mask: torch.LongTensor,
|
389 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
390 |
+
output_attentions: Optional[bool] = False,
|
391 |
+
output_hidden_states: Optional[bool] = False,
|
392 |
+
return_dict: Optional[bool] = True,
|
393 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
394 |
+
all_hidden_states = () if output_hidden_states else None
|
395 |
+
all_self_attentions = () if output_attentions else None
|
396 |
+
|
397 |
+
for i, layer_module in enumerate(self.layer):
|
398 |
+
if output_hidden_states:
|
399 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
400 |
+
|
401 |
+
if self.gradient_checkpointing and self.training:
|
402 |
+
|
403 |
+
def create_custom_forward(module):
|
404 |
+
def custom_forward(*inputs):
|
405 |
+
return module(*inputs, output_attentions)
|
406 |
+
|
407 |
+
return custom_forward
|
408 |
+
|
409 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
410 |
+
create_custom_forward(layer_module),
|
411 |
+
hidden_states,
|
412 |
+
segment_index,
|
413 |
+
token_type_mask,
|
414 |
+
attention_mask,
|
415 |
+
)
|
416 |
+
else:
|
417 |
+
layer_outputs = layer_module(
|
418 |
+
hidden_states,
|
419 |
+
segment_index,
|
420 |
+
token_type_mask,
|
421 |
+
attention_mask,
|
422 |
+
output_attentions,
|
423 |
+
)
|
424 |
+
|
425 |
+
hidden_states = layer_outputs[0]
|
426 |
+
if output_attentions:
|
427 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
428 |
+
|
429 |
+
if output_hidden_states:
|
430 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
431 |
+
|
432 |
+
if not return_dict:
|
433 |
+
return tuple(
|
434 |
+
v
|
435 |
+
for v in [
|
436 |
+
hidden_states,
|
437 |
+
all_hidden_states,
|
438 |
+
all_self_attentions,
|
439 |
+
]
|
440 |
+
if v is not None
|
441 |
+
)
|
442 |
+
return BaseModelOutput(
|
443 |
+
last_hidden_state=hidden_states,
|
444 |
+
hidden_states=all_hidden_states,
|
445 |
+
attentions=all_self_attentions,
|
446 |
+
)
|
447 |
+
|
448 |
+
|
449 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->PoNet
|
450 |
+
class PoNetPooler(nn.Module):
|
451 |
+
def __init__(self, config):
|
452 |
+
super().__init__()
|
453 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
454 |
+
self.activation = nn.Tanh()
|
455 |
+
|
456 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
457 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
458 |
+
# to the first token.
|
459 |
+
first_token_tensor = hidden_states[:, 0]
|
460 |
+
pooled_output = self.dense(first_token_tensor)
|
461 |
+
pooled_output = self.activation(pooled_output)
|
462 |
+
return pooled_output
|
463 |
+
|
464 |
+
|
465 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->PoNet
|
466 |
+
class PoNetPredictionHeadTransform(nn.Module):
|
467 |
+
def __init__(self, config):
|
468 |
+
super().__init__()
|
469 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
470 |
+
if isinstance(config.hidden_act, str):
|
471 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
472 |
+
else:
|
473 |
+
self.transform_act_fn = config.hidden_act
|
474 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
475 |
+
|
476 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
477 |
+
hidden_states = self.dense(hidden_states)
|
478 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
479 |
+
hidden_states = self.LayerNorm(hidden_states)
|
480 |
+
return hidden_states
|
481 |
+
|
482 |
+
|
483 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->PoNet
|
484 |
+
class PoNetLMPredictionHead(nn.Module):
|
485 |
+
def __init__(self, config):
|
486 |
+
super().__init__()
|
487 |
+
self.transform = PoNetPredictionHeadTransform(config)
