Upload . with huggingface_hub
Browse files- .summary/0/events.out.tfevents.1677225751.pop-os +0 -0
- .summary/0/events.out.tfevents.1677225789.pop-os +0 -0
- .summary/0/events.out.tfevents.1677225844.pop-os +0 -0
- .summary/0/events.out.tfevents.1677225926.pop-os +0 -0
- .summary/0/events.out.tfevents.1677225979.pop-os +3 -0
- README.md +1 -1
- checkpoint_p0/best_000000389_1593344_reward_13.989.pth +3 -0
- checkpoint_p0/checkpoint_000000403_1650688.pth +3 -0
- config.json +1 -1
- git.diff +759 -0
- sf_log.txt +405 -0
.summary/0/events.out.tfevents.1677225751.pop-os
ADDED
File without changes
|
.summary/0/events.out.tfevents.1677225789.pop-os
ADDED
File without changes
|
.summary/0/events.out.tfevents.1677225844.pop-os
ADDED
File without changes
|
.summary/0/events.out.tfevents.1677225926.pop-os
ADDED
File without changes
|
.summary/0/events.out.tfevents.1677225979.pop-os
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da32336adbc8b063c28050a14266b1d5270cfaf6e167b384f8a25317ea9d801e
|
3 |
+
size 36926
|
README.md
CHANGED
@@ -15,7 +15,7 @@ model-index:
|
|
15 |
type: doom_health_gathering_supreme
|
16 |
metrics:
|
17 |
- type: mean_reward
|
18 |
-
value:
|
19 |
name: mean_reward
|
20 |
verified: false
|
21 |
---
|
|
|
15 |
type: doom_health_gathering_supreme
|
16 |
metrics:
|
17 |
- type: mean_reward
|
18 |
+
value: 8.70 +/- 5.10
|
19 |
name: mean_reward
|
20 |
verified: false
|
21 |
---
|
checkpoint_p0/best_000000389_1593344_reward_13.989.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45dc1f8b4841de7b74b7b7e54da8194d1454e88edf7c65acff4b373abfbb15ca
|
3 |
+
size 34928806
|
checkpoint_p0/checkpoint_000000403_1650688.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f81321e38ba47c35d8fb2fcc7d27b5979c7e799aaa693a854fbd7a5a77202564
|
3 |
+
size 34929220
|
config.json
CHANGED
@@ -65,7 +65,7 @@
|
|
65 |
"summaries_use_frameskip": true,
|
66 |
"heartbeat_interval": 20,
|
67 |
"heartbeat_reporting_interval": 600,
|
68 |
-
"train_for_env_steps":
|
69 |
"train_for_seconds": 10000000000,
|
70 |
"save_every_sec": 120,
|
71 |
"keep_checkpoints": 2,
|
|
|
65 |
"summaries_use_frameskip": true,
|
66 |
"heartbeat_interval": 20,
|
67 |
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 40000000,
|
69 |
"train_for_seconds": 10000000000,
|
70 |
"save_every_sec": 120,
|
71 |
"keep_checkpoints": 2,
|
git.diff
CHANGED
@@ -0,0 +1,759 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/notebooks/unit8/unit8_part2.ipynb b/notebooks/unit8/unit8_part2.ipynb
|
2 |
+
index b36924a..d7fd26d 100644
|
3 |
+
--- a/notebooks/unit8/unit8_part2.ipynb
|
4 |
+
+++ b/notebooks/unit8/unit8_part2.ipynb
|
5 |
+
@@ -3,8 +3,8 @@
|
6 |
+
{
|
7 |
+
"cell_type": "markdown",
|
8 |
+
"metadata": {
|
9 |
+
- "id": "view-in-github",
|
10 |
+
- "colab_type": "text"
|
11 |
+
+ "colab_type": "text",
|
12 |
+
+ "id": "view-in-github"
|
13 |
+
},
|
14 |
+
"source": [
|
15 |
+
"<a href=\"https://colab.research.google.com/github/huggingface/deep-rl-class/blob/EdBeeching%2FPPOPart2/notebooks/unit8/unit8_part2.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
16 |
+
@@ -202,11 +202,26 @@
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
- "execution_count": null,
|
21 |
+
+ "execution_count": 1,
|
22 |
+
"metadata": {
|
23 |
+
"id": "RJMxkaldwIVx"
|
24 |
+
},
|
25 |
+
- "outputs": [],
|
26 |
+
+ "outputs": [
|
27 |
+
+ {
|
28 |
+
+ "ename": "CalledProcessError",
|
29 |
+
+ "evalue": "Command 'b'# Install ViZDoom deps from \\n# https://github.com/mwydmuch/ViZDoom/blob/master/doc/Building.md#-linux\\n\\napt-get install build-essential zlib1g-dev libsdl2-dev libjpeg-dev \\\\\\nnasm tar libbz2-dev libgtk2.0-dev cmake git libfluidsynth-dev libgme-dev \\\\\\nlibopenal-dev timidity libwildmidi-dev unzip ffmpeg\\n\\n# Boost libraries\\napt-get install libboost-all-dev\\n\\n# Lua binding dependencies\\napt-get install liblua5.1-dev\\n'' returned non-zero exit status 100.",
|
30 |
+
+ "output_type": "error",
|
31 |
+
+ "traceback": [
|
32 |
+
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
33 |
+
+ "\u001b[0;31mCalledProcessError\u001b[0m Traceback (most recent call last)",
|
34 |
+
+ "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m get_ipython()\u001b[39m.\u001b[39;49mrun_cell_magic(\u001b[39m'\u001b[39;49m\u001b[39mbash\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39m# Install ViZDoom deps from \u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39m# https://github.com/mwydmuch/ViZDoom/blob/master/doc/Building.md#-linux\u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39m\\n\u001b[39;49;00m\u001b[39mapt-get install build-essential zlib1g-dev libsdl2-dev libjpeg-dev \u001b[39;49m\u001b[39m\\\\\u001b[39;49;00m\u001b[39m\\n\u001b[39;49;00m\u001b[39mnasm tar libbz2-dev libgtk2.0-dev cmake git libfluidsynth-dev libgme-dev \u001b[39;49m\u001b[39m\\\\\u001b[39;49;00m\u001b[39m\\n\u001b[39;49;00m\u001b[39mlibopenal-dev timidity libwildmidi-dev unzip ffmpeg\u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39m\\n\u001b[39;49;00m\u001b[39m# Boost libraries\u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39mapt-get install libboost-all-dev\u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39m\\n\u001b[39;49;00m\u001b[39m# Lua binding dependencies\u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39mapt-get install liblua5.1-dev\u001b[39;49m\u001b[39m\\n\u001b[39;49;00m\u001b[39m'\u001b[39;49m)\n",
|
35 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2430\u001b[0m, in \u001b[0;36mInteractiveShell.run_cell_magic\u001b[0;34m(self, magic_name, line, cell)\u001b[0m\n\u001b[1;32m 2428\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbuiltin_trap:\n\u001b[1;32m 2429\u001b[0m args \u001b[39m=\u001b[39m (magic_arg_s, cell)\n\u001b[0;32m-> 2430\u001b[0m result \u001b[39m=\u001b[39m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 2432\u001b[0m \u001b[39m# The code below prevents the output from being displayed\u001b[39;00m\n\u001b[1;32m 2433\u001b[0m \u001b[39m# when using magics with decodator @output_can_be_silenced\u001b[39;00m\n\u001b[1;32m 2434\u001b[0m \u001b[39m# when the last Python token in the expression is a ';'.\u001b[39;00m\n\u001b[1;32m 2435\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mgetattr\u001b[39m(fn, magic\u001b[39m.\u001b[39mMAGIC_OUTPUT_CAN_BE_SILENCED, \u001b[39mFalse\u001b[39;00m):\n",
|
36 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/IPython/core/magics/script.py:153\u001b[0m, in \u001b[0;36mScriptMagics._make_script_magic.<locals>.named_script_magic\u001b[0;34m(line, cell)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 152\u001b[0m line \u001b[39m=\u001b[39m script\n\u001b[0;32m--> 153\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mshebang(line, cell)\n",
|
37 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/IPython/core/magics/script.py:305\u001b[0m, in \u001b[0;36mScriptMagics.shebang\u001b[0;34m(self, line, cell)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[39mif\u001b[39;00m args\u001b[39m.\u001b[39mraise_error \u001b[39mand\u001b[39;00m p\u001b[39m.\u001b[39mreturncode \u001b[39m!=\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[1;32m 301\u001b[0m \u001b[39m# If we get here and p.returncode is still None, we must have\u001b[39;00m\n\u001b[1;32m 302\u001b[0m \u001b[39m# killed it but not yet seen its return code. We don't wait for it,\u001b[39;00m\n\u001b[1;32m 303\u001b[0m \u001b[39m# in case it's stuck in uninterruptible sleep. -9 = SIGKILL\u001b[39;00m\n\u001b[1;32m 304\u001b[0m rc \u001b[39m=\u001b[39m p\u001b[39m.\u001b[39mreturncode \u001b[39mor\u001b[39;00m \u001b[39m-\u001b[39m\u001b[39m9\u001b[39m\n\u001b[0;32m--> 305\u001b[0m \u001b[39mraise\u001b[39;00m CalledProcessError(rc, cell)\n",
|
38 |
+
+ "\u001b[0;31mCalledProcessError\u001b[0m: Command 'b'# Install ViZDoom deps from \\n# https://github.com/mwydmuch/ViZDoom/blob/master/doc/Building.md#-linux\\n\\napt-get install build-essential zlib1g-dev libsdl2-dev libjpeg-dev \\\\\\nnasm tar libbz2-dev libgtk2.0-dev cmake git libfluidsynth-dev libgme-dev \\\\\\nlibopenal-dev timidity libwildmidi-dev unzip ffmpeg\\n\\n# Boost libraries\\napt-get install libboost-all-dev\\n\\n# Lua binding dependencies\\napt-get install liblua5.1-dev\\n'' returned non-zero exit status 100."
