chriscelaya commited on
Commit
e374e30
·
1 Parent(s): a222ac1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -94.72 +/- 99.99
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 263.61 +/- 27.31
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a09c97be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a09c97c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a09c97d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a09c97d90>", "_build": "<function ActorCriticPolicy._build at 0x7f6a09c97e20>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a09c97eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a09c97f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a09cac040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a09cac0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a09cac160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a09cac1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a09cac280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6a09c99640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694100833644088937, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOScT1CF6s/fw+RPt571b7IExK/SmtsvgAAAAAAAAAAcwW7vuJThz8WN4O/ICg1v5yANT/qqaQ+AAAAAAAAAACzdxw/MqphPxP9oz+ARFq/XgZqvyqWlr4AAAAAAAAAAEBv1T3R14I/Q3z5PoGdc7+MXB2+8l6MvgAAAAAAAAAAA7U1vwRXnD+rDoi/c8Nuv8CyfD9dx98+AAAAAAAAAADaN+m9cedhuxpepD2ULam/6Nfivo16Dj4AAIA/AAAAAM2PrTxwa8g/p7gHPu051D4DrCC8bbGZvQAAAAAAAAAAbfNQPvOpUT9Ks+M+1Ep2v1SFlb728Zm9AAAAAAAAAAB4MaW+HAQIP0orTL8fgZa/Q5qNPrrMUj4AAAAAAAAAAF3kSj9fRDw+KoWUP6Mgtb/pnlG/fYhxPQAAgD8AAAAAmkVkPpeTOj/JExk/dTeRv6xXGr9KYse+AAAAAAAAAAC2SJo+QG1EP3iOIz/bcGm/jCLLvjEHqL4AAAAAAAAAAE2sAz5wHcg/nsvePtBSBDwx9mq+EgszvgAAAAAAAAAA5n48Panttz8haUU+tlUDvoug6TxTCh8+AAAAAAAAAADNqF68ziW4PwOjKr6WHco9JheUO8NsWL0AAAAAAAAAADODyjsqO7Y/wISrPbslZrwarYO8s1JxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGNUnNxEORWMAWyUS1KMAXSUR0BCymf5DZ13dX2UKGgGR8BYzkWl/H5raAdLP2gIR0BC1udoWYWtdX2UKGgGR8Bk81NJvo/zaAdLbmgIR0BC2wRoRIz4dX2UKGgGR8BvMLn/1g6VaAdLUWgIR0BC20ypJf6XdX2UKGgGR8BzufznRsuWaAdLWmgIR0BC54/eLvTgdX2UKGgGR8BYkS5VfeDWaAdLfWgIR0BC6elCTlkpdX2UKGgGR8B1BeM5wOvuaAdLeWgIR0BC60D+zdDZdX2UKGgGR8BllFkxyn1naAdLamgIR0BC66Gxlg+hdX2UKGgGR8BrOOG7BfrsaAdLbGgIR0BC6pNCZ4OddX2UKGgGR8BwKY20iQkpaAdLRmgIR0BC78SPEKmbdX2UKGgGR8Akhn13+uNhaAdLaGgIR0BC7034sVcmdX2UKGgGR8BUtB1klNUPaAdLSWgIR0BC8JljEvTPdX2UKGgGR8Bfdwgs9SuRaAdLYGgIR0BC9JCrtE5RdX2UKGgGR8Bo5j3AVO9GaAdLX2gIR0BC9A8KXv6TdX2UKGgGR8B7i1P+GXXzaAdLWmgIR0BC9YYrJ8v3dX2UKGgGR8BntryMDOkdaAdLfWgIR0BC/NCiRGMGdX2UKGgGR8BaFYldC3PSaAdLU2gIR0BDCAdGRV6vdX2UKGgGR8BikaP4mCyyaAdLV2gIR0BDDm65Gz8hdX2UKGgGR8BseQ9zOopAaAdLeWgIR0BDEcCxNZeSdX2UKGgGR8BggsMb3oLYaAdLY2gIR0BDFYlhPTG6dX2UKGgGR8BQW0CA+Y+jaAdLS2gIR0BDFXXI2fkFdX2UKGgGR8BRx6veP7vYaAdLTWgIR0BDGB4D9wWFdX2UKGgGR8BXEzzRQaaTaAdLSGgIR0BDGV0tAcDKdX2UKGgGR8BjzTJbMX7+aAdLTGgIR0BDHFjmSyMUdX2UKGgGR8B4docdYGMXaAdLXmgIR0BDHix3V09ydX2UKGgGR8BnLxVAAyVOaAdLbGgIR0BDKeNcW0qpdX2UKGgGR8B0s6Xb/Ot5aAdLaWgIR0BDLCgbp/wzdX2UKGgGR8AwguLaVUuMaAdLcWgIR0BDLBYV6/qPdX2UKGgGR8Blrezv7WNFaAdLYmgIR0BDLR5C4SYgdX2UKGgGR8BpUx73PAwgaAdLamgIR0BDMhkqc3ERdX2UKGgGR8BcnVs1sLv1aAdLZ2gIR0BDMXNcGC7LdX2UKGgGR8BVzD9CNS62aAdLQWgIR0BDNGQCCBf8dX2UKGgGR8BXpxrBTGYKaAdLSWgIR0BDPAezUqhEdX2UKGgGR8Bh12U8mrsCaAdLRmgIR0BDPfViF0xNdX2UKGgGR8Bn5BN/OMVDaAdLeGgIR0BDQmMfigkDdX2UKGgGR8BZ8qpLmITHaAdLSmgIR0BDRS1mapgkdX2UKGgGR8Biev+OwPiDaAdLTGgIR0BDSWAXl8w6dX2UKGgGR8Bacg6p5u63aAdLW2gIR0BDSyn1nM+vdX2UKGgGR8Bi3CpBHCoCaAdLTGgIR0BDS3HBDXvqdX2UKGgGR8BimSUs4DLbaAdLPWgIR0BDULGBFuvVdX2UKGgGR8BunzxRVIZqaAdLf2gIR0BDU+9Jz1brdX2UKGgGR8BV9titq59WaAdLQ2gIR0BDVIUahpQDdX2UKGgGR8BsQBf6XSjQaAdLUmgIR0BDWufukUKzdX2UKGgGR8BdnkRaouPFaAdLRWgIR0BDW57PY4ACdX2UKGgGR8BsbMvboKUnaAdLSWgIR0BDXTNliBoVdX2UKGgGR8BP0t21UlzEaAdLimgIR0BDadYGMXJpdX2UKGgGR8Bt0TT4L1EmaAdLbWgIR0BDboeYD1XedX2UKGgGR8Bxbye9SMtLaAdLVmgIR0BDcNlI3BHkdX2UKGgGR8BareHSF49paAdLTWgIR0BDcgy2x6fKdX2UKGgGR8BcIDm4iHIqaAdLbGgIR0BDdg/LTx5LdX2UKGgGR8BdrNMK1G9YaAdLX2gIR0BDeE2pAD7qdX2UKGgGR8BayOxSpBHDaAdLUWgIR0BDelPBSDRMdX2UKGgGR8BOli1Z1V5saAdLP2gIR0BDkPy08eS0dX2UKGgGR8Bu+OmUGFBZaAdLWmgIR0BDkgJTl1bJdX2UKGgGR8B8VatDD0lJaAdLgGgIR0BDkydvsJIEdX2UKGgGR8Bpa6BmPHT7aAdLaWgIR0BDk+IEbHZLdX2UKGgGR8B3pFQyhzvJaAdLf2gIR0BDmPnKW9lFdX2UKGgGR8BeYCaiKziTaAdLdWgIR0BDmHc+JP69dX2UKGgGR8BxJO2MKkVOaAdLYWgIR0BDmVkUbkwOdX2UKGgGR8ByQvYoRZlnaAdLcmgIR0BDmk4WDYh/dX2UKGgGR8BqPVHFxXGPaAdLgmgIR0BDm1BdD6WPdX2UKGgGR8BTDt9YwIt2aAdLSmgIR0BDnmce8wpOdX2UKGgGR8BxeriuMdcTaAdLTWgIR0BDoNlRP421dX2UKGgGR8BoqmGCZnctaAdLU2gIR0BDoVZs9B8hdX2UKGgGR8BfKwV0tAcDaAdLSGgIR0BDognMMZxadX2UKGgGR8B1LtqASWZ7aAdLemgIR0BDpcneBQN1dX2UKGgGR8Bv+ediDujRaAdLVGgIR0BDqqQ7tAs1dX2UKGgGR8BuC+JYT0xuaAdLU2gIR0BDrBHTZxrBdX2UKGgGR8BiJvbypaRqaAdLOWgIR0BDupa7mMfjdX2UKGgGR8BdGJGvwEyMaAdLSGgIR0BDvBbfP5YYdX2UKGgGR8BLMy5y2hIwaAdLVGgIR0BDxIOpbUw0dX2UKGgGR8B0IKlSCOFQaAdLW2gIR0BDxwqqfe1sdX2UKGgGR8BivgCyQgcMaAdLTWgIR0BDzD8tPHktdX2UKGgGR8B1rX6oESuhaAdLXWgIR0BDz+hoM8YAdX2UKGgGR8BUi4oRZlnRaAdLPGgIR0BD0UDdP+GXdX2UKGgGR8BSAYFFDv3KaAdLR2gIR0BD1jMV1wHadX2UKGgGR8BjVZ5TqB3BaAdLZmgIR0BD1iGFi8WcdX2UKGgGR8B0ElcE/0NCaAdLd2gIR0BD2bJ4jbBXdX2UKGgGR8BgTD1wo9cKaAdLX2gIR0BD2oNNJvpAdX2UKGgGR8BhWjQZ4wAVaAdLdGgIR0BD3o1k1/DtdX2UKGgGR8B2Q0rz5GjLaAdLYmgIR0BD4RB/qgRLdX2UKGgGR8Bh+090Rvm6aAdLdWgIR0BD4DYywfQsdX2UKGgGR8B6EPsByS3caAdLaWgIR0BD4VTisGPgdX2UKGgGR8BW36MaS9uhaAdLQ2gIR0BD5npbD/EPdX2UKGgGR8BX2hbwBo25aAdLdGgIR0BD5nJLdvbXdX2UKGgGR8BUvDWK/EflaAdLO2gIR0BD6x2KVII4dX2UKGgGR8BjYpBLPD51aAdLTWgIR0BD6vHLidaudX2UKGgGR8Bbi3FHavicaAdLT2gIR0BD+baAWi1zdX2UKGgGR8BhxoXKr7wbaAdLR2gIR0BD+KS5iExqdX2UKGgGR8BgJHQnhKlIaAdLUGgIR0BEBAYgq3EydX2UKGgGR8BfRiDujRD1aAdLT2gIR0BEA13MY/FBdX2UKGgGR8BvpGY+jdpJaAdLUGgIR0BECB/y5I6KdX2UKGgGR8BYlz28IzFdaAdLb2gIR0BEB1OTJQtSdX2UKGgGR8Bi9jiVB2OiaAdLXGgIR0BEByA6Mir1dX2UKGgGR8BuPEUwi7kGaAdLT2gIR0BEDcOCoS+QdX2UKGgGR8BqV5XuE25yaAdLUGgIR0BEFMl1KXfJdX2UKGgGR8BxG04jrzGxaAdLW2gIR0BEFe3hGYrsdX2UKGgGR8Baya2fChvjaAdLYGgIR0BEGLjxTbWVdX2UKGgGR8BcdNUS7GvPaAdLcWgIR0BEHCpNsWO7dX2UKGgGR8BziRAIIF/yaAdLamgIR0BEHCgTRIBjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x793775895090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x793775895120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7937758951b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x793775895240>", "_build": "<function