|
488 |
+
|
489 |
+
# The output weights are the same as the input embeddings, but there is
|
490 |
+
# an output-only bias for each token.
|
491 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
492 |
+
|
493 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
494 |
+
|
495 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
496 |
+
self.decoder.bias = self.bias
|
497 |
+
|
498 |
+
def forward(self, hidden_states):
|
499 |
+
hidden_states = self.transform(hidden_states)
|
500 |
+
hidden_states = self.decoder(hidden_states)
|
501 |
+
return hidden_states
|
502 |
+
|
503 |
+
|
504 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->PoNet
|
505 |
+
class PoNetOnlyMLMHead(nn.Module):
|
506 |
+
def __init__(self, config):
|
507 |
+
super().__init__()
|
508 |
+
self.predictions = PoNetLMPredictionHead(config)
|
509 |
+
|
510 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
511 |
+
prediction_scores = self.predictions(sequence_output)
|
512 |
+
return prediction_scores
|
513 |
+
|
514 |
+
|
515 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->PoNet
|
516 |
+
class PoNetOnlyNSPHead(nn.Module):
|
517 |
+
def __init__(self, config):
|
518 |
+
super().__init__()
|
519 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
520 |
+
|
521 |
+
def forward(self, pooled_output):
|
522 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
523 |
+
return seq_relationship_score
|
524 |
+
|
525 |
+
|
526 |
+
class PoNetOnlySSOHead(nn.Module):
|
527 |
+
def __init__(self, config):
|
528 |
+
super().__init__()
|
529 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 3)
|
530 |
+
|
531 |
+
def forward(self, pooled_output):
|
532 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
533 |
+
return seq_relationship_score
|
534 |
+
|
535 |
+
|
536 |
+
class PoNetPreTrainingHeads(nn.Module):
|
537 |
+
def __init__(self, config):
|
538 |
+
super().__init__()
|
539 |
+
self.predictions = PoNetLMPredictionHead(config)
|
540 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 3) # 3 classes: sentence structural objective (SSO)
|
541 |
+
|
542 |
+
def forward(self, sequence_output, pooled_output):
|
543 |
+
prediction_scores = self.predictions(sequence_output)
|
544 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
545 |
+
return prediction_scores, seq_relationship_score
|
546 |
+
|
547 |
+
|
548 |
+
class PoNetPreTrainedModel(PreTrainedModel):
|
549 |
+
"""
|
550 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
551 |
+
models.
|
552 |
+
"""
|
553 |
+
|
554 |
+
config_class = PoNetConfig
|
555 |
+
base_model_prefix = "ponet"
|
556 |
+
supports_gradient_checkpointing = True
|
557 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
558 |
+
|
559 |
+
def _init_weights(self, module):
|
560 |
+
"""Initialize the weights"""
|
561 |
+
if isinstance(module, nn.Linear):
|
562 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
563 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
564 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
565 |
+
if module.bias is not None:
|
566 |
+
module.bias.data.zero_()
|
567 |
+
elif isinstance(module, nn.Embedding):
|
568 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
569 |
+
if module.padding_idx is not None:
|
570 |
+
module.weight.data[module.padding_idx].zero_()
|
571 |
+
elif isinstance(module, nn.LayerNorm):
|
572 |
+
module.bias.data.zero_()
|
573 |
+
module.weight.data.fill_(1.0)
|
574 |
+
|
575 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
576 |
+
if isinstance(module, PoNetEncoder):
|
577 |
+
module.gradient_checkpointing = value
|
578 |
+
|
579 |
+
|
580 |
+
@dataclass
|
581 |
+
class PoNetForPreTrainingOutput(ModelOutput):
|
582 |
+
"""
|
583 |
+
Output type of [*PoNetForPreTraining*].
|
584 |
+
|
585 |
+
Args:
|
586 |
+
loss (*optional*, returned when *labels* is provided, *torch.FloatTensor* of shape *(1,)*):
|
587 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
588 |
+
(classification) loss.
|
589 |
+
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
590 |
+
Masked language modeling loss.
|
591 |
+
sso_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
592 |
+
sso loss.
|
593 |
+
prediction_logits (*torch.FloatTensor* of shape *(batch_size, sequence_length, config.vocab_size)*):
|
594 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
595 |
+
seq_relationship_logits (*torch.FloatTensor* of shape *(batch_size, 3)*):
|
596 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
597 |
+
before SoftMax).
|
598 |
+
hidden_states (*tuple(torch.FloatTensor)*, *optional*, returned when *output_hidden_states=True* is passed or when *config.output_hidden_states=True*):
|
599 |
+
Tuple of *torch.FloatTensor* (one for the output of the embeddings + one for the output of each layer) of
|
600 |
+
shape *(batch_size, sequence_length, hidden_size)*.