|
39 |
+
+ ]
|
40 |
+
+ }
|
41 |
+
+ ],
|
42 |
+
"source": [
|
43 |
+
"%%capture\n",
|
44 |
+
"%%bash\n",
|
45 |
+
@@ -236,11 +251,162 @@
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
- "execution_count": null,
|
50 |
+
+ "execution_count": 2,
|
51 |
+
"metadata": {
|
52 |
+
"id": "bbqfPZnIsvA6"
|
53 |
+
},
|
54 |
+
- "outputs": [],
|
55 |
+
+ "outputs": [
|
56 |
+
+ {
|
57 |
+
+ "name": "stdout",
|
58 |
+
+ "output_type": "stream",
|
59 |
+
+ "text": [
|
60 |
+
+ "Collecting sample-factory\n",
|
61 |
+
+ " Downloading sample_factory-2.0.3-py3-none-any.whl (9.0 MB)\n",
|
62 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.0/9.0 MB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0mm\n",
|
63 |
+
+ "\u001b[?25hCollecting huggingface-hub<1.0,>=0.10.0\n",
|
64 |
+
+ " Downloading huggingface_hub-0.12.1-py3-none-any.whl (190 kB)\n",
|
65 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.3/190.3 kB\u001b[0m \u001b[31m19.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
66 |
+
+ "\u001b[?25hCollecting gym<1.0,>=0.26.1\n",
|
67 |
+
+ " Downloading gym-0.26.2.tar.gz (721 kB)\n",
|
68 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m721.7/721.7 kB\u001b[0m \u001b[31m26.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
69 |
+
+ "\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n",
|
70 |
+
+ "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
|
71 |
+
+ "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
72 |
+
+ "\u001b[?25hCollecting colorlog\n",
|
73 |
+
+ " Downloading colorlog-6.7.0-py2.py3-none-any.whl (11 kB)\n",
|
74 |
+
+ "Collecting filelock\n",
|
75 |
+
+ " Using cached filelock-3.9.0-py3-none-any.whl (9.7 kB)\n",
|
76 |
+
+ "Requirement already satisfied: psutil>=5.7.0 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from sample-factory) (5.9.0)\n",
|
77 |
+
+ "Collecting faster-fifo<2.0,>=1.4.2\n",
|
78 |
+
+ " Downloading faster-fifo-1.4.2.tar.gz (84 kB)\n",
|
79 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.6/84.6 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
80 |
+
+ "\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n",
|
81 |
+
+ "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
|
82 |
+
+ "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
83 |
+
+ "\u001b[?25hCollecting pyglet\n",
|
84 |
+
+ " Downloading pyglet-2.0.4-py3-none-any.whl (831 kB)\n",
|
85 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m831.0/831.0 kB\u001b[0m \u001b[31m39.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
86 |
+
+ "\u001b[?25hRequirement already satisfied: torch!=1.13.0,<2.0,>=1.9 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from sample-factory) (1.13.1)\n",
|
87 |
+
+ "Collecting threadpoolctl>=2.0.0\n",
|
88 |
+
+ " Using cached threadpoolctl-3.1.0-py3-none-any.whl (14 kB)\n",
|
89 |
+
+ "Collecting signal-slot-mp<2.0,>=1.0.3\n",
|
90 |
+
+ " Downloading signal_slot_mp-1.0.3-py3-none-any.whl (11 kB)\n",
|
91 |
+
+ "Collecting opencv-python!=3.4.18.65\n",
|
92 |
+
+ " Downloading opencv_python-4.7.0.72-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.8 MB)\n",
|
93 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.8/61.8 MB\u001b[0m \u001b[31m24.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
94 |
+
+ "\u001b[?25hCollecting wandb>=0.12.9\n",
|
95 |
+
+ " Downloading wandb-0.13.10-py3-none-any.whl (2.0 MB)\n",
|
96 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
|
97 |
+
+ "\u001b[?25hRequirement already satisfied: numpy<2.0,>=1.18.1 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from sample-factory) (1.23.5)\n",
|
98 |
+
+ "Collecting tensorboard>=1.15.0\n",
|
99 |
+
+ " Using cached tensorboard-2.12.0-py3-none-any.whl (5.6 MB)\n",
|
100 |
+
+ "Collecting tensorboardx>=2.0\n",
|
101 |
+
+ " Downloading tensorboardX-2.6-py2.py3-none-any.whl (114 kB)\n",
|
102 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.5/114.5 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
103 |
+
+ "\u001b[?25hRequirement already satisfied: setuptools>=45.2.0 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from faster-fifo<2.0,>=1.4.2->sample-factory) (65.6.3)\n",
|
104 |
+
+ "Collecting cython>=0.29\n",
|
105 |
+
+ " Using cached Cython-0.29.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (1.9 MB)\n",
|
106 |
+
+ "Collecting gym-notices>=0.0.4\n",
|
107 |
+
+ " Downloading gym_notices-0.0.8-py3-none-any.whl (3.0 kB)\n",
|
108 |
+
+ "Collecting cloudpickle>=1.2.0\n",
|
109 |
+
+ " Downloading cloudpickle-2.2.1-py3-none-any.whl (25 kB)\n",
|
110 |
+
+ "Collecting tqdm>=4.42.1\n",
|
111 |
+
+ " Using cached tqdm-4.64.1-py2.py3-none-any.whl (78 kB)\n",
|
112 |
+
+ "Collecting pyyaml>=5.1\n",
|
113 |
+
+ " Using cached PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (682 kB)\n",
|
114 |
+
+ "Requirement already satisfied: packaging>=20.9 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.10.0->sample-factory) (22.0)\n",
|
115 |
+
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.10.0->sample-factory) (4.4.0)\n",
|
116 |
+
+ "Requirement already satisfied: requests in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.10.0->sample-factory) (2.28.1)\n",
|
117 |
+
+ "Collecting absl-py>=0.4\n",
|
118 |
+
+ " Using cached absl_py-1.4.0-py3-none-any.whl (126 kB)\n",
|
119 |
+
+ "Collecting tensorboard-plugin-wit>=1.6.0\n",
|
120 |
+
+ " Using cached tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)\n",
|
121 |
+
+ "Collecting markdown>=2.6.8\n",
|
122 |
+
+ " Using cached Markdown-3.4.1-py3-none-any.whl (93 kB)\n",
|
123 |
+
+ "Requirement already satisfied: wheel>=0.26 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from tensorboard>=1.15.0->sample-factory) (0.38.4)\n",
|
124 |
+
+ "Collecting google-auth-oauthlib<0.5,>=0.4.1\n",
|
125 |
+
+ " Using cached google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)\n",
|
126 |
+
+ "Collecting google-auth<3,>=1.6.3\n",
|
127 |
+
+ " Downloading google_auth-2.16.1-py2.py3-none-any.whl (177 kB)\n",
|
128 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m177.2/177.2 kB\u001b[0m \u001b[31m19.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
129 |
+
+ "\u001b[?25hCollecting tensorboard-data-server<0.8.0,>=0.7.0\n",
|
130 |
+
+ " Using cached tensorboard_data_server-0.7.0-py3-none-manylinux2014_x86_64.whl (6.6 MB)\n",
|
131 |
+
+ "Collecting grpcio>=1.48.2\n",
|
132 |
+
+ " Downloading grpcio-1.51.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB)\n",
|
133 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.8/4.8 MB\u001b[0m \u001b[31m28.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
|
134 |
+
+ "\u001b[?25hCollecting werkzeug>=1.0.1\n",
|
135 |
+
+ " Downloading Werkzeug-2.2.3-py3-none-any.whl (233 kB)\n",
|
136 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m233.6/233.6 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
137 |
+
+ "\u001b[?25hCollecting protobuf>=3.19.6\n",
|
138 |
+
+ " Downloading protobuf-4.22.0-cp37-abi3-manylinux2014_x86_64.whl (302 kB)\n",
|
139 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.4/302.4 kB\u001b[0m \u001b[31m23.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