ActorCriticPolicy._build at 0x7937758952d0>", "forward": "<function ActorCriticPolicy.forward at 0x793775895360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7937758953f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x793775895480>", "_predict": "<function ActorCriticPolicy._predict at 0x793775895510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7937758955a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x793775895630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7937758956c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793775a2ad80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694145888754726922, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbZxrwpjHW6s47tOgmA3DUSKCC7iRALugAAgD8AAIA/WnbAvVzLXrr1UmU5xIvQs8FNSLt0dYO4AACAPwAAgD9GvBa+AxICvOJNeruRUqy56ZldPYLanToAAIA/AACAP6bour0Ujuu4Ng2bOyKdaLZ3Cfm7M4O5ugAAgD8AAIA/muYzPZziVz8pNyO95kZrvs/OIj27gKW9AAAAAAAAAABAm4y97CHpuYFUEbbvXiGx38IPu2TjMTUAAIA/AACAP5MeYj606Fc/pe2UvgmAqr6wSI68O5BFvQAAAAAAAAAAs/JyveGAmrr6rIy5/xaBtGwF5rmygqI4AACAPwAAgD+an4m9EYyHP6GNOr2NPrK+v7R3vfevF70AAAAAAAAAAOZAmb3hGJy6qhIGulFQMTR3d5o5bMwYOQAAgD8AAIA/jfOavcORGbqjRda6xKyUtccS87fYUPo5AACAPwAAgD8A4z29eyKfun5T0TmWeta1B3a/OYg677gAAIA/AACAP5oZwrqHNrY/wNe+vJC0Mb1datK8N42RvAAAAAAAAAAAQNv+PZg/kT9Thny73HGavqXi1j07mK29AAAAAAAAAABmp+m8FESEurJtCTpBKgk1to2aOjxJILkAAIA/AACAPzNm7LztYxs+OMpfvsu0Xb7VNZa9jkxsvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGggz7VJ+UiMAWyUTegDjAF0lEdAlLLnEuQIU3V9lChoBkdAaVD93r2QGWgHTegDaAhHQJS0pTXJ5mh1fZQoaAZHQAF59d/rjYJoB00EAWgIR0CUtgBS1maqdX2UKGgGR0BmTeq94/u9aAdN6ANoCEdAlLlxDw6QvHV9lChoBkdAZS7+WnjyWmgHTegDaAhHQJS8jGwRoRJ1fZQoaAZHQGJNL8R+SbJoB03oA2gIR0CUvMtbLU1AdX2UKGgGR0Bi19BWxQizaAdN6ANoCEdAlOyD81n/UHV9lChoBkdAYNzDBMzuW2gHTegDaAhHQJTt5AE+xGF1fZQoaAZHQGVCutwJgLJoB03oA2gIR0CU9AWHk92YdX2UKGgGR0BknJKQJXyRaAdN6ANoCEdAlPpyWqtHQXV9lChoBkdAZYuIO6NEPWgHTegDaAhHQJT6c3qAz551fZQoaAZHQGY45DiOvMdoB03oA2gIR0CU+8Ns3yZsdX2UKGgGR0BmvJ7TlT3qaAdN6ANoCEdAlP1+yVv/BHV9lChoBkdAYwepF1B+nmgHTegDaAhHQJUCu0u14Ph1fZQoaAZHQGMy7s4T9KpoB03oA2gIR0CVBcUqhDgJdX2UKGgGR0Bmhn9xZMcqaAdN6ANoCEdAlQ1od+5OJ3V9lChoBkdAO2JGnXNC7mgHS/xoCEdAlQ39IsiB5HV9lChoBkdAYdYCAc1fmmgHTegDaAhHQJUQPySV4X51fZQoaAZHQGLJZDRc/t9oB03oA2gIR0CVExjfek57dX2UKGgGR0Bgi2OjqOcUaAdN6ANoCEdAlRUik9ECvHV9lChoBkdAMUib2Dg62mgHTSUBaAhHQJUVXbypaRp1fZQoaAZHQGRejhky1u1oB03oA2gIR0CVGTc6eXiSdX2UKGgGR0BlSuoxYaHcaAdN6ANoCEdAlRwi4nWrfnV9lChoBkdAZIhNjbzshWgHTegDaAhHQJUcV+kP+XJ1fZQoaAZHQE96SXdCVr1oB0vwaAhHQJUfeXLNfPZ1fZQoaAZHQDItvR7Z39toB0v5aAhHQJUsBTYNAkd1fZQoaAZHQGfH6qsEJSloB03oA2gIR0CVNJ/EwWWQdX2UKGgGR0BkYLQ9ic5KaAdN6ANoCEdAlUoc4YJmd3V9lChoBkdAYCgOYIBzWGgHTegDaAhHQJVSpu/Dcdp1fZQoaAZHQGVf2alUIcBoB03oA2gIR0CVWb5B1LamdX2UKGgGR0Bdpa4c3l0YaAdN6ANoCEdAlVsRt+CsfnV9lChoBkdAXURjawljVmgHTegDaAhHQJViL+AEt/Z1fZQoaAZHQF+7lJpWV/toB03oA2gIR0CVZJVsk6cRdX2UKGgGR0BjOAKD0163aAdN6ANoCEdAlWqYWLxZuHV9lChoBkdASN1zEJjUeGgHS+ZoCEdAlWrGFnIyTXV9lChoBkdAYrs5nUUfxWgHTegDaAhHQJVq+v8qFyt1fZQoaAZHQGAHaKDTSb9oB03oA2gIR0CVbmwgkka/dX2UKGgGR0BmsTCFbmlqaAdN6ANoCEdAlW/p/Tb35HV9lChoBkdAZmccYIjW1GgHTegDaAhHQJVwGT+vQnh1fZQoaAZHQFzHhS9