|
601 |
+
|
602 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
603 |
+
attentions (*tuple(torch.FloatTensor)*, *optional*, returned when *output_attentions=True* is passed or when *config.output_attentions=True*):
|
604 |
+
Tuple of *torch.FloatTensor* (one for each layer) of shape *(batch_size, num_heads, sequence_length,
|
605 |
+
sequence_length)*.
|
606 |
+
|
607 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
608 |
+
heads.
|
609 |
+
"""
|
610 |
+
|
611 |
+
loss: Optional[torch.FloatTensor] = None
|
612 |
+
mlm_loss: Optional[torch.FloatTensor] = None
|
613 |
+
sso_loss: Optional[torch.FloatTensor] = None
|
614 |
+
prediction_logits: torch.FloatTensor = None
|
615 |
+
seq_relationship_logits: torch.FloatTensor = None
|
616 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
617 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
618 |
+
|
619 |
+
|
620 |
+
PONET_START_DOCSTRING = r"""
|
621 |
+
|
622 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
623 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
624 |
+
etc.)
|
625 |
+
|
626 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
627 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
628 |
+
and behavior.
|
629 |
+
|
630 |
+
Parameters:
|
631 |
+
config ([`PoNetConfig`]): Model configuration class with all the parameters of the model.
|
632 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
633 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
634 |
+
"""
|
635 |
+
|
636 |
+
PONET_INPUTS_DOCSTRING = r"""
|
637 |
+
Args:
|
638 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
639 |
+
Indices of input sequence tokens in the vocabulary.
|
640 |
+
|
641 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
642 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
643 |
+
|
644 |
+
[What are input IDs?](../glossary#input-ids)
|
645 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
646 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
647 |
+
|
648 |
+
- 1 for tokens that are **not masked**,
|
649 |
+
- 0 for tokens that are **masked**.
|
650 |
+
|
651 |
+
[What are attention masks?](../glossary#attention-mask)
|
652 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
653 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
654 |
+
1]`:
|
655 |
+
|
656 |
+
- 0 corresponds to a *sentence A* token,
|
657 |
+
- 1 corresponds to a *sentence B* token.
|
658 |
+
|
659 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
660 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
661 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
662 |
+
config.max_position_embeddings - 1]`.
|
663 |
+
|
664 |
+
[What are position IDs?](../glossary#position-ids)
|
665 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
666 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
667 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
668 |
+
model's internal embedding lookup matrix.
|
669 |
+
output_attentions (`bool`, *optional*):
|
670 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
671 |
+
tensors for more detail.
|
672 |
+
output_hidden_states (`bool`, *optional*):
|
673 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
674 |
+
more detail.
|
675 |
+
return_dict (`bool`, *optional*):
|
676 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
677 |
+
"""
|
678 |
+
|
679 |
+
|
680 |
+
@add_start_docstrings(
|
681 |
+
"The bare PoNet Model transformer outputting raw hidden-states without any specific head on top.",
|
682 |
+
PONET_START_DOCSTRING,
|
683 |
+
)
|
684 |
+
class PoNetModel(PoNetPreTrainedModel):
|
685 |
+
def __init__(self, config, add_pooling_layer=True):
|
686 |
+
super().__init__(config)
|
687 |
+
self.config = config
|
688 |
+
|
689 |
+
self.embeddings = PoNetEmbeddings(config)
|
690 |
+
self.encoder = PoNetEncoder(config)
|
691 |
+
|
692 |
+
self.pooler = PoNetPooler(config) if add_pooling_layer else None
|
693 |
+
|
694 |
+
# Initialize weights and apply final processing
|
695 |
+
self.post_init()
|
696 |
+
|
697 |
+
def get_input_embeddings(self):