140 |
+
+ "\u001b[?25h Using cached protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n",
|
141 |
+
+ "Collecting GitPython>=1.0.0\n",
|
142 |
+
+ " Downloading GitPython-3.1.31-py3-none-any.whl (184 kB)\n",
|
143 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m184.3/184.3 kB\u001b[0m \u001b[31m18.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
144 |
+
+ "\u001b[?25hCollecting docker-pycreds>=0.4.0\n",
|
145 |
+
+ " Using cached docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n",
|
146 |
+
+ "Collecting pathtools\n",
|
147 |
+
+ " Using cached pathtools-0.1.2-py3-none-any.whl\n",
|
148 |
+
+ "Collecting sentry-sdk>=1.0.0\n",
|
149 |
+
+ " Downloading sentry_sdk-1.15.0-py2.py3-none-any.whl (181 kB)\n",
|
150 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.3/181.3 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
151 |
+
+ "\u001b[?25hCollecting setproctitle\n",
|
152 |
+
+ " Using cached setproctitle-1.3.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n",
|
153 |
+
+ "Collecting appdirs>=1.4.3\n",
|
154 |
+
+ " Using cached appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)\n",
|
155 |
+
+ "Collecting Click!=8.0.0,>=7.0\n",
|
156 |
+
+ " Using cached click-8.1.3-py3-none-any.whl (96 kB)\n",
|
157 |
+
+ "Requirement already satisfied: six>=1.4.0 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from docker-pycreds>=0.4.0->wandb>=0.12.9->sample-factory) (1.16.0)\n",
|
158 |
+
+ "Collecting gitdb<5,>=4.0.1\n",
|
159 |
+
+ " Using cached gitdb-4.0.10-py3-none-any.whl (62 kB)\n",
|
160 |
+
+ "Collecting pyasn1-modules>=0.2.1\n",
|
161 |
+
+ " Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)\n",
|
162 |
+
+ "Collecting rsa<5,>=3.1.4\n",
|
163 |
+
+ " Using cached rsa-4.9-py3-none-any.whl (34 kB)\n",
|
164 |
+
+ "Collecting cachetools<6.0,>=2.0.0\n",
|
165 |
+
+ " Using cached cachetools-5.3.0-py3-none-any.whl (9.3 kB)\n",
|
166 |
+
+ "Collecting requests-oauthlib>=0.7.0\n",
|
167 |
+
+ " Using cached requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)\n",
|
168 |
+
+ "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from requests->huggingface-hub<1.0,>=0.10.0->sample-factory) (1.26.14)\n",
|
169 |
+
+ "Requirement already satisfied: certifi>=2017.4.17 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from requests->huggingface-hub<1.0,>=0.10.0->sample-factory) (2022.12.7)\n",
|
170 |
+
+ "Requirement already satisfied: charset-normalizer<3,>=2 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from requests->huggingface-hub<1.0,>=0.10.0->sample-factory) (2.0.4)\n",
|
171 |
+
+ "Requirement already satisfied: idna<4,>=2.5 in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from requests->huggingface-hub<1.0,>=0.10.0->sample-factory) (3.4)\n",
|
172 |
+
+ "Collecting MarkupSafe>=2.1.1\n",
|
173 |
+
+ " Using cached MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)\n",
|
174 |
+
+ "Collecting smmap<6,>=3.0.1\n",
|
175 |
+
+ " Using cached smmap-5.0.0-py3-none-any.whl (24 kB)\n",
|
176 |
+
+ "Collecting pyasn1<0.5.0,>=0.4.6\n",
|
177 |
+
+ " Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)\n",
|
178 |
+
+ "Collecting oauthlib>=3.0.0\n",
|
179 |
+
+ " Using cached oauthlib-3.2.2-py3-none-any.whl (151 kB)\n",
|
180 |
+
+ "Building wheels for collected packages: faster-fifo, gym\n",
|
181 |
+
+ " Building wheel for faster-fifo (pyproject.toml) ... \u001b[?25ldone\n",
|
182 |
+
+ "\u001b[?25h Created wheel for faster-fifo: filename=faster_fifo-1.4.2-cp310-cp310-linux_x86_64.whl size=78864 sha256=db802db0bb9e4e639957e0cc929a5055871d73dac2a78aab10dd613331d4e086\n",
|
183 |
+
+ " Stored in directory: /home/chqma/.cache/pip/wheels/46/57/35/44590621055121fe1a2f1ae60846e531621498f6d6e48c8975\n",
|
184 |
+
+ " Building wheel for gym (pyproject.toml) ... \u001b[?25ldone\n",
|
185 |
+
+ "\u001b[?25h Created wheel for gym: filename=gym-0.26.2-py3-none-any.whl size=827634 sha256=2ecaeda2a512edc3ad62eb999df1ba486447df53cdcd38d3cd5acc3b0b013d44\n",
|
186 |
+
+ " Stored in directory: /home/chqma/.cache/pip/wheels/ae/5f/67/64914473eb34e9ba89dbc7eefe7e9be8f6673fbc6f0273b29f\n",
|
187 |
+
+ "Successfully built faster-fifo gym\n",
|
188 |
+
+ "Installing collected packages: tensorboard-plugin-wit, pyglet, pyasn1, pathtools, gym-notices, appdirs, tqdm, threadpoolctl, tensorboard-data-server, smmap, setproctitle, sentry-sdk, rsa, pyyaml, pyasn1-modules, protobuf, opencv-python, oauthlib, MarkupSafe, markdown, grpcio, filelock, docker-pycreds, cython, colorlog, cloudpickle, Click, cachetools, absl-py, werkzeug, tensorboardx, requests-oauthlib, huggingface-hub, gym, google-auth, gitdb, faster-fifo, signal-slot-mp, google-auth-oauthlib, GitPython, wandb, tensorboard, sample-factory\n",
|
189 |
+
+ "Successfully installed Click-8.1.3 GitPython-3.1.31 MarkupSafe-2.1.2 absl-py-1.4.0 appdirs-1.4.4 cachetools-5.3.0 cloudpickle-2.2.1 colorlog-6.7.0 cython-0.29.33 docker-pycreds-0.4.0 faster-fifo-1.4.2 filelock-3.9.0 gitdb-4.0.10 google-auth-2.16.1 google-auth-oauthlib-0.4.6 grpcio-1.51.3 gym-0.26.2 gym-notices-0.0.8 huggingface-hub-0.12.1 markdown-3.4.1 oauthlib-3.2.2 opencv-python-4.7.0.72 pathtools-0.1.2 protobuf-3.20.3 pyasn1-0.4.8 pyasn1-modules-0.2.8 pyglet-2.0.4 pyyaml-6.0 requests-oauthlib-1.3.1 rsa-4.9 sample-factory-2.0.3 sentry-sdk-1.15.0 setproctitle-1.3.2 signal-slot-mp-1.0.3 smmap-5.0.0 tensorboard-2.12.0 tensorboard-data-server-0.7.0 tensorboard-plugin-wit-1.8.1 tensorboardx-2.6 threadpoolctl-3.1.0 tqdm-4.64.1 wandb-0.13.10 werkzeug-2.2.3\n",
|
190 |
+
+ "Collecting vizdoom\n",
|
191 |
+
+ " Downloading vizdoom-1.1.14.tar.gz (15.7 MB)\n",
|
192 |
+
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.7/15.7 MB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
193 |
+
+ "\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n",
|
194 |
+
+ "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
|
195 |
+
+ "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
196 |
+
+ "\u001b[?25hRequirement already satisfied: numpy in /home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages (from vizdoom) (1.23.5)\n",
|
197 |
+
+ "Building wheels for collected packages: vizdoom\n",
|
198 |
+
+ " Building wheel for vizdoom (pyproject.toml) ... \u001b[?25ldone\n",
|
199 |
+
+ "\u001b[?25h Created wheel for vizdoom: filename=vizdoom-1.1.14-cp310-cp310-linux_x86_64.whl size=14192416 sha256=732a3631973e8da574807abc6da03d63e48238fdf6024c6f34c11e5c4dcf2056\n",
|
200 |
+
+ " Stored in directory: /home/chqma/.cache/pip/wheels/a4/13/80/6927dae582137aef0836f48491051c797a5de184891b8ca6c5\n",
|
201 |
+
+ "Successfully built vizdoom\n",
|
202 |
+
+ "Installing collected packages: vizdoom\n",
|
203 |
+
+ "Successfully installed vizdoom-1.1.14\n"
|
204 |
+
+ ]
|
205 |
+
+ }
|
206 |
+
+ ],
|
207 |
+
"source": [
|
208 |
+
"# install python libraries\n",
|
209 |
+
"!pip install sample-factory\n",
|
210 |
+
@@ -258,24 +424,24 @@
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
- "execution_count": null,
|
215 |
+
+ "execution_count": 6,
|
216 |
+
"metadata": {
|
217 |
+
"id": "bCgZbeiavcDU"
|
218 |
+
},
|
219 |
+
"outputs": [],
|
220 |
+
"source": [
|
221 |
+