/SYxoB03oA2gIR0CVc2fLcKw7dX2UKGgGR0Bm/BhMJx//aAdN6ANoCEdAlXarvkRzzXV9lChoBkdAZIWscyWRimgHTegDaAhHQJV5/GxUvPF1fZQoaAZHQFELc3VCojxoB00EAWgIR0CVfPjMmnfmdX2UKGgGR0A12U2kzoECaAdL/GgIR0CVflZTho/SdX2UKGgGR0BiUac0+C9RaAdN6ANoCEdAlYg8UmD15HV9lChoBkdAZS3QnhKlHmgHTegDaAhHQJWSESeyzHF1fZQoaAZHQGHGBVMmF8JoB03oA2gIR0CVk6YyO7xvdX2UKGgGR0Bh6sG/vfCRaAdN6ANoCEdAlaommk30gHV9lChoBkdAZbKyckMTe2gHTegDaAhHQJWv4cebNKR1fZQoaAZHQF+uqFAVwgloB03oA2gIR0CVuH+C9RJmdX2UKGgGR0BkFmNDMNc4aAdN6ANoCEdAlbr2QCCBgHV9lChoBkdAZtsz4UN8V2gHTegDaAhHQJXDn8TBZZB1fZQoaAZHQGDatWuHN5doB03oA2gIR0CVw+mJ3xFzdX2UKGgGR0BlszQgLZzxaAdN6ANoCEdAlcQ1rIo3JnV9lChoBkdAYTgO2AoXsWgHTegDaAhHQJXL3+MqBmR1fZQoaAZHQGQUfbblA/toB03oA2gIR0CV0Rvh60IDdX2UKGgGR0BiSQz1schlaAdN6ANoCEdAldS/N/vv0HV9lChoBkdAZGsKRdQfp2gHTegDaAhHQJXYJnbqQil1fZQoaAZHQGBL4WDYh+xoB03oA2gIR0CV2y7gKnejdX2UKGgGR0Bg78gKWszVaAdN6ANoCEdAldxFANXo1XV9lChoBkdAID79ycTakGgHS/5oCEdAldyT9KmKqHV9lChoBkdAX6EEwFkhBGgHTegDaAhHQJXjJIQOFxp1fZQoaAZHQFxGbeuV5bBoB03oA2gIR0CV6kGVAzHkdX2UKGgGR0Bo7KFTNt65aAdN6ANoCEdAlet7Yf4h2XV9lChoBkdAPqeIqLCN0mgHTRQBaAhHQJXshQl8gIR1fZQoaAZHQC1eXTmW+oNoB00TAWgIR0CV7ZiDdxhldX2UKGgGR0BnGZ2bG3nZaAdN6ANoCEdAlgSs54nndXV9lChoBkdAYf242CNCJGgHTegDaAhHQJYMkMc6vJR1fZQoaAZHQF8IC0WuX/poB03oA2gIR0CWFcKYzBRAdX2UKGgGR0Bc8DKDCgscaAdN6ANoCEdAlhg6B3A2ynV9lChoBkdAY4HGNJe3QWgHTegDaAhHQJYgzpljEvV1fZQoaAZHQGI4TwUg0TFoB03oA2gIR0CWIRzeGfwrdX2UKGgGR0Bik5dt2s7uaAdN6ANoCEdAliFjviLl3nV9lChoBkdAOghFmWdEs2gHTQ0BaAhHQJYi32g39751fZQoaAZHQGCr0ypJf6ZoB03oA2gIR0CWLmOUdJardX2UKGgGR0BkRZBw++ueaAdN6ANoCEdAljIhNh3JP3V9lChoBkdAZIXAood+5WgHTegDaAhHQJY1pN8E3bV1fZQoaAZHQGSyvbO/tY1oB03oA2gIR0CWO5USZjQRdX2UKGgGR0BkPKgmJFb3aAdN6ANoCEdAlkVSFwkxAXV9lChoBkdAYX26VdHDrWgHTegDaAhHQJZO4sSTQmh1fZQoaAZHQGKED5bhWHVoB03oA2gIR0CWUAS+g13udX2UKGgGR0BlaycG1QZXaAdN6ANoCEdAllDoCQtBfXV9lChoBkdAYNhUpd8iOmgHTegDaAhHQJZR0mx+rlx1fZQoaAZHQGgc/EOy3TdoB03oA2gIR0CWZX0Q9RrKdX2UKGgGR0BncAdIXj2jaAdN6ANoCEdAlnLlfmcOLHV9lChoBkdAY5j9XtBv72gHTegDaAhHQJZ1Zwm3OOd1fZQoaAZHQGRPB42S+xpoB03oA2gIR0CWfmyR0U48dX2UKGgGR0BiGCSX+l0paAdN6ANoCEdAln6+QdS2pnV9lChoBkdAYEF0Cih37mgHTegDaAhHQJZ/DDrJKap1fZQoaAZHQGPdUkv9LpRoB03oA2gIR0CWgJPZIxxldX2UKGgGR0BlH9B+nZTRaAdN6ANoCEdAloyLNwBHTnV9lChoBkdAX8hw1ivxIGgHTegDaAhHQJaQjEpAlfJ1fZQoaAZHQGLjAH/tICloB03oA2gIR0CWlJvhqCYkdX2UKGgGR0BnESL876pHaAdN6ANoCEdAlpm+XZ5AyHV9lChoBkdAYcoz1schkmgHTegDaAhHQJahqlj3Eht1fZQoaAZHQGA8Ckfs/ptoB03oA2gIR0CWqb/cFhXsdX2UKGgGR0Bhg5pHqeK9aAdN6ANoCEdAlqsHfl6qsHV9lChoBkdAZ8wmKqGUOmgHTegDaAhHQJasEUj9n9N1fZQoaAZHQF5kGAkLQX1oB03oA2gIR0CWrTEvTPSldX2UKGgGR0BkEwv+OwPiaAdN6ANoCEdAlrBS9h7VrnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7f5924715b99bb76518492d976c50776df0b1ec791c1acc8ebabda803a41080
3
- size 146614
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e054215150dddf721288110b43ac5cf1992315ee9f2b46853c4ba4625c4a0af
3
+ size 146750
