chrisrov commited on
Commit
7187041
1 Parent(s): 4286379

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 236.20 +/- 23.22
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23111a8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23111a9000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23111a9090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23111a9120>", "_build": "<function ActorCriticPolicy._build at 0x7f23111a91b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f23111a9240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23111a92d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23111a9360>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23111a93f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23111a9480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23111a9510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23111a95a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23111936c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683965477505277161, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADT2j362wE+sK/TvXc6Jb5OPUG9HKxMugAAAAAAAAAA+kFGvqHtzbzGSyq7jYemubVZMz7AdWU6AACAPwAAgD+aIXE8rkWwutrEEzjaARAz8VJHuZbbKLcAAIA/AACAP0bYAD64yqw62k6QswO0hbLnLqs8qmoZNAAAgD8AAIA/Y5pOvkUBSj8Fnf89si1Wvl8rwrzStN09AAAAAAAAAABzB5W9j+p8uupe77oA8xa29OQrO6mOCzoAAAAAAACAP+Y2Xj1IFeG6tXQRu59d1TrQ4ew7EkMCvAAAgD8AAIA/ahS7PteHSj/P3ca8YoeVvvCvBD6uNUa9AAAAAAAAAAAz45c7FkITPxtuBL6/9mK+mDxfvAJMQrwAAAAAAAAAAO2SD75aUR0/frx2PkTVT74YOUY7i4iPPAAAAAAAAAAAJj/Xve+CiD/UGQ6+BoHEvsqKkb0qBLi8AAAAAAAAAAAtyHM+otJEP+lJBr7c7Vi+3gwBPTIzar0AAAAAAAAAABNhYr5bUwk/fkw6PgVcar7yj6e8B7IrPQAAAAAAAAAADSiKPWl0Ij05y8O9lC3svWtWfLxTVZ07AAAAAAAAAACzU5A9RbL9PDf7D75Cvx++4Vs4vRBnhD0AAAAAAAAAAJrsIL0AJoo++QUdOxQIa76PZqG9Dn6uOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8DNEofCAOMAWyUTZsBjAF0lEdAlV6PPszEaXV9lChoBkdASsMLpiZv1mgHTQgBaAhHQJVfnafzz3B1fZQoaAZHQG1yJUgjhUBoB02OAmgIR0CVYqOfdyksdX2UKGgGR0Bwv1egL7XQaAdNwgFoCEdAlWSKwQlKLHV9lChoBkdAbWJufEn9emgHTU8CaAhHQJVoI8ox59p1fZQoaAZHQHIy7lzU7S1oB009AmgIR0CVbQsnRb8ndX2UKGgGR0Bucq/GlyimaAdNhAFoCEdAlW+H668QI3V9lChoBkdAcNnimVJL/WgHTVoBaAhHQJVxF20Re1N1fZQoaAZHQG6Ib5M10kpoB03QAmgIR0CVcj+RoysTdX2UKGgGR0BvK8F0PpY+aAdNtQFoCEdAlXKasQumJnV9lChoBkdAcC2lFtsN2GgHTUcBaAhHQJVyrwhGH591fZQoaAZHQG2WYYJmdy1oB000AmgIR0CVd/qZML4OdX2UKGgGR0ByOzSeAd4naAdN9wJoCEdAlXhivLX+VHV9lChoBkdAbEANlyzXz2gHTaEBaAhHQJV40am4y451fZQoaAZHQHABtZ7ojfNoB03zAWgIR0CVe2umaYu1dX2UKGgGR0BIzogNgBtDaAdNEAFoCEdAlX0FsP8Q7XV9lChoBkdAQKqaNMoMKGgHTQcBaAhHQJV+H7TDwYt1fZQoaAZHQG3xTasZHd5oB02YAmgIR0CVflDSPU8WdX2UKGgGR0BGQZpaiblSaAdNEwFoCEdAlYBcm8dxQ3V9lChoBkdAccZbuc+aB2gHTdsCaAhHQJWTWpkwvg51fZQoaAZHQHCvkit7rs1oB03zAWgIR0CVk/Z1V5rydX2UKGgGR0BtQZgZ0jkdaAdNegFoCEdAlZT/VmSQo3V9lChoBkdAbp9xQzk6tGgHTT0DaAhHQJWVCx9oexR1fZQoaAZHQHHw6V2Rq49oB018AWgIR0CVlSHk92X+dX2UKGgGR0BwcGbF0gbIaAdNawJoCEdAlZV7cGkeqHV9lChoBkdAcJINd7fHgmgHTdMBaAhHQJWXstWdVed1fZQoaAZHQG9yJY9xIatoB01hAWgIR0CVmKImw7kodX2UKGgGR0BtafUx20RfaAdNqAJoCEdAlZj/LTx5LXV9lChoBkdAcGo8274BWGgHTZEBaAhHQJWZsYrJ8v51fZQoaAZHQHFISDRMN+doB00sAWgIR0CVmoR9gF5fdX2UKGgGR0BxR8XFcY65aAdNZgFoCEdAlZqLxEv0y3V9lChoBkdAcefeXiR4hWgHTWYBaAhHQJWbjvlU6xR1fZQoaAZHQHGmT101ZT1oB03CAWgIR0CVm44ecQRPdX2UKGgGR0Bwo+KZUkv9aAdNYgFoCEdAlZwPhIe5nXV9lChoBkdAbXWB1cMVlGgHTUYBaAhHQJWcoOlO45N1fZQoaAZHQHBLVKCg9NhoB00yAWgIR0CVoJ4EwFkhdX2UKGgGR0Bx3paW5YozaAdNWQFoCEdAlaF4xtYSx3V9lChoBkdAbvkmJm/WUmgHTVgBaAhHQJWia1v2oNx1fZQoaAZHQHHl3DvVmSRoB018AWgIR0CVpOwrDqGDdX2UKGgGR0BwWsZ1mrbQaAdNYAFoCEdAlajJLdvbXnV9lChoBkdAcUyDjzZpSWgHTVABaAhHQJWq1GvwEyN1fZQoaAZHQG8JpzcRDkVoB00fAmgIR0CVrH92HLzPdX2UKGgGR0Bv1J4KQaJiaAdNbgFoCEdAlazpOFg2InV9lChoBkdAcVEV7hNucmgHTeYBaAhHQJWvBpeu3c51fZQoaAZHQGxlj3/Pw/hoB01nAWgIR0CVsAHMUypJdX2UKGgGR0BwrETHsC1aaAdNogFoCEdAlbD4JiRW93V9lChoBkdAcI/8pCrtFGgHTQACaAhHQJWxNqj8DSx1fZQoaAZHQG1ZKVhTfixoB00ZAmgIR0CVs27b+Lm7dX2UKGgGR0BxKDaXa8HwaAdNdwFoCEdAlbQ71dxAB3V9lChoBkdASsiKaXrt3WgHTSYBaAhHQJW0X7Ikqtp1fZQoaAZHQHCTdCAtnPFoB017AWgIR0CVtPkxREWqdX2UKGgGR0BsGvag2606aAdNMgJoCEdAlbcc/hVENXV9lChoBkdAbyP/SYw7DGgHTTQBaAhHQJW4WSdOIqN1fZQoaAZHQHDkU+5e7cxoB00yAWgIR0CVuS0ngHeKdX2UKGgGR0BxxXhHbypaaAdNMQNoCEdAlblT8UEgXHV9lChoBkdARLDMX7+DOGgHTQABaAhHQJW5xU70Wdp1fZQoaAZHQHHUH6l+EytoB02SAWgIR0CVupR51Ng0dX2UKGgGR0Bxe4jgQ6IWaAdNOgFoCEdAlbyW38XN1XV9lChoBkdAcZKVBUrCnGgHTWsBaAhHQJXONeSjgyd1fZQoaAZHQHGEkB4lhPVoB03OAWgIR0CVzp0XgtOEdX2UKGgGR0BB/3tKIznBaAdNLgFoCEdAlc+6Jyhi9nV9lChoBkdAbZ6uFpPAPGgHTWgBaAhHQJXQacriEQJ1fZQoaAZHQG+VwO4G2ThoB01gAWgIR0CV0OOz6ab4dX2UKGgGR0BuxBTOxB3SaAdN5AFoCEdAldERnrY5DXV9lChoBkdAchgr1M/QjWgHTYkBaAhHQJXSds54nnd1fZQoaAZHQG50GDDjzZpoB01gAWgIR0CV07jPfKp2dX2UKGgGR0Bv03oLXtjTaAdNOgFoCEdAldT8nNPgvXV9lChoBkdAbWie6qbSZ2gHTUwBaAhHQJXVCecx0uF1fZQoaAZHQGvGOEug6EJoB000A2gIR0CV1Y16mfoSdX2UKGgGR0BiEBRuTA32aAdN6ANoCEdAldYMnE2pAHV9lChoBkdAcEcRPGhmG2gHTTwBaAhHQJXYB1V5rxl1fZQoaAZHQHB0ZcTrVvxoB02LAWgIR0CV2RpUgjhUdX2UKGgGR0BwcwNSZSeiaAdNPgFoCEdAldqSExqO93V9lChoBkdAcjUghbGFSWgHTfoBaAhHQJXbNvhqCYl1fZQoaAZHQHGLJjx0+1VoB01UAWgIR0CV3ZCoS+QEdX2UKGgGR0BxXq0rsjVyaAdNRwFoCEdAld26suFpPHV9lChoBkdAcTClAu7HyWgHTYcBaAhHQJXeyktVaOh1fZQoaAZHQHFxEtVaOghoB00+AWgIR0CV4jCZnctYdX2UKGgGR0BuUSF0xM37aAdNiAFoCEdAleIxr30wrXV9lChoBkdAb9jlzU7SzGgHTTUBaAhHQJXjpNxlxwR1fZQoaAZHQGxVpZ4fOlhoB00/AWgIR0CV5B3VCojwdX2UKGgGR0BxuQwGnn+yaAdNtQFoCEdAleRglfJFLHV9lChoBkdAcC1P4EfT1GgHTZUBaAhHQJXlDE74i5d1fZQoaAZHQHGR5dOZb6hoB01QAWgIR0CV5cnVoYeldX2UKGgGR0Ay9xDb8FY/aAdL/mgIR0CV5g2PT5O8dX2UKGgGR0BxO00ZWJaaaAdNWAFoCEdAlebQkTpPh3V9lChoBkdAcYoKhL5AQmgHTbEBaAhHQJXr5GI9C/p1fZQoaAZHQHGZuez2OABoB02DAWgIR0CV7FK+SKWLdX2UKGgGR0BsiprzoUzsaAdNRAFoCEdAle0k/GEPD3V9lChoBkdAPjdqtYB/7WgHS+poCEdAle1qG1x82XV9lChoBkdAbygq9XcQAmgHTWQBaAhHQJXteSLZSNx1fZQoaAZHQHD6EJKJ2uBoB011AWgIR0CV7ieyRjjJdX2UKGgGR0ByjnZoPCl8aAdNWQFoCEdAlfAoCyQgcXV9lChoBkdAXZmIFeOXFGgHTegDaAhHQJXx92KVII51fZQoaAZHQG8qOwX668RoB01MAWgIR0CV8nU2UB4mdX2UKGgGR0BwmRVQyhzvaAdNSwFoCEdAlfKnTy8SPHV9lChoBkdAcdv1zQu27WgHTZsBaAhHQJXy2MYMvyt1fZQoaAZHQG8CgieNDMNoB01QAWgIR0CV83TL4etCdX2UKGgGR0BsUdUn5SFXaAdNhgFoCEdAlfPZjDsMRnV9lChoBkdAcYEuTibUgGgHTdIBaAhHQJX1Z6E8JUp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d234735d5426c90b93a0b82b24214d1b55b0be563dd98f2d4448fc27686a12a
3
+ size 146755