"import functools\n",
|
222 |
+
- "\n",
|
223 |
+
+ "from encoder import make_vizdoom_encoder\n",
|
224 |
+
"from sample_factory.algo.utils.context import global_model_factory\n",
|
225 |
+
"from sample_factory.cfg.arguments import parse_full_cfg, parse_sf_args\n",
|
226 |
+
"from sample_factory.envs.env_utils import register_env\n",
|
227 |
+
"from sample_factory.train import run_rl\n",
|
228 |
+
"\n",
|
229 |
+
- "from sf_examples.vizdoom.doom.doom_model import make_vizdoom_encoder\n",
|
230 |
+
"from sf_examples.vizdoom.doom.doom_params import add_doom_env_args, doom_override_defaults\n",
|
231 |
+
"from sf_examples.vizdoom.doom.doom_utils import DOOM_ENVS, make_doom_env_from_spec\n",
|
232 |
+
"\n",
|
233 |
+
"\n",
|
234 |
+
+ "\n",
|
235 |
+
"# Registers all the ViZDoom environments\n",
|
236 |
+
"def register_vizdoom_envs():\n",
|
237 |
+
" for env_spec in DOOM_ENVS:\n",
|
238 |
+
@@ -346,11 +512,88 @@
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
- "execution_count": null,
|
243 |
+
+ "execution_count": 1,
|
244 |
+
+ "metadata": {},
|
245 |
+
+ "outputs": [
|
246 |
+
+ {
|
247 |
+
+ "name": "stdout",
|
248 |
+
+ "output_type": "stream",
|
249 |
+
+ "text": [
|
250 |
+
+ "env: CUDA_VISIBLE_DEVICES=1\n"
|
251 |
+
+ ]
|
252 |
+
+ }
|
253 |
+
+ ],
|
254 |
+
+ "source": [
|
255 |
+
+ "%env CUDA_VISIBLE_DEVICES=1"
|
256 |
+
+ ]
|
257 |
+
+ },
|
258 |
+
+ {
|
259 |
+
+ "cell_type": "code",
|
260 |
+
+ "execution_count": 5,
|
261 |
+
"metadata": {
|
262 |
+
"id": "y_TeicMvyKHP"
|
263 |
+
},
|
264 |
+
- "outputs": [],
|
265 |
+
+ "outputs": [
|
266 |
+
+ {
|
267 |
+
+ "name": "stderr",
|
268 |
+
+ "output_type": "stream",
|
269 |
+
+ "text": [
|
270 |
+
+ "\u001b[33m[2023-02-24 08:05:26,614][795538] Environment doom_basic already registered, overwriting...\u001b[0m\n",
|
271 |
+
+ "\u001b[33m[2023-02-24 08:05:26,616][795538] Environment doom_two_colors_easy already registered, overwriting...\u001b[0m\n",
|
272 |
+
+ "\u001b[33m[2023-02-24 08:05:26,617][795538] Environment doom_two_colors_hard already registered, overwriting...\u001b[0m\n",
|
273 |
+
+ "\u001b[33m[2023-02-24 08:05:26,619][795538] Environment doom_dm already registered, overwriting...\u001b[0m\n",
|
274 |
+
+ "\u001b[33m[2023-02-24 08:05:26,619][795538] Environment doom_dwango5 already registered, overwriting...\u001b[0m\n",
|
275 |
+
+ "\u001b[33m[2023-02-24 08:05:26,620][795538] Environment doom_my_way_home_flat_actions already registered, overwriting...\u001b[0m\n",
|
276 |
+
+ "\u001b[33m[2023-02-24 08:05:26,621][795538] Environment doom_defend_the_center_flat_actions already registered, overwriting...\u001b[0m\n",
|
277 |
+
+ "\u001b[33m[2023-02-24 08:05:26,621][795538] Environment doom_my_way_home already registered, overwriting...\u001b[0m\n",
|
278 |
+
+ "\u001b[33m[2023-02-24 08:05:26,623][795538] Environment doom_deadly_corridor already registered, overwriting...\u001b[0m\n",
|
279 |
+
+ "\u001b[33m[2023-02-24 08:05:26,623][795538] Environment doom_defend_the_center already registered, overwriting...\u001b[0m\n",
|
280 |
+
+ "\u001b[33m[2023-02-24 08:05:26,624][795538] Environment doom_defend_the_line already registered, overwriting...\u001b[0m\n",
|
281 |
+
+ "\u001b[33m[2023-02-24 08:05:26,624][795538] Environment doom_health_gathering already registered, overwriting...\u001b[0m\n",
|
282 |
+
+ "\u001b[33m[2023-02-24 08:05:26,625][795538] Environment doom_health_gathering_supreme already registered, overwriting...\u001b[0m\n",
|
283 |
+
+ "\u001b[33m[2023-02-24 08:05:26,625][795538] Environment doom_battle already registered, overwriting...\u001b[0m\n",
|
284 |
+
+ "\u001b[33m[2023-02-24 08:05:26,626][795538] Environment doom_battle2 already registered, overwriting...\u001b[0m\n",
|
285 |
+
+ "\u001b[33m[2023-02-24 08:05:26,626][795538] Environment doom_duel_bots already registered, overwriting...\u001b[0m\n",
|
286 |
+
+ "\u001b[33m[2023-02-24 08:05:26,627][795538] Environment doom_deathmatch_bots already registered, overwriting...\u001b[0m\n",
|
287 |
+
+ "\u001b[33m[2023-02-24 08:05:26,628][795538] Environment doom_duel already registered, overwriting...\u001b[0m\n",
|
288 |
+
+ "\u001b[33m[2023-02-24 08:05:26,628][795538] Environment doom_deathmatch_full already registered, overwriting...\u001b[0m\n",
|
289 |
+
+ "\u001b[33m[2023-02-24 08:05:26,629][795538] Environment doom_benchmark already registered, overwriting...\u001b[0m\n",
|
290 |
+
+ "\u001b[36m[2023-02-24 08:05:26,629][795538] register_encoder_factory: <function make_vizdoom_encoder at 0x7efc41caae60>\u001b[0m\n",
|
291 |
+
+ "\u001b[33m[2023-02-24 08:05:26,640][795538] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json\u001b[0m\n",
|
292 |
+
+ "\u001b[36m[2023-02-24 08:05:26,640][795538] Overriding arg 'train_for_env_steps' with value 40000000 passed from command line\u001b[0m\n",
|
293 |
+
+ "\u001b[36m[2023-02-24 08:05:26,645][795538] Experiment dir /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment already exists!\u001b[0m\n",
|
294 |
+
+ "\u001b[36m[2023-02-24 08:05:26,646][795538] Resuming existing experiment from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment...\u001b[0m\n",
|
295 |
+
+ "\u001b[36m[2023-02-24 08:05:26,646][795538] Weights and Biases integration disabled\u001b[0m\n",
|
296 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 08:05:26,649][795538] Environment var CUDA_VISIBLE_DEVICES is 1\u001b[0m\n",
|
297 |
+
+ "Traceback (most recent call last):\n",
|
298 |
+
+ " File \"<string>\", line 1, in <module>\n",
|
299 |
+
+ " File \"/home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/multiprocessing/spawn.py\", line 116, in spawn_main\n",
|
300 |
+
+ " exitcode = _main(fd, parent_sentinel)\n",
|
301 |
+
+ " File \"/home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/multiprocessing/spawn.py\", line 126, in _main\n",
|
302 |
+
+ " self = reduction.pickle.load(from_parent)\n",
|
303 |
+
+ "AttributeError: Can't get attribute 'make_vizdoom_encoder' on <module '__main__' (built-in)>\n"
|
304 |
+
+ ]
|
305 |
+
+ },
|
306 |
+
+ {
|
307 |
+
+ "ename": "KeyboardInterrupt",
|
308 |
+
+ "evalue": "",
|
309 |
+
+ "output_type": "error",
|
310 |
+
+ "traceback": [
|
311 |
+
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
312 |
+
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
313 |
+
+ "Cell \u001b[0;32mIn[5], line 9\u001b[0m\n\u001b[1;32m 6\u001b[0m env \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mdoom_health_gathering_supreme\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 7\u001b[0m cfg \u001b[39m=\u001b[39m parse_vizdoom_cfg(argv\u001b[39m=\u001b[39m[\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m--env=\u001b[39m\u001b[39m{\u001b[39;00menv\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39m--num_workers=8\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39m--num_envs_per_worker=4\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39m--train_for_env_steps=40000000\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m----> 9\u001b[0m status \u001b[39m=\u001b[39m run_rl(cfg)\n",
|