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a09c97be0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a09c97c70>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a09c97d00>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a09c97d90>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f6a09c97e20>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f6a09c97eb0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a09c97f40>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a09cac040>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f6a09cac0d0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a09cac160>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a09cac1f0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a09cac280>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f6a09c99640>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 16384,
25
- "_total_timesteps": 10000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1694100833644088937,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOScT1CF6s/fw+RPt571b7IExK/SmtsvgAAAAAAAAAAcwW7vuJThz8WN4O/ICg1v5yANT/qqaQ+AAAAAAAAAACzdxw/MqphPxP9oz+ARFq/XgZqvyqWlr4AAAAAAAAAAEBv1T3R14I/Q3z5PoGdc7+MXB2+8l6MvgAAAAAAAAAAA7U1vwRXnD+rDoi/c8Nuv8CyfD9dx98+AAAAAAAAAADaN+m9cedhuxpepD2ULam/6Nfivo16Dj4AAIA/AAAAAM2PrTxwa8g/p7gHPu051D4DrCC8bbGZvQAAAAAAAAAAbfNQPvOpUT9Ks+M+1Ep2v1SFlb728Zm9AAAAAAAAAAB4MaW+HAQIP0orTL8fgZa/Q5qNPrrMUj4AAAAAAAAAAF3kSj9fRDw+KoWUP6Mgtb/pnlG/fYhxPQAAgD8AAAAAmkVkPpeTOj/JExk/dTeRv6xXGr9KYse+AAAAAAAAAAC2SJo+QG1EP3iOIz/bcGm/jCLLvjEHqL4AAAAAAAAAAE2sAz5wHcg/nsvePtBSBDwx9mq+EgszvgAAAAAAAAAA5n48Panttz8haUU+tlUDvoug6TxTCh8+AAAAAAAAAADNqF68ziW4PwOjKr6WHco9JheUO8NsWL0AAAAAAAAAADODyjsqO7Y/wISrPbslZrwarYO8s1JxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.6384000000000001,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGNUnNxEORWMAWyUS1KMAXSUR0BCymf5DZ13dX2UKGgGR8BYzkWl/H5raAdLP2gIR0BC1udoWYWtdX2UKGgGR8Bk81NJvo/zaAdLbmgIR0BC2wRoRIz4dX2UKGgGR8BvMLn/1g6VaAdLUWgIR0BC20ypJf6XdX2UKGgGR8BzufznRsuWaAdLWmgIR0BC54/eLvTgdX2UKGgGR8BYkS5VfeDWaAdLfWgIR0BC6elCTlkpdX2UKGgGR8B1BeM5wOvuaAdLeWgIR0BC60D+zdDZdX2UKGgGR8BllFkxyn1naAdLamgIR0BC66Gxlg+hdX2UKGgGR8BrOOG7BfrsaAdLbGgIR0BC6pNCZ4OddX2UKGgGR8BwKY20iQkpaAdLRmgIR0BC78SPEKmbdX2UKGgGR8Akhn13+uNhaAdLaGgIR0BC7034sVcmdX2UKGgGR8BUtB1klNUPaAdLSWgIR0BC8JljEvTPdX2UKGgGR8Bfdwgs9SuRaAdLYGgIR0BC9JCrtE5RdX2UKGgGR8Bo5j3AVO9GaAdLX2gIR0BC9A8KXv6TdX2UKGgGR8B7i1P+GXXzaAdLWmgIR0BC9YYrJ8v3dX2UKGgGR8BntryMDOkdaAdLfWgIR0BC/NCiRGMGdX2UKGgGR8BaFYldC3PSaAdLU2gIR0BDCAdGRV6vdX2UKGgGR8BikaP4mCyyaAdLV2gIR0BDDm65Gz8hdX2UKGgGR8BseQ9zOopAaAdLeWgIR0BDEcCxNZeSdX2UKGgGR8BggsMb3oLYaAdLY2gIR0BDFYlhPTG6dX2UKGgGR8BQW0CA+Y+jaAdLS2gIR0BDFXXI2fkFdX2UKGgGR8BRx6veP7vYaAdLTWgIR0BDGB4D9wWFdX2UKGgGR8BXEzzRQaaTaAdLSGgIR0BDGV0tAcDKdX2UKGgGR8BjzTJbMX7+aAdLTGgIR0BDHFjmSyMUdX2UKGgGR8B4docdYGMXaAdLXmgIR0BDHix3V09ydX2UKGgGR8BnLxVAAyVOaAdLbGgIR0BDKeNcW0qpdX2UKGgGR8B0s6Xb/Ot5aAdLaWgIR0BDLCgbp/wzdX2UKGgGR8AwguLaVUuMaAdLcWgIR0BDLBYV6/qPdX2UKGgGR8Blrezv7WNFaAdLYmgIR0BDLR5C4SYgdX2UKGgGR8BpUx73PAwgaAdLamgIR0BDMhkqc3ERdX2UKGgGR8BcnVs1sLv1aAdLZ2gIR0BDMXNcGC7LdX2UKGgGR8BVzD9CNS62aAdLQWgIR0BDNGQCCBf8dX2UKGgGR8BXpxrBTGYKaAdLSWgIR0BDPAezUqhEdX2UKGgGR8Bh12U8mrsCaAdLRmgIR0BDPfViF0xNdX2UKGgGR8Bn5BN/OMVDaAdLeGgIR0BDQmMfigkDdX2UKGgGR8BZ8qpLmITHaAdLSmgIR0BDRS1mapgkdX2UKGgGR8Biev+OwPiDaAdLTGgIR0BDSWAXl8w6dX2UKGgGR8Bacg6p5u63aAdLW2gIR0BDSyn1