|
698 |
+
return self.embeddings.word_embeddings
|
699 |
+
|
700 |
+
def set_input_embeddings(self, value):
|
701 |
+
self.embeddings.word_embeddings = value
|
702 |
+
|
703 |
+
def _prune_heads(self, heads_to_prune):
|
704 |
+
"""
|
705 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
706 |
+
class PreTrainedModel
|
707 |
+
"""
|
708 |
+
for layer, heads in heads_to_prune.items():
|
709 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
710 |
+
|
711 |
+
@add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
712 |
+
@add_code_sample_docstrings(
|
713 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
714 |
+
output_type=BaseModelOutputWithPooling,
|
715 |
+
config_class=_CONFIG_FOR_DOC,
|
716 |
+
)
|
717 |
+
def forward(
|
718 |
+
self,
|
719 |
+
input_ids: Optional[torch.Tensor] = None,
|
720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
721 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
722 |
+
segment_ids: Optional[torch.Tensor] = None,
|
723 |
+
position_ids: Optional[torch.Tensor] = None,
|
724 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
725 |
+
output_attentions: Optional[bool] = None,
|
726 |
+
output_hidden_states: Optional[bool] = None,
|
727 |
+
return_dict: Optional[bool] = None,
|
728 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
729 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
730 |
+
output_hidden_states = (
|
731 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
732 |
+
)
|
733 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
734 |
+
|
735 |
+
if input_ids is not None and inputs_embeds is not None:
|
736 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
737 |
+
elif input_ids is not None:
|
738 |
+
input_shape = input_ids.size()
|
739 |
+
elif inputs_embeds is not None:
|
740 |
+
input_shape = inputs_embeds.size()[:-1]
|
741 |
+
else:
|
742 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
743 |
+
|
744 |
+
batch_size, seq_length = input_shape
|
745 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
746 |
+
|
747 |
+
if attention_mask is None:
|
748 |
+
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
749 |
+
|
750 |
+
if token_type_ids is None:
|
751 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
752 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
753 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
754 |
+
token_type_ids = buffered_token_type_ids_expanded
|
755 |
+
else:
|
756 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
757 |
+
|
758 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
759 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
760 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
761 |
+
|
762 |
+
embedding_output = self.embeddings(
|
763 |
+
input_ids=input_ids,
|
764 |
+
position_ids=position_ids,
|
765 |
+
token_type_ids=token_type_ids,
|
766 |
+
inputs_embeds=inputs_embeds,
|
767 |
+
)
|
768 |
+
|
769 |
+
segment_index = get_segment_index(input_ids) if segment_ids is None else segment_ids
|
770 |
+
token_type_mask = get_token_type_mask(input_ids)
|
771 |
+
encoder_outputs = self.encoder(
|
772 |
+
embedding_output,
|
773 |
+
segment_index,
|
774 |
+
token_type_mask,
|
775 |
+
attention_mask=extended_attention_mask,
|
776 |
+
output_attentions=output_attentions,
|
777 |
+
output_hidden_states=output_hidden_states,
|
778 |
+
return_dict=return_dict,
|
779 |
+
)
|
780 |
+
sequence_output = encoder_outputs[0]
|
781 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
782 |
+
|
783 |
+
if not return_dict:
|
784 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
785 |
+
|
786 |
+
return BaseModelOutputWithPooling(
|
787 |
+
last_hidden_state=sequence_output,
|
788 |
+
pooler_output=pooled_output,
|
789 |
+
hidden_states=encoder_outputs.hidden_states,
|
790 |
+
attentions=encoder_outputs.attentions,
|
791 |
+
)
|
792 |
+
|
793 |
+
|
794 |
+
@add_start_docstrings(
|
795 |
+
"""
|
796 |
+
PoNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
797 |
+
sentence prediction (classification)` head.