314 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/sample_factory/train.py:37\u001b[0m, in \u001b[0;36mrun_rl\u001b[0;34m(cfg)\u001b[0m\n\u001b[1;32m 32\u001b[0m cfg, runner \u001b[39m=\u001b[39m make_runner(cfg)\n\u001b[1;32m 34\u001b[0m \u001b[39m# here we can register additional message or summary handlers\u001b[39;00m\n\u001b[1;32m 35\u001b[0m \u001b[39m# see sf_examples/dmlab/train_dmlab.py for example\u001b[39;00m\n\u001b[0;32m---> 37\u001b[0m status \u001b[39m=\u001b[39m runner\u001b[39m.\u001b[39;49minit()\n\u001b[1;32m 38\u001b[0m \u001b[39mif\u001b[39;00m status \u001b[39m==\u001b[39m ExperimentStatus\u001b[39m.\u001b[39mSUCCESS:\n\u001b[1;32m 39\u001b[0m status \u001b[39m=\u001b[39m runner\u001b[39m.\u001b[39mrun()\n",
|
315 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/sample_factory/algo/runners/runner_parallel.py:21\u001b[0m, in \u001b[0;36mParallelRunner.init\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minit\u001b[39m(\u001b[39mself\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m StatusCode:\n\u001b[0;32m---> 21\u001b[0m status \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49minit()\n\u001b[1;32m 22\u001b[0m \u001b[39mif\u001b[39;00m status \u001b[39m!=\u001b[39m ExperimentStatus\u001b[39m.\u001b[39mSUCCESS:\n\u001b[1;32m 23\u001b[0m \u001b[39mreturn\u001b[39;00m status\n",
|
316 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/sample_factory/algo/runners/runner.py:542\u001b[0m, in \u001b[0;36mRunner.init\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 540\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minit\u001b[39m(\u001b[39mself\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m StatusCode:\n\u001b[1;32m 541\u001b[0m set_global_cuda_envvars(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcfg)\n\u001b[0;32m--> 542\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39menv_info \u001b[39m=\u001b[39m obtain_env_info_in_a_separate_process(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcfg)\n\u001b[1;32m 544\u001b[0m \u001b[39mfor\u001b[39;00m policy_id \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcfg\u001b[39m.\u001b[39mnum_policies):\n\u001b[1;32m 545\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mreward_shaping[policy_id] \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39menv_info\u001b[39m.\u001b[39mreward_shaping_scheme\n",
|
317 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/sample_factory/algo/utils/env_info.py:127\u001b[0m, in \u001b[0;36mobtain_env_info_in_a_separate_process\u001b[0;34m(cfg)\u001b[0m\n\u001b[1;32m 124\u001b[0m p \u001b[39m=\u001b[39m ctx\u001b[39m.\u001b[39mProcess(target\u001b[39m=\u001b[39mspawn_tmp_env_and_get_info, args\u001b[39m=\u001b[39m(sf_context, q, cfg))\n\u001b[1;32m 125\u001b[0m p\u001b[39m.\u001b[39mstart()\n\u001b[0;32m--> 127\u001b[0m env_info \u001b[39m=\u001b[39m q\u001b[39m.\u001b[39;49mget()\n\u001b[1;32m 128\u001b[0m p\u001b[39m.\u001b[39mjoin()\n\u001b[1;32m 130\u001b[0m \u001b[39mif\u001b[39;00m cfg\u001b[39m.\u001b[39muse_env_info_cache:\n",
|
318 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/multiprocessing/queues.py:103\u001b[0m, in \u001b[0;36mQueue.get\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[39mif\u001b[39;00m block \u001b[39mand\u001b[39;00m timeout \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 102\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_rlock:\n\u001b[0;32m--> 103\u001b[0m res \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_recv_bytes()\n\u001b[1;32m 104\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_sem\u001b[39m.\u001b[39mrelease()\n\u001b[1;32m 105\u001b[0m \u001b[39melse\u001b[39;00m:\n",
|
319 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/multiprocessing/connection.py:216\u001b[0m, in \u001b[0;36m_ConnectionBase.recv_bytes\u001b[0;34m(self, maxlength)\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[39mif\u001b[39;00m maxlength \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m maxlength \u001b[39m<\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[1;32m 215\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mnegative maxlength\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m buf \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_recv_bytes(maxlength)\n\u001b[1;32m 217\u001b[0m \u001b[39mif\u001b[39;00m buf \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 218\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_bad_message_length()\n",
|
320 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/multiprocessing/connection.py:414\u001b[0m, in \u001b[0;36mConnection._recv_bytes\u001b[0;34m(self, maxsize)\u001b[0m\n\u001b[1;32m 413\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_recv_bytes\u001b[39m(\u001b[39mself\u001b[39m, maxsize\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[0;32m--> 414\u001b[0m buf \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_recv(\u001b[39m4\u001b[39;49m)\n\u001b[1;32m 415\u001b[0m size, \u001b[39m=\u001b[39m struct\u001b[39m.\u001b[39munpack(\u001b[39m\"\u001b[39m\u001b[39m!i\u001b[39m\u001b[39m\"\u001b[39m, buf\u001b[39m.\u001b[39mgetvalue())\n\u001b[1;32m 416\u001b[0m \u001b[39mif\u001b[39;00m size \u001b[39m==\u001b[39m \u001b[39m-\u001b[39m\u001b[39m1\u001b[39m:\n",
|
321 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/multiprocessing/connection.py:379\u001b[0m, in \u001b[0;36mConnection._recv\u001b[0;34m(self, size, read)\u001b[0m\n\u001b[1;32m 377\u001b[0m remaining \u001b[39m=\u001b[39m size\n\u001b[1;32m 378\u001b[0m \u001b[39mwhile\u001b[39;00m remaining \u001b[39m>\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[0;32m--> 379\u001b[0m chunk \u001b[39m=\u001b[39m read(handle, remaining)\n\u001b[1;32m 380\u001b[0m n \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39m(chunk)\n\u001b[1;32m 381\u001b[0m \u001b[39mif\u001b[39;00m n \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m:\n",
|
322 |
+
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
323 |
+
+ ]
|
324 |
+
+ }
|
325 |
+
+ ],
|
326 |
+
"source": [
|
327 |
+
"## Start the training, this should take around 15 minutes\n",
|
328 |
+
"register_vizdoom_components()\n",
|
329 |
+
@@ -358,7 +601,7 @@
|
330 |
+
"# The scenario we train on today is health gathering\n",
|
331 |
+
"# other scenarios include \"doom_basic\", \"doom_two_colors_easy\", \"doom_dm\", \"doom_dwango5\", \"doom_my_way_home\", \"doom_deadly_corridor\", \"doom_defend_the_center\", \"doom_defend_the_line\"\n",
|
332 |
+
"env = \"doom_health_gathering_supreme\"\n",
|
333 |
+
- "cfg = parse_vizdoom_cfg(argv=[f\"--env={env}\", \"--num_workers=8\", \"--num_envs_per_worker=4\", \"--train_for_env_steps=4000000\"])\n",
|
334 |
+
+ "cfg = parse_vizdoom_cfg(argv=[f\"--env={env}\", \"--num_workers=8\", \"--num_envs_per_worker=4\", \"--train_for_env_steps=40000000\"])\n",
|
335 |
+
"\n",
|
336 |
+
"status = run_rl(cfg)"
|
337 |
+
]
|
338 |
+
@@ -416,12 +659,12 @@
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"cell_type": "markdown",
|
342 |
+
- "source": [
|
343 |
+
- "The agent has learned something, but its performance could be better. We would clearly need to train for longer. But let's upload this model to the Hub."