nM+vdX2UKGgGR8Bi3CpBHCoCaAdLTGgIR0BDS3HBDXvqdX2UKGgGR8BimSUs4DLbaAdLPWgIR0BDULGBFuvVdX2UKGgGR8BunzxRVIZqaAdLf2gIR0BDU+9Jz1brdX2UKGgGR8BV9titq59WaAdLQ2gIR0BDVIUahpQDdX2UKGgGR8BsQBf6XSjQaAdLUmgIR0BDWufukUKzdX2UKGgGR8BdnkRaouPFaAdLRWgIR0BDW57PY4ACdX2UKGgGR8BsbMvboKUnaAdLSWgIR0BDXTNliBoVdX2UKGgGR8BP0t21UlzEaAdLimgIR0BDadYGMXJpdX2UKGgGR8Bt0TT4L1EmaAdLbWgIR0BDboeYD1XedX2UKGgGR8Bxbye9SMtLaAdLVmgIR0BDcNlI3BHkdX2UKGgGR8BareHSF49paAdLTWgIR0BDcgy2x6fKdX2UKGgGR8BcIDm4iHIqaAdLbGgIR0BDdg/LTx5LdX2UKGgGR8BdrNMK1G9YaAdLX2gIR0BDeE2pAD7qdX2UKGgGR8BayOxSpBHDaAdLUWgIR0BDelPBSDRMdX2UKGgGR8BOli1Z1V5saAdLP2gIR0BDkPy08eS0dX2UKGgGR8Bu+OmUGFBZaAdLWmgIR0BDkgJTl1bJdX2UKGgGR8B8VatDD0lJaAdLgGgIR0BDkydvsJIEdX2UKGgGR8Bpa6BmPHT7aAdLaWgIR0BDk+IEbHZLdX2UKGgGR8B3pFQyhzvJaAdLf2gIR0BDmPnKW9lFdX2UKGgGR8BeYCaiKziTaAdLdWgIR0BDmHc+JP69dX2UKGgGR8BxJO2MKkVOaAdLYWgIR0BDmVkUbkwOdX2UKGgGR8ByQvYoRZlnaAdLcmgIR0BDmk4WDYh/dX2UKGgGR8BqPVHFxXGPaAdLgmgIR0BDm1BdD6WPdX2UKGgGR8BTDt9YwIt2aAdLSmgIR0BDnmce8wpOdX2UKGgGR8BxeriuMdcTaAdLTWgIR0BDoNlRP421dX2UKGgGR8BoqmGCZnctaAdLU2gIR0BDoVZs9B8hdX2UKGgGR8BfKwV0tAcDaAdLSGgIR0BDognMMZxadX2UKGgGR8B1LtqASWZ7aAdLemgIR0BDpcneBQN1dX2UKGgGR8Bv+ediDujRaAdLVGgIR0BDqqQ7tAs1dX2UKGgGR8BuC+JYT0xuaAdLU2gIR0BDrBHTZxrBdX2UKGgGR8BiJvbypaRqaAdLOWgIR0BDupa7mMfjdX2UKGgGR8BdGJGvwEyMaAdLSGgIR0BDvBbfP5YYdX2UKGgGR8BLMy5y2hIwaAdLVGgIR0BDxIOpbUw0dX2UKGgGR8B0IKlSCOFQaAdLW2gIR0BDxwqqfe1sdX2UKGgGR8BivgCyQgcMaAdLTWgIR0BDzD8tPHktdX2UKGgGR8B1rX6oESuhaAdLXWgIR0BDz+hoM8YAdX2UKGgGR8BUi4oRZlnRaAdLPGgIR0BD0UDdP+GXdX2UKGgGR8BSAYFFDv3KaAdLR2gIR0BD1jMV1wHadX2UKGgGR8BjVZ5TqB3BaAdLZmgIR0BD1iGFi8WcdX2UKGgGR8B0ElcE/0NCaAdLd2gIR0BD2bJ4jbBXdX2UKGgGR8BgTD1wo9cKaAdLX2gIR0BD2oNNJvpAdX2UKGgGR8BhWjQZ4wAVaAdLdGgIR0BD3o1k1/DtdX2UKGgGR8B2Q0rz5GjLaAdLYmgIR0BD4RB/qgRLdX2UKGgGR8Bh+090Rvm6aAdLdWgIR0BD4DYywfQsdX2UKGgGR8B6EPsByS3caAdLaWgIR0BD4VTisGPgdX2UKGgGR8BW36MaS9uhaAdLQ2gIR0BD5npbD/EPdX2UKGgGR8BX2hbwBo25aAdLdGgIR0BD5nJLdvbXdX2UKGgGR8BUvDWK/EflaAdLO2gIR0BD6x2KVII4dX2UKGgGR8BjYpBLPD51aAdLTWgIR0BD6vHLidaudX2UKGgGR8Bbi3FHavicaAdLT2gIR0BD+baAWi1zdX2UKGgGR8BhxoXKr7wbaAdLR2gIR0BD+KS5iExqdX2UKGgGR8BgJHQnhKlIaAdLUGgIR0BEBAYgq3EydX2UKGgGR8BfRiDujRD1aAdLT2gIR0BEA13MY/FBdX2UKGgGR8BvpGY+jdpJaAdLUGgIR0BECB/y5I6KdX2UKGgGR8BYlz28IzFdaAdLb2gIR0BEB1OTJQtSdX2UKGgGR8Bi9jiVB2OiaAdLXGgIR0BEByA6Mir1dX2UKGgGR8BuPEUwi7kGaAdLT2gIR0BEDcOCoS+QdX2UKGgGR8BqV5XuE25yaAdLUGgIR0BEFMl1KXfJdX2UKGgGR8BxG04jrzGxaAdLW2gIR0BEFe3hGYrsdX2UKGgGR8Baya2fChvjaAdLYGgIR0BEGLjxTbWVdX2UKGgGR8BcdNUS7GvPaAdLcWgIR0BEHCpNsWO7dX2UKGgGR8BziRAIIF/yaAdLamgIR0BEHCgTRIBjdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 4,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x793775895090>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x793775895120>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7937758951b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x793775895240>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7937758952d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x793775895360>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7937758953f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x793