|
798 |
+
""",
|
799 |
+
PONET_START_DOCSTRING,
|
800 |
+
)
|
801 |
+
class PoNetForPreTraining(PoNetPreTrainedModel):
|
802 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"cls.predictions.decoder.bias"]
|
803 |
+
|
804 |
+
def __init__(self, config):
|
805 |
+
super().__init__(config)
|
806 |
+
|
807 |
+
self.ponet = PoNetModel(config)
|
808 |
+
self.cls = PoNetPreTrainingHeads(config)
|
809 |
+
|
810 |
+
# Initialize weights and apply final processing
|
811 |
+
self.post_init()
|
812 |
+
|
813 |
+
@add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
814 |
+
@replace_return_docstrings(output_type=PoNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
815 |
+
def forward(
|
816 |
+
self,
|
817 |
+
input_ids: Optional[torch.Tensor] = None,
|
818 |
+
attention_mask: Optional[torch.Tensor] = None,
|
819 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
820 |
+
segment_ids: Optional[torch.Tensor] = None,
|
821 |
+
position_ids: Optional[torch.Tensor] = None,
|
822 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
823 |
+
labels: Optional[torch.Tensor] = None,
|
824 |
+
sentence_structural_label: Optional[torch.Tensor] = None,
|
825 |
+
output_attentions: Optional[bool] = None,
|
826 |
+
output_hidden_states: Optional[bool] = None,
|
827 |
+
return_dict: Optional[bool] = None,
|
828 |
+
) -> Union[Tuple[torch.Tensor], PoNetForPreTrainingOutput]:
|
829 |
+
r"""
|
830 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
831 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
832 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
833 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
834 |
+
sentence_structural_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
835 |
+
Labels for computing the sentence structural objective (classification) loss. Input should be a
|
836 |
+
sequence pair (see `input_ids` docstring) Indices should be in `[0, 1, 2]`:
|
837 |
+
|
838 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
839 |
+
- 1 indicates sequence A is a continuation of sequence B,
|
840 |
+
- 2 indicates sequence B is a random sequence.
|
841 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
842 |
+
Used to hide legacy arguments that have been deprecated.
|
843 |
+
|
844 |
+
Returns:
|
845 |
+
|
846 |
+
Example:
|
847 |
+
|
848 |
+
```python
|
849 |
+
>>> from transformers import AutoTokenizer, PoNetForPreTraining
|
850 |
+
>>> import torch
|
851 |
+
|
852 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("ponet-base")
|
853 |
+
>>> model = PoNetForPreTraining.from_pretrained("ponet-base")
|
854 |
+
|
855 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
856 |
+
>>> outputs = model(**inputs)
|
857 |
+
|
858 |
+
>>> prediction_logits = outputs.prediction_logits
|
859 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
860 |
+
```
|
861 |
+
"""
|
862 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
863 |
+
|
864 |
+
outputs = self.ponet(
|
865 |
+
input_ids,
|
866 |
+
attention_mask=attention_mask,
|
867 |
+
token_type_ids=token_type_ids,
|
868 |
+
segment_ids=segment_ids,
|
869 |
+
position_ids=position_ids,
|
870 |
+
inputs_embeds=inputs_embeds,
|
871 |
+
output_attentions=output_attentions,
|
872 |
+
output_hidden_states=output_hidden_states,
|
873 |
+
return_dict=return_dict,
|
874 |
+
)
|
875 |
+
|
876 |
+
sequence_output, pooled_output = outputs[:2]
|
877 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
878 |
+
|
879 |
+
total_loss = None
|
880 |
+
masked_lm_loss = None
|
881 |
+
sso_loss = None
|
882 |
+
if labels is not None and sentence_structural_label is not None:
|
883 |
+
loss_fct = CrossEntropyLoss()
|
884 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
885 |
+
sso_loss = loss_fct(seq_relationship_score.view(-1, 3), sentence_structural_label.view(-1))
|
886 |
+
total_loss = masked_lm_loss + sso_loss
|
887 |
+
|
888 |
+
if not return_dict:
|
889 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
890 |
+
return ((total_loss, masked_lm_loss, sso_loss) + output) if total_loss is not None else output
|
891 |
+
|
892 |
+
return PoNetForPreTrainingOutput(
|
893 |
+
loss=total_loss,
|
894 |
+
mlm_loss=masked_lm_loss,
|
895 |
+
sso_loss=sso_loss,
|
896 |
+
prediction_logits=prediction_scores,
|
897 |
+
seq_relationship_logits=seq_relationship_score,
|
898 |
+
hidden_states=outputs.hidden_states,
|
899 |
+
attentions=outputs.attentions,
|
900 |
+
)
|
901 |
+
|
902 |
+
|
903 |
+
@add_start_docstrings(
|
904 |
+
"""
|
905 |
+
PoNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
906 |
+
output) e.g. for GLUE tasks.