|
344 |
+
- ],
|
345 |
+
"metadata": {
|
346 |
+
"id": "2A4pf_1VwPqR"
|
347 |
+
- }
|
348 |
+
+ },
|
349 |
+
+ "source": [
|
350 |
+
+ "The agent has learned something, but its performance could be better. We would clearly need to train for longer. But let's upload this model to the Hub."
|
351 |
+
+ ]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "markdown",
|
355 |
+
@@ -464,11 +707,28 @@
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
- "execution_count": null,
|
360 |
+
+ "execution_count": 6,
|
361 |
+
"metadata": {
|
362 |
+
"id": "GoQm_jYSOts0"
|
363 |
+
},
|
364 |
+
- "outputs": [],
|
365 |
+
+ "outputs": [
|
366 |
+
+ {
|
367 |
+
+ "ename": "ImportError",
|
368 |
+
+ "evalue": "The `notebook_login` function can only be used in a notebook (Jupyter or Colab) and you need the `ipywidgets` module: `pip install ipywidgets`.",
|
369 |
+
+ "output_type": "error",
|
370 |
+
+ "traceback": [
|
371 |
+
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
372 |
+
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
373 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/huggingface_hub/_login.py:188\u001b[0m, in \u001b[0;36mnotebook_login\u001b[0;34m()\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 188\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mipywidgets\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mwidgets\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mwidgets\u001b[39;00m \u001b[39m# type: ignore\u001b[39;00m\n\u001b[1;32m 189\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mIPython\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mdisplay\u001b[39;00m \u001b[39mimport\u001b[39;00m clear_output, display \u001b[39m# type: ignore\u001b[39;00m\n",
|
374 |
+
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'ipywidgets'",
|
375 |
+
+ "\nDuring handling of the above exception, another exception occurred:\n",
|
376 |
+
+ "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
377 |
+
+ "Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mhuggingface_hub\u001b[39;00m \u001b[39mimport\u001b[39;00m notebook_login\n\u001b[0;32m----> 2\u001b[0m notebook_login()\n\u001b[1;32m 3\u001b[0m get_ipython()\u001b[39m.\u001b[39msystem(\u001b[39m'\u001b[39m\u001b[39mgit config --global credential.helper store\u001b[39m\u001b[39m'\u001b[39m)\n",
|
378 |
+
+ "File \u001b[0;32m~/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/huggingface_hub/_login.py:191\u001b[0m, in \u001b[0;36mnotebook_login\u001b[0;34m()\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mIPython\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mdisplay\u001b[39;00m \u001b[39mimport\u001b[39;00m clear_output, display \u001b[39m# type: ignore\u001b[39;00m\n\u001b[1;32m 190\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mImportError\u001b[39;00m:\n\u001b[0;32m--> 191\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mImportError\u001b[39;00m(\n\u001b[1;32m 192\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mThe `notebook_login` function can only be used in a notebook (Jupyter or\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 193\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m Colab) and you need the `ipywidgets` module: `pip install ipywidgets`.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 194\u001b[0m )\n\u001b[1;32m 196\u001b[0m box_layout \u001b[39m=\u001b[39m widgets\u001b[39m.\u001b[39mLayout(\n\u001b[1;32m 197\u001b[0m display\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mflex\u001b[39m\u001b[39m\"\u001b[39m, flex_flow\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mcolumn\u001b[39m\u001b[39m\"\u001b[39m, align_items\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mcenter\u001b[39m\u001b[39m\"\u001b[39m, width\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m50\u001b[39m\u001b[39m%\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 198\u001b[0m )\n\u001b[1;32m 200\u001b[0m token_widget \u001b[39m=\u001b[39m widgets\u001b[39m.\u001b[39mPassword(description\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mToken:\u001b[39m\u001b[39m\"\u001b[39m)\n",
|
379 |
+
+ "\u001b[0;31mImportError\u001b[0m: The `notebook_login` function can only be used in a notebook (Jupyter or Colab) and you need the `ipywidgets` module: `pip install ipywidgets`."
|
380 |
+
+ ]
|
381 |
+
+ }
|
382 |
+
+ ],
|
383 |
+
"source": [
|
384 |
+
"from huggingface_hub import notebook_login\n",
|
385 |
+
"notebook_login()\n",
|
386 |
+
@@ -477,15 +737,231 @@
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
- "execution_count": null,
|
391 |
+
+ "execution_count": 8,
|
392 |
+
"metadata": {
|
393 |
+
"id": "sEawW_i0OvJV"
|
394 |
+
},
|
395 |
+
- "outputs": [],
|
396 |
+
+ "outputs": [
|
397 |
+
+ {
|
398 |
+
+ "name": "stderr",
|
399 |
+
+ "output_type": "stream",
|
400 |
+
+ "text": [
|
401 |
+
+ "\u001b[33m[2023-02-24 07:58:39,896][784615] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json\u001b[0m\n",
|
402 |
+
+ "\u001b[36m[2023-02-24 07:58:39,896][784615] Overriding arg 'num_workers' with value 1 passed from command line\u001b[0m\n",
|
403 |
+
+ "\u001b[36m[2023-02-24 07:58:39,897][784615] Adding new argument 'no_render'=True that is not in the saved config file!\u001b[0m\n",
|
404 |
+
+ "\u001b[36m[2023-02-24 07:58:39,897][784615] Adding new argument 'save_video'=True that is not in the saved config file!\u001b[0m\n",
|
405 |
+
+ "\u001b[36m[2023-02-24 07:58:39,898][784615] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!\u001b[0m\n",
|
406 |
+
+ "\u001b[36m[2023-02-24 07:58:39,898][784615] Adding new argument 'video_name'=None that is not in the saved config file!\u001b[0m\n",
|
407 |
+
+ "\u001b[36m[2023-02-24 07:58:39,899][784615] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!\u001b[0m\n",
|
408 |
+
+ "\u001b[36m[2023-02-24 07:58:39,899][784615] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!\u001b[0m\n",
|
409 |
+
+ "\u001b[36m[2023-02-24 07:58:39,900][784615] Adding new argument 'push_to_hub'=True that is not in the saved config file!\u001b[0m\n",
|
410 |
+
+ "\u001b[36m[2023-02-24 07:58:39,900][784615] Adding new argument 'hf_repository'='chqmatteo/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!\u001b[0m\n",
|
411 |
+