775895480>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x793775895510>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7937758955a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x793775895630>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7937758956c0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x793775a2ad80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1694145888754726922,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbZxrwpjHW6s47tOgmA3DUSKCC7iRALugAAgD8AAIA/WnbAvVzLXrr1UmU5xIvQs8FNSLt0dYO4AACAPwAAgD9GvBa+AxICvOJNeruRUqy56ZldPYLanToAAIA/AACAP6bour0Ujuu4Ng2bOyKdaLZ3Cfm7M4O5ugAAgD8AAIA/muYzPZziVz8pNyO95kZrvs/OIj27gKW9AAAAAAAAAABAm4y97CHpuYFUEbbvXiGx38IPu2TjMTUAAIA/AACAP5MeYj606Fc/pe2UvgmAqr6wSI68O5BFvQAAAAAAAAAAs/JyveGAmrr6rIy5/xaBtGwF5rmygqI4AACAPwAAgD+an4m9EYyHP6GNOr2NPrK+v7R3vfevF70AAAAAAAAAAOZAmb3hGJy6qhIGulFQMTR3d5o5bMwYOQAAgD8AAIA/jfOavcORGbqjRda6xKyUtccS87fYUPo5AACAPwAAgD8A4z29eyKfun5T0TmWeta1B3a/OYg677gAAIA/AACAP5oZwrqHNrY/wNe+vJC0Mb1datK8N42RvAAAAAAAAAAAQNv+PZg/kT9Thny73HGavqXi1j07mK29AAAAAAAAAABmp+m8FESEurJtCTpBKgk1to2aOjxJILkAAIA/AACAPzNm7LztYxs+OMpfvsu0Xb7VNZa9jkxsvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGggz7VJ+UiMAWyUTegDjAF0lEdAlLLnEuQIU3V9lChoBkdAaVD93r2QGWgHTegDaAhHQJS0pTXJ5mh1fZQoaAZHQAF59d/rjYJoB00EAWgIR0CUtgBS1maqdX2UKGgGR0BmTeq94/u9aAdN6ANoCEdAlLlxDw6QvHV9lChoBkdAZS7+WnjyWmgHTegDaAhHQJS8jGwRoRJ1fZQoaAZHQGJNL8R+SbJoB03oA2gIR0CUvMtbLU1AdX2UKGgGR0Bi19BWxQizaAdN6ANoCEdAlOyD81n/UHV9lChoBkdAYNzDBMzuW2gHTegDaAhHQJTt5AE+xGF1fZQoaAZHQGVCutwJgLJoB03oA2gIR0CU9AWHk92YdX2UKGgGR0BknJKQJXyRaAdN6ANoCEdAlPpyWqtHQXV9lChoBkdAZYuIO6NEPWgHTegDaAhHQJT6c3qAz551fZQoaAZHQGY45DiOvMdoB03oA2gIR0CU+8Ns3yZsdX2UKGgGR0BmvJ7TlT3qaAdN6ANoCEdAlP1+yVv/BHV9lChoBkdAYwepF1B+nmgHTegDaAhHQJUCu0u14Ph1fZQoaAZHQGMy7s4T9KpoB03oA2gIR0CVBcUqhDgJdX2UKGgGR0Bmhn9xZMcqaAdN6ANoCEdAlQ1od+5OJ3V9lChoBkdAO2JGnXNC7mgHS/xoCEdAlQ39IsiB5HV9lChoBkdAYdYCAc1fmmgHTegDaAhHQJUQPySV4X51fZQoaAZHQGLJZDRc/t9oB03oA2gIR0CVExjfek57dX2UKGgGR0Bgi2OjqOcUaAdN6ANoCEdAlRUik9ECvHV9lChoBkdAMUib2Dg62mgHTSUBaAhHQJUVXbypaRp1fZQoaAZHQGRejhky1u1oB03oA2gIR0CVGTc6eXiSdX2UKGgGR0BlSuoxYaHcaAdN6ANoCEdAlRwi4nWrfnV9lChoBkdAZIhNjbzshWgHTegDaAhHQJUcV+kP+XJ1fZQoaAZHQE96SXdCVr1oB0vwaAhHQJUfeXLNfPZ1fZQoaAZHQDItvR7Z39toB0v5aAhHQJUsBTYNAkd1fZQoaAZHQGfH6qsEJSloB03oA2gIR0CVNJ/EwWWQdX2UKGgGR0BkYLQ9ic5KaAdN6ANoCEdAlUoc4YJmd3V9lChoBkdAYCgOYIBzWGgHTegDaAhHQJVSpu/Dcdp1fZQoaAZHQGVf2alUIcBoB03oA2gIR0CVWb5B1LamdX2UKGgGR0Bdpa4c3l0YaAdN6ANoCEdAlVsRt+CsfnV9lChoBkdAXURjawljVmgHTegDaAhHQJViL+AEt/Z1fZQoaAZHQF+7lJpWV/toB03oA2gIR0CVZJVsk6cRdX2UKGgGR0BjOAKD0163aAdN6ANoCEdAlWqYWLxZuHV9lChoBkdASN1zEJjUeGgHS+ZoCEdAlWrGFnIyTXV9lChoBkdAYrs5nUUfxWgHTegDaAhHQJVq+v8qFyt1fZQoaAZHQGAHaKDTSb9oB03oA2gIR0CVbmwgkka/dX2UKGgGR0BmsTCFbmlqaAdN6ANoCEdAlW/p/Tb35HV9lChoBkdAZmccYIjW1GgHTegDaAhHQJVwGT+vQnh1fZQoaAZHQFzHhS9/SYxoB03oA2gIR0CVc2fLcKw7dX2UKGgGR0Bm/BhMJx//aAdN6ANoCEdAlXarvkRzzXV9lChoBkdAZIWscyWRimgHTegDaAhHQJV5/GxUvPF1fZQoaAZHQFELc3VCojxoB00EAWgIR0CVfPjMmnfmdX2UKGgGR0A12U2kzoECaAdL/GgIR0CVflZTho/SdX2UKGgGR0BiUac0+C9RaAdN6ANoCEdAlYg8UmD15HV9lChoBkdAZS3QnhKlHmgHTegDaAhHQJWSESeyzHF1fZQoaAZHQGHGBVMmF8JoB03oA2gIR0CVk6YyO7xvdX2UKGgGR0Bh6sG/vfCRaAdN6ANoCEdAlaommk30gHV9lChoBkdAZbKyckMTe2gHTegDaAhHQJWv4cebNKR1fZQoaAZHQF+uqFAVwgloB03oA2gIR0CVuH+C9RJmdX2UKGgGR0BkFmNDMNc4aAdN6ANoCEdAlbr2QCCBgHV9lChoBkdAZtsz4UN8V2gHTegDaAhHQJXDn8TBZZB1fZQoaAZHQGDatWuHN5doB03oA2gIR0CVw+mJ3xFzdX2UKGgGR0BlszQgLZzxaAdN6ANoCEdAlcQ1rIo3JnV9lChoBkdAYTgO2AoXsWgHTegDaAhHQJXL3+MqBmR1fZQoaAZHQGQUfbblA/toB03oA2gIR0CV0Rvh60IDdX2UKGgGR0BiSQz1schlaAdN6ANoCEdAldS/N/vv0HV9lChoBkdAZGsKRdQfp2gHTegDaAhHQJXYJnbqQil1fZQoaAZHQGBL4WDYh+xoB03oA2gIR0CV2y7gKnejdX2UKGgGR0Bg78gKWszVaAdN6ANoCEdAldxFANXo1XV9lChoBkdAID79ycTakGgHS/5oCEdAldyT9KmKqHV9lChoBkdAX6EEwFkhBGgHTegDaAhHQJXjJIQOFxp1fZQoaAZHQFxGbeuV5bBoB03oA2gIR0CV6kGVAzHkdX2UKGgGR0Bo7KFTNt65aAdN6ANoCEdAlet7Yf4h2XV9lChoBkdAPqeIqLCN0mgHTRQBaAhHQJXshQl8gIR1fZQoaAZHQC1eXTmW+oNoB00TAWgIR0CV7ZiDdxhldX2UKGgGR0BnGZ2bG3nZaAdN6ANoCEdAlgSs54nndXV9lChoBkdAYf242CNCJGgHTegDaAhHQJYMkMc6vJR1fZQoaAZHQF8IC0WuX/poB03oA2gIR0CWFcKYzBRAdX2UKGgGR0Bc8DKDCgscaAdN6ANoCEdAlhg6B3A2ynV9lChoBkdAY4HGNJe3QWgHTegDaAhHQJYgzpljEvV1fZQoaAZHQGI4TwUg0TFoB03oA2gIR0CWIRzeGfwrdX2UKGgGR0Bik5dt2s7uaAdN6ANoCEdAliFjviLl3nV9lChoBkdAOghFmWdEs2gHTQ0BaAhHQJYi32g39751fZQoaAZHQGCr0ypJf6ZoB03oA2gIR0CWLmOUdJardX2UKGgGR0BkRZBw++ueaAdN6ANoCEdAljIhNh3JP3V9lChoBkdAZIXAood+5WgHTegDaAhHQJY1pN8E3bV1fZQoaAZHQGSyvbO/tY1oB03oA2gIR0CWO5USZjQRdX2UKGgGR0BkPKgmJFb3aAdN6ANoCEdAlkVSFwkxAXV9lChoBkdAYX26VdHDrWgHTegDaAhHQJZO4sSTQmh1fZQoaAZHQGKED5bhWHVoB03oA2gIR0CWUAS+g13udX2UKGgGR0BlaycG1QZXaAdN6ANoCEdAllDoCQtBfXV9lChoBkdAYNhUpd8iOmgHTegDaAhHQJZR0mx+rlx1fZQoaAZHQGgc/EOy3TdoB03oA2gIR0CWZX0Q9RrKdX2UKGgGR0BncAdIXj2jaAdN6ANoCEdAlnLlfmcOLHV9lChoBkdAY5j9XtBv72gHTegDaAhHQJZ1Zwm3OOd1fZQoaAZHQGRPB42S+xpoB03oA2gIR0CWfmyR0U48dX2UKGgGR0BiGCSX+l0paAdN6ANoCEdAln6+QdS2pnV9lChoBkdAYEF0Cih37mgHTegDaAhHQJZ/DDrJKap1fZQoaAZHQGPdUkv9LpRoB03oA2gIR0CWgJPZIxxldX2UKGgGR0BlH9B+nZTRaAdN6ANoCEdAloyLNwBHTnV9lChoBkdAX8hw1ivxIGgHTegDaAhHQJaQjEpAlfJ1fZQoaAZHQGLjAH/tICloB03oA2gIR0CWlJvhqCYkdX2UKGgGR0BnESL876pHaAdN6ANoCEdAlpm+XZ5AyHV9lChoBkdAYcoz1schkmgHTegDaAhHQJahqlj3Eht1fZQoaAZHQGA8Ckfs/ptoB03oA2gIR0CWqb/cFhXsdX2UKGgGR0Bhg5pHqeK9aAdN6ANoCEdAlqsHfl6qsHV9lChoBkdAZ8wmKqGUOmgHTegDaAhHQJasEUj9n9N1fZQoaAZHQF5kGAkLQX1oB03oA2gIR0CWrTEvTPSldX2UKGgGR0BkEwv+OwPiaAdN6ANoCEdAlrBS9h7VrnVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:16c95328679d231a79c0880911ed1b2e8bb3368b2d1f2c58d0081f009f675c2c
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a91d94db11abe72b3af3fc9c5636ad1239da9a4cd1b5be7e95f9233ee8cc07b0
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:967534fb17a4cb0b89cb0e8669c8eefef54ec39ec8c5127e0d91f6a633f8a331
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9afe6c4c2310dc7f0f892b9f27dd03f296124bc5fc119c0bf702a3bd5e4c5933
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -94.71724125099354, "std_reward": 99.99347755980455, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-07T15:36:07.026752"}
 
1
+ {"mean_reward": 263.6139447022529, "std_reward": 27.31058543003152, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-08T04:47:36.457605"}