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23111a8f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23111a9000>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23111a9090>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23111a9120>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f23111a91b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f23111a9240>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23111a92d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23111a9360>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f23111a93f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23111a9480>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23111a9510>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23111a95a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f23111936c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683965477505277161,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADT2j362wE+sK/TvXc6Jb5OPUG9HKxMugAAAAAAAAAA+kFGvqHtzbzGSyq7jYemubVZMz7AdWU6AACAPwAAgD+aIXE8rkWwutrEEzjaARAz8VJHuZbbKLcAAIA/AACAP0bYAD64yqw62k6QswO0hbLnLqs8qmoZNAAAgD8AAIA/Y5pOvkUBSj8Fnf89si1Wvl8rwrzStN09AAAAAAAAAABzB5W9j+p8uupe77oA8xa29OQrO6mOCzoAAAAAAACAP+Y2Xj1IFeG6tXQRu59d1TrQ4ew7EkMCvAAAgD8AAIA/ahS7PteHSj/P3ca8YoeVvvCvBD6uNUa9AAAAAAAAAAAz45c7FkITPxtuBL6/9mK+mDxfvAJMQrwAAAAAAAAAAO2SD75aUR0/frx2PkTVT74YOUY7i4iPPAAAAAAAAAAAJj/Xve+CiD/UGQ6+BoHEvsqKkb0qBLi8AAAAAAAAAAAtyHM+otJEP+lJBr7c7Vi+3gwBPTIzar0AAAAAAAAAABNhYr5bUwk/fkw6PgVcar7yj6e8B7IrPQAAAAAAAAAADSiKPWl0Ij05y8O9lC3svWtWfLxTVZ07AAAAAAAAAACzU5A9RbL9PDf7D75Cvx++4Vs4vRBnhD0AAAAAAAAAAJrsIL0AJoo++QUdOxQIa76PZqG9Dn6uOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8DNEofCAOMAWyUTZsBjAF0lEdAlV6PPszEaXV9lChoBkdASsMLpiZv1mgHTQgBaAhHQJVfnafzz3B1fZQoaAZHQG1yJUgjhUBoB02OAmgIR0CVYqOfdyksdX2UKGgGR0Bwv1egL7XQaAdNwgFoCEdAlWSKwQlKLHV9lChoBkdAbWJufEn9emgHTU8CaAhHQJVoI8ox59p1fZQoaAZHQHIy7lzU7S1oB009AmgIR0CVbQsnRb8ndX2UKGgGR0Bucq/GlyimaAdNhAFoCEdAlW+H668QI3V9lChoBkdAcNnimVJL/WgHTVoBaAhHQJVxF20Re1N1fZQoaAZHQG6Ib5M10kpoB03QAmgIR0CVcj+RoysTdX2UKGgGR0BvK8F0PpY+aAdNtQFoCEdAlXKasQumJnV9lChoBkdAcC2lFtsN2GgHTUcBaAhHQJVyrwhGH591fZQoaAZHQG2WYYJmdy1oB000AmgIR0CVd/qZML4OdX2UKGgGR0ByOzSeAd4naAdN9wJoCEdAlXhivLX+VHV9lChoBkdAbEANlyzXz2gHTaEBaAhHQJV40am4y451fZQoaAZHQHABtZ7ojfNoB03zAWgIR0CVe2umaYu1dX2UKGgGR0BIzogNgBtDaAdNEAFoCEdAlX0FsP8Q7XV9lChoBkdAQKqaNMoMKGgHTQcBaAhHQJV+H7TDwYt1fZQoaAZHQG3xTasZHd5oB02YAmgIR0CVflDSPU8WdX2UKGgGR0BGQZpaiblSaAdNEwFoCEdAlYBcm8dxQ3V9lChoBkdAccZbuc+aB2gHTdsCaAhHQJWTWpkwvg51fZQoaAZHQHCvkit7rs1oB03zAWgIR0CVk/Z1V5rydX2UKGgGR0BtQZgZ0jkdaAdNegFoCEdAlZT/VmSQo3V9lChoBkdAbp9xQzk6tGgHTT0DaAhHQJWVCx9oexR1fZQoaAZHQHHw6V2Rq49oB018AWgIR0CVlSHk92X+dX2UKGgGR0BwcGbF0gbIaAdNawJoCEdAlZV7cGkeqHV9lChoBkdAcJINd7fHgmgHTdMBaAhHQJWXstWdVed1fZQoaAZHQG9yJY9xIatoB01hAWgIR0CVmKImw7kodX2UKGgGR0BtafUx20RfaAdNqAJoCEdAlZj/LTx5LXV9lChoBkdAcGo8274BWGgHTZEBaAhHQJWZsYrJ8v51fZQoaAZHQHFISDRMN+doB00sAWgIR0CVmoR9gF5fdX2UKGgGR0BxR8XFcY65aAdNZgFoCEdAlZqLxEv0y3V9lChoBkdAcefeXiR4hWgHTWYBaAhHQJWbjvlU6xR1fZQoaAZHQHGmT101ZT1oB03CAWgIR0CVm44ecQRPdX2UKGgGR0Bwo+KZUkv9aAdNYgFoCEdAlZwPhIe5nXV9lChoBkdAbXWB1cMVlGgHTUYBaAhHQJWcoOlO45N1fZQoaAZHQHBLVKCg9NhoB00yAWgIR0CVoJ4EwFkhdX2UKGgGR0Bx3paW5YozaAdNWQFoCEdAlaF4xtYSx3V9lChoBkdAbvkmJm/WUmgHTVgBaAhHQJWia1v2oNx1fZQoaAZHQHHl3DvVmSRoB018AWgIR0CVpOwrDqGDdX2UKGgGR0BwWsZ1mrbQaAdNYAFoCEdAlajJLdvbXnV9lChoBkdAcUyDjzZpSWgHTVABaAhHQJWq1GvwEyN1fZQoaAZHQG8JpzcRDkVoB00fAmgIR0CVrH92HLzPdX2UKGgGR0Bv1J4KQaJiaAdNbgFoCEdAlazpOFg2InV9lChoBkdAcVEV7hNucmgHTeYBaAhHQJWvBpeu3c51fZQoaAZHQGxlj3/Pw/hoB01nAWgIR0CVsAHMUypJdX2UKGgGR0BwrETHsC1aaAdNogFoCEdAlbD4JiRW93V9lChoBkdAcI/8pCrtFGgHTQACaAhHQJWxNqj8DSx1fZQoaAZHQG1ZKVhTfixoB00ZAmgIR0CVs27b+Lm7dX2UKGgGR0BxKDaXa8HwaAdNdwFoCEdAlbQ71dxAB3V9lChoBkdASsiKaXrt3WgHTSYBaAhHQJW0X7Ikqtp1fZQoaAZHQHCTdCAtnPFoB017AWgIR0CVtPkxREWqdX2UKGgGR0BsGvag2606aAdNMgJoCEdAlbcc/hVENXV9lChoBkdAbyP/SYw7DGgHTTQBaAhHQJW4WSdOIqN1fZQoaAZHQHDkU+5e7cxoB00yAWgIR0CVuS0ngHeKdX2UKGgGR0BxxXhHbypaaAdNMQNoCEdAlblT8UEgXHV9lChoBkdARLDMX7+DOGgHTQABaAhHQJW5xU70Wdp1fZQoaAZHQHHUH6l+EytoB02SAWgIR0CVupR51Ng0dX2UKGgGR0Bxe4jgQ6IWaAdNOgFoCEdAlbyW38XN1XV9lChoBkdAcZKVBUrCnGgHTWsBaAhHQJXONeSjgyd1fZQoaAZHQHGEkB4lhPVoB03OAWgIR0CVzp0XgtOEdX2UKGgGR0BB/3tKIznBaAdNLgFoCEdAlc+6Jyhi9nV9lChoBkdAbZ6uFpPAPGgHTWgBaAhHQJXQacriEQJ1fZQoaAZHQG+VwO4G2ThoB01gAWgIR0CV0OOz6ab4dX2UKGgGR0BuxBTOxB3SaAdN5AFoCEdAldERnrY5DXV9lChoBkdAchgr1M/QjWgHTYkBaAhHQJXSds54nnd1fZQoaAZHQG50GDDjzZpoB01gAWgIR0CV07jPfKp2dX2UKGgGR0Bv03oLXtjTaAdNOgFoCEdAldT8nNPgvXV9lChoBkdAbWie6qbSZ2gHTUwBaAhHQJXVCecx0uF1fZQoaAZHQGvGOEug6EJoB000A2gIR0CV1Y16mfoSdX2UKGgGR0BiEBRuTA32aAdN6ANoCEdAldYMnE2pAHV9lChoBkdAcEcRPGhmG2gHTTwBaAhHQJXYB1V5rxl1fZQoaAZHQHB0ZcTrVvxoB02LAWgIR0CV2RpUgjhUdX2UKGgGR0BwcwNSZSeiaAdNPgFoCEdAldqSExqO93V9lChoBkdAcjUghbGFSWgHTfoBaAhHQJXbNvhqCYl1fZQoaAZHQHGLJjx0+1VoB01UAWgIR0CV3ZCoS+QEdX2UKGgGR0BxXq0rsjVyaAdNRwFoCEdAld26suFpPHV9lChoBkdAcTClAu7HyWgHTYcBaAhHQJXeyktVaOh1fZQoaAZHQHFxEtVaOghoB00+AWgIR0CV4jCZnctYdX2UKGgGR0BuUSF0xM37aAdNiAFoCEdAleIxr30wrXV9lChoBkdAb9jlzU7SzGgHTTUBaAhHQJXjpNxlxwR1fZQoaAZHQGxVpZ4fOlhoB00/AWgIR0CV5B3VCojwdX2UKGgGR0BxuQwGnn+yaAdNtQFoCEdAleRglfJFLHV9lChoBkdAcC1P4EfT1GgHTZUBaAhHQJXlDE74i5d1fZQoaAZHQHGR5dOZb6hoB01QAWgIR0CV5cnVoYeldX2UKGgGR0Ay9xDb8FY/aAdL/mgIR0CV5g2PT5O8dX2UKGgGR0BxO00ZWJaaaAdNWAFoCEdAlebQkTpPh3V9lChoBkdAcYoKhL5AQmgHTbEBaAhHQJXr5GI9C/p1fZQoaAZHQHGZuez2OABoB02DAWgIR0CV7FK+SKWLdX2UKGgGR0BsiprzoUzsaAdNRAFoCEdAle0k/GEPD3V9lChoBkdAPjdqtYB/7WgHS+poCEdAle1qG1x82XV9lChoBkdAbygq9XcQAmgHTWQBaAhHQJXteSLZSNx1fZQoaAZHQHD6EJKJ2uBoB011AWgIR0CV7ieyRjjJdX2UKGgGR0ByjnZoPCl8aAdNWQFoCEdAlfAoCyQgcXV9lChoBkdAXZmIFeOXFGgHTegDaAhHQJXx92KVII51fZQoaAZHQG8qOwX668RoB01MAWgIR0CV8nU2UB4mdX2UKGgGR0BwmRVQyhzvaAdNSwFoCEdAlfKnTy8SPHV9lChoBkdAcdv1zQu27WgHTZsBaAhHQJXy2MYMvyt1fZQoaAZHQG8CgieNDMNoB01QAWgIR0CV83TL4etCdX2UKGgGR0BsUdUn5SFXaAdNhgFoCEdAlfPZjDsMRnV9lChoBkdAcYEuTibUgGgHTdIBaAhHQJX1Z6E8JUp1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:331bbc842d293936e559d8b281248be18c9e9635a5b5bfe15b7fccc5922d87fb
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a8e2ef3b19a00a90c18118df85ab2b0799baf86ed7fc639442770f11d0c0158
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (172 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 236.1988532854773, "std_reward": 23.2192219384921, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-13T08:40:39.610328"}