+ "\u001b[36m[2023-02-24 07:58:39,900][784615] Adding new argument 'policy_index'=0 that is not in the saved config file!\u001b[0m\n",
|
412 |
+
+ "\u001b[36m[2023-02-24 07:58:39,901][784615] Adding new argument 'eval_deterministic'=False that is not in the saved config file!\u001b[0m\n",
|
413 |
+
+ "\u001b[36m[2023-02-24 07:58:39,901][784615] Adding new argument 'train_script'=None that is not in the saved config file!\u001b[0m\n",
|
414 |
+
+ "\u001b[36m[2023-02-24 07:58:39,902][784615] Adding new argument 'enjoy_script'=None that is not in the saved config file!\u001b[0m\n",
|
415 |
+
+ "\u001b[36m[2023-02-24 07:58:39,902][784615] Using frameskip 1 and render_action_repeat=4 for evaluation\u001b[0m\n",
|
416 |
+
+ "\u001b[36m[2023-02-24 07:58:39,911][784615] RunningMeanStd input shape: (3, 72, 128)\u001b[0m\n",
|
417 |
+
+ "\u001b[36m[2023-02-24 07:58:39,912][784615] RunningMeanStd input shape: (1,)\u001b[0m\n",
|
418 |
+
+ "\u001b[36m[2023-02-24 07:58:39,919][784615] ConvEncoder: input_channels=3\u001b[0m\n",
|
419 |
+
+ "\u001b[36m[2023-02-24 07:58:39,943][784615] Conv encoder output size: 512\u001b[0m\n",
|
420 |
+
+ "\u001b[36m[2023-02-24 07:58:39,944][784615] Policy head output size: 512\u001b[0m\n",
|
421 |
+
+ "\u001b[33m[2023-02-24 07:58:39,980][784615] Loading state from checkpoint /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000268_1097728.pth...\u001b[0m\n",
|
422 |
+
+ "\u001b[36m[2023-02-24 07:58:40,400][784615] Num frames 100...\u001b[0m\n",
|
423 |
+
+ "\u001b[36m[2023-02-24 07:58:40,470][784615] Num frames 200...\u001b[0m\n",
|
424 |
+
+ "\u001b[36m[2023-02-24 07:58:40,530][784615] Num frames 300...\u001b[0m\n",
|
425 |
+
+ "\u001b[36m[2023-02-24 07:58:40,596][784615] Num frames 400...\u001b[0m\n",
|
426 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:40,684][784615] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480\u001b[0m\n",
|
427 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:40,685][784615] Avg episode reward: 5.480, avg true_objective: 4.480\u001b[0m\n",
|
428 |
+
+ "\u001b[36m[2023-02-24 07:58:40,719][784615] Num frames 500...\u001b[0m\n",
|
429 |
+
+ "\u001b[36m[2023-02-24 07:58:40,787][784615] Num frames 600...\u001b[0m\n",
|
430 |
+
+ "\u001b[36m[2023-02-24 07:58:40,850][784615] Num frames 700...\u001b[0m\n",
|
431 |
+
+ "\u001b[36m[2023-02-24 07:58:40,918][784615] Num frames 800...\u001b[0m\n",
|
432 |
+
+ "\u001b[36m[2023-02-24 07:58:41,005][784615] Num frames 900...\u001b[0m\n",
|
433 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:41,078][784615] Avg episode rewards: #0: 6.640, true rewards: #0: 4.640\u001b[0m\n",
|
434 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:41,079][784615] Avg episode reward: 6.640, avg true_objective: 4.640\u001b[0m\n",
|
435 |
+
+ "\u001b[36m[2023-02-24 07:58:41,129][784615] Num frames 1000...\u001b[0m\n",
|
436 |
+
+ "\u001b[36m[2023-02-24 07:58:41,202][784615] Num frames 1100...\u001b[0m\n",
|
437 |
+
+ "\u001b[36m[2023-02-24 07:58:41,276][784615] Num frames 1200...\u001b[0m\n",
|
438 |
+
+ "\u001b[36m[2023-02-24 07:58:41,360][784615] Num frames 1300...\u001b[0m\n",
|
439 |
+
+ "\u001b[36m[2023-02-24 07:58:41,429][784615] Num frames 1400...\u001b[0m\n",
|
440 |
+
+ "\u001b[36m[2023-02-24 07:58:41,493][784615] Num frames 1500...\u001b[0m\n",
|
441 |
+
+ "\u001b[36m[2023-02-24 07:58:41,554][784615] Num frames 1600...\u001b[0m\n",
|
442 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:41,667][784615] Avg episode rewards: #0: 8.653, true rewards: #0: 5.653\u001b[0m\n",
|
443 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:41,668][784615] Avg episode reward: 8.653, avg true_objective: 5.653\u001b[0m\n",
|
444 |
+
+ "\u001b[36m[2023-02-24 07:58:41,673][784615] Num frames 1700...\u001b[0m\n",
|
445 |
+
+ "\u001b[36m[2023-02-24 07:58:41,734][784615] Num frames 1800...\u001b[0m\n",
|
446 |
+
+ "\u001b[36m[2023-02-24 07:58:41,791][784615] Num frames 1900...\u001b[0m\n",
|
447 |
+
+ "\u001b[36m[2023-02-24 07:58:41,848][784615] Num frames 2000...\u001b[0m\n",
|
448 |
+
+ "\u001b[36m[2023-02-24 07:58:41,905][784615] Num frames 2100...\u001b[0m\n",
|
449 |
+
+ "\u001b[36m[2023-02-24 07:58:41,961][784615] Num frames 2200...\u001b[0m\n",
|
450 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:42,055][784615] Avg episode rewards: #0: 8.680, true rewards: #0: 5.680\u001b[0m\n",
|
451 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:42,056][784615] Avg episode reward: 8.680, avg true_objective: 5.680\u001b[0m\n",
|
452 |
+
+ "\u001b[36m[2023-02-24 07:58:42,077][784615] Num frames 2300...\u001b[0m\n",
|
453 |
+
+ "\u001b[36m[2023-02-24 07:58:42,141][784615] Num frames 2400...\u001b[0m\n",
|
454 |
+
+ "\u001b[36m[2023-02-24 07:58:42,203][784615] Num frames 2500...\u001b[0m\n",
|
455 |
+
+ "\u001b[36m[2023-02-24 07:58:42,260][784615] Num frames 2600...\u001b[0m\n",
|
456 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:42,346][784615] Avg episode rewards: #0: 7.712, true rewards: #0: 5.312\u001b[0m\n",
|
457 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:42,348][784615] Avg episode reward: 7.712, avg true_objective: 5.312\u001b[0m\n",
|
458 |
+
+ "\u001b[36m[2023-02-24 07:58:42,385][784615] Num frames 2700...\u001b[0m\n",
|
459 |
+
+ "\u001b[36m[2023-02-24 07:58:42,449][784615] Num frames 2800...\u001b[0m\n",
|
460 |
+
+ "\u001b[36m[2023-02-24 07:58:42,506][784615] Num frames 2900...\u001b[0m\n",
|
461 |
+
+ "\u001b[36m[2023-02-24 07:58:42,563][784615] Num frames 3000...\u001b[0m\n",
|
462 |
+
+ "\u001b[36m[2023-02-24 07:58:42,621][784615] Num frames 3100...\u001b[0m\n",
|
463 |
+
+ "\u001b[36m[2023-02-24 07:58:42,688][784615] Num frames 3200...\u001b[0m\n",
|
464 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:42,788][784615] Avg episode rewards: #0: 7.940, true rewards: #0: 5.440\u001b[0m\n",
|
465 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:42,788][784615] Avg episode reward: 7.940, avg true_objective: 5.440\u001b[0m\n",
|
466 |
+
+ "\u001b[36m[2023-02-24 07:58:42,817][784615] Num frames 3300...\u001b[0m\n",
|
467 |
+
+ "\u001b[36m[2023-02-24 07:58:42,890][784615] Num frames 3400...\u001b[0m\n",
|
468 |
+
+ "\u001b[36m[2023-02-24 07:58:42,964][784615] Num frames 3500...\u001b[0m\n",
|
469 |
+