|
907 |
+
""",
|
908 |
+
PONET_START_DOCSTRING,
|
909 |
+
)
|
910 |
+
class PoNetForSequenceClassification(PoNetPreTrainedModel):
|
911 |
+
def __init__(self, config):
|
912 |
+
super().__init__(config)
|
913 |
+
self.num_labels = config.num_labels
|
914 |
+
self.config = config
|
915 |
+
|
916 |
+
self.ponet = PoNetModel(config)
|
917 |
+
classifier_dropout = (
|
918 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
919 |
+
)
|
920 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
921 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
922 |
+
|
923 |
+
# Initialize weights and apply final processing
|
924 |
+
self.post_init()
|
925 |
+
|
926 |
+
@add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
927 |
+
@add_code_sample_docstrings(
|
928 |
+
output_type=SequenceClassifierOutput,
|
929 |
+
config_class=_CONFIG_FOR_DOC,
|
930 |
+
)
|
931 |
+
def forward(
|
932 |
+
self,
|
933 |
+
input_ids: Optional[torch.Tensor] = None,
|
934 |
+
attention_mask: Optional[torch.Tensor] = None,
|
935 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
936 |
+
segment_ids: Optional[torch.Tensor] = None,
|
937 |
+
position_ids: Optional[torch.Tensor] = None,
|
938 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
939 |
+
labels: Optional[torch.Tensor] = None,
|
940 |
+
output_attentions: Optional[bool] = None,
|
941 |
+
output_hidden_states: Optional[bool] = None,
|
942 |
+
return_dict: Optional[bool] = None,
|
943 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
944 |
+
r"""
|
945 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
946 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
947 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
948 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
949 |
+
"""
|
950 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
951 |
+
|
952 |
+
outputs = self.ponet(
|
953 |
+
input_ids,
|
954 |
+
attention_mask=attention_mask,
|
955 |
+
token_type_ids=token_type_ids,
|
956 |
+
segment_ids=segment_ids,
|
957 |
+
position_ids=position_ids,
|
958 |
+
inputs_embeds=inputs_embeds,
|
959 |
+
output_attentions=output_attentions,
|
960 |
+
output_hidden_states=output_hidden_states,
|
961 |
+
return_dict=return_dict,
|
962 |
+
)
|
963 |
+
|
964 |
+
pooled_output = outputs[1]
|
965 |
+
|
966 |
+
pooled_output = self.dropout(pooled_output)
|
967 |
+
logits = self.classifier(pooled_output)
|
968 |
+
|
969 |
+
loss = None
|
970 |
+
if labels is not None:
|
971 |
+
if self.config.problem_type is None:
|
972 |
+
if self.num_labels == 1:
|
973 |
+
self.config.problem_type = "regression"
|
974 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
975 |
+
self.config.problem_type = "single_label_classification"
|
976 |
+
else:
|
977 |
+
self.config.problem_type = "multi_label_classification"
|
978 |
+
|
979 |
+
if self.config.problem_type == "regression":
|
980 |
+
loss_fct = MSELoss()
|
981 |
+
if self.num_labels == 1:
|
982 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
983 |
+
else:
|
984 |
+
loss = loss_fct(logits, labels)
|
985 |
+
elif self.config.problem_type == "single_label_classification":
|
986 |
+
loss_fct = CrossEntropyLoss()
|
987 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
988 |
+
elif self.config.problem_type == "multi_label_classification":
|
989 |
+
loss_fct = BCEWithLogitsLoss()
|
990 |
+
loss = loss_fct(logits, labels)
|
991 |
+
if not return_dict:
|
992 |
+
output = (logits,) + outputs[2:]
|
993 |
+
return ((loss,) + output) if loss is not None else output
|
994 |
+
|
995 |
+
return SequenceClassifierOutput(
|
996 |
+
loss=loss,
|
997 |
+
logits=logits,
|
998 |
+
hidden_states=outputs.hidden_states,
|
999 |
+
attentions=outputs.attentions,
|
1000 |
+
)
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7641471f11332c2344c83a7c15efdcd3d4e05b1d693d40006f37b71ce69d6627
|
3 |
+
size 590977869
|