+ "\u001b[36m[2023-02-24 07:58:43,040][784615] Num frames 3600...\u001b[0m\n",
|
470 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:43,128][784615] Avg episode rewards: #0: 7.354, true rewards: #0: 5.211\u001b[0m\n",
|
471 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:43,130][784615] Avg episode reward: 7.354, avg true_objective: 5.211\u001b[0m\n",
|
472 |
+
+ "\u001b[36m[2023-02-24 07:58:43,174][784615] Num frames 3700...\u001b[0m\n",
|
473 |
+
+ "\u001b[36m[2023-02-24 07:58:43,248][784615] Num frames 3800...\u001b[0m\n",
|
474 |
+
+ "\u001b[36m[2023-02-24 07:58:43,316][784615] Num frames 3900...\u001b[0m\n",
|
475 |
+
+ "\u001b[36m[2023-02-24 07:58:43,383][784615] Num frames 4000...\u001b[0m\n",
|
476 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:43,475][784615] Avg episode rewards: #0: 7.205, true rewards: #0: 5.080\u001b[0m\n",
|
477 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:43,476][784615] Avg episode reward: 7.205, avg true_objective: 5.080\u001b[0m\n",
|
478 |
+
+ "\u001b[36m[2023-02-24 07:58:43,498][784615] Num frames 4100...\u001b[0m\n",
|
479 |
+
+ "\u001b[36m[2023-02-24 07:58:43,556][784615] Num frames 4200...\u001b[0m\n",
|
480 |
+
+ "\u001b[36m[2023-02-24 07:58:43,614][784615] Num frames 4300...\u001b[0m\n",
|
481 |
+
+ "\u001b[36m[2023-02-24 07:58:43,670][784615] Num frames 4400...\u001b[0m\n",
|
482 |
+
+ "\u001b[36m[2023-02-24 07:58:43,727][784615] Num frames 4500...\u001b[0m\n",
|
483 |
+
+ "\u001b[36m[2023-02-24 07:58:43,790][784615] Num frames 4600...\u001b[0m\n",
|
484 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:43,891][784615] Avg episode rewards: #0: 7.413, true rewards: #0: 5.191\u001b[0m\n",
|
485 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:43,891][784615] Avg episode reward: 7.413, avg true_objective: 5.191\u001b[0m\n",
|
486 |
+
+ "\u001b[36m[2023-02-24 07:58:43,912][784615] Num frames 4700...\u001b[0m\n",
|
487 |
+
+ "\u001b[36m[2023-02-24 07:58:43,982][784615] Num frames 4800...\u001b[0m\n",
|
488 |
+
+ "\u001b[36m[2023-02-24 07:58:44,049][784615] Num frames 4900...\u001b[0m\n",
|
489 |
+
+ "\u001b[36m[2023-02-24 07:58:44,117][784615] Num frames 5000...\u001b[0m\n",
|
490 |
+
+ "\u001b[36m[2023-02-24 07:58:44,184][784615] Num frames 5100...\u001b[0m\n",
|
491 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:44,250][784615] Avg episode rewards: #0: 7.220, true rewards: #0: 5.120\u001b[0m\n",
|
492 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:58:44,250][784615] Avg episode reward: 7.220, avg true_objective: 5.120\u001b[0m\n",
|
493 |
+
+ "ffmpeg version 4.3 Copyright (c) 2000-2020 the FFmpeg developers\n",
|
494 |
+
+ " built with gcc 7.3.0 (crosstool-NG 1.23.0.449-a04d0)\n",
|
495 |
+
+ " configuration: --prefix=/opt/conda/conda-bld/ffmpeg_1597178665428/_h_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placeh --cc=/opt/conda/conda-bld/ffmpeg_1597178665428/_build_env/bin/x86_64-conda_cos6-linux-gnu-cc --disable-doc --disable-openssl --enable-avresample --enable-gnutls --enable-hardcoded-tables --enable-libfreetype --enable-libopenh264 --enable-pic --enable-pthreads --enable-shared --disable-static --enable-version3 --enable-zlib --enable-libmp3lame\n",
|
496 |
+
+ " libavutil 56. 51.100 / 56. 51.100\n",
|
497 |
+
+ " libavcodec 58. 91.100 / 58. 91.100\n",
|
498 |
+
+ " libavformat 58. 45.100 / 58. 45.100\n",
|
499 |
+
+ " libavdevice 58. 10.100 / 58. 10.100\n",
|
500 |
+
+ " libavfilter 7. 85.100 / 7. 85.100\n",
|
501 |
+
+ " libavresample 4. 0. 0 / 4. 0. 0\n",
|
502 |
+
+ " libswscale 5. 7.100 / 5. 7.100\n",
|
503 |
+
+ " libswresample 3. 7.100 / 3. 7.100\n",
|
504 |
+
+ "Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '/tmp/sf2_chqma/replay.mp4':\n",
|
505 |
+
+ " Metadata:\n",
|
506 |
+
+ " major_brand : isom\n",
|
507 |
+
+ " minor_version : 512\n",
|
508 |
+
+ " compatible_brands: isomiso2mp41\n",
|
509 |
+
+ " encoder : Lavf59.27.100\n",
|
510 |
+
+ " Duration: 00:02:26.57, start: 0.000000, bitrate: 1521 kb/s\n",
|
511 |
+
+ " Stream #0:0(und): Video: mpeg4 (Simple Profile) (mp4v / 0x7634706D), yuv420p, 240x180 [SAR 1:1 DAR 4:3], 1519 kb/s, 35 fps, 35 tbr, 17920 tbn, 35 tbc (default)\n",
|
512 |
+
+ " Metadata:\n",
|
513 |
+
+ " handler_name : VideoHandler\n",
|
514 |
+
+ "Unknown encoder 'libx264'\n",
|
515 |
+
+ "\u001b[36m[2023-02-24 07:58:46,584][784615] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!\u001b[0m\n",
|
516 |
+
+ "/home/chqma/miniconda3/envs/deep-rl-class/lib/python3.10/site-packages/huggingface_hub/_commit_api.py:493: UserWarning: About to commit an empty file: 'git.diff'. Are you sure this is intended?\n",
|
517 |
+
+ " warnings.warn(\n",
|
518 |
+
+ "\n",
|
519 |
+
+ "\u001b[A\n",
|
520 |
+
+ "\n",
|
521 |
+
+ "best_000000254_1040384_reward_6.010.pth: 0%| | 0.00/34.9M [00:00<?, ?B/s]\n",
|
522 |
+
+ "best_000000254_1040384_reward_6.010.pth: 0%| | 123k/34.9M [00:00<01:35, 364kB/s] \n",
|
523 |
+
+ "best_000000254_1040384_reward_6.010.pth: 1%| | 279k/34.9M [00:00<01:00, 576kB/s]\n",
|
524 |
+
+ "best_000000254_1040384_reward_6.010.pth: 4%|▍ | 1.42M/34.9M [00:00<00:10, 3.29MB/s]\n",
|
525 |
+
+ "events.out.tfevents.1677225358.pop-os: 100%|██████████| 72.8k/72.8k [00:01<00:00, 65.3kB/s]s]\n",
|
526 |
+
+ "\n",
|
527 |
+
+ "\n",
|
528 |
+
+ "\u001b[A\u001b[A\n",
|
529 |
+
+ "best_000000254_1040384_reward_6.010.pth: 11%|█ | 3.80M/34.9M [00:01<00:11, 2.67MB/s]\n",
|
530 |
+
+ "best_000000254_1040384_reward_6.010.pth: 13%|█▎ | 4.55M/34.9M [00:02<00:11, 2.55MB/s]\n",
|
531 |
+
+ "best_000000254_1040384_reward_6.010.pth: 15%|█▌ | 5.37M/34.9M [00:02<00:13, 2.27MB/s]\n",
|
532 |
+
+ "best_000000254_1040384_reward_6.010.pth: 21%|██ | 7.19M/34.9M [00:03<00:11, 2.47MB/s]\n",
|
533 |
+
+ "best_000000254_1040384_reward_6.010.pth: 23%|██▎ | 7.95M/34.9M [00:03<00:11, 2.41MB/s]\n",
|
534 |
+
+ "best_000000254_1040384_reward_6.010.pth: 27%|██▋ | 9.45M/34.9M [00:04<00:10, 2.32MB/s]\n",
|
535 |
+
+ "best_000000254_1040384_reward_6.010.pth: 29%|██▉ | 10.2M/34.9M [00:04<00:10, 2.30MB/s]\n",
|
536 |
+
+ "best_000000254_1040384_reward_6.010.pth: 34%|███▎ | 11.8M/34.9M [00:05<00:09, 2.33MB/s]\n",
|
537 |
+
+ "best_000000254_1040384_reward_6.010.pth: 36%|███▌ | 12.6M/34.9M [00:05<00:09, 2.35MB/s]\n",
|
538 |
+
+ "best_000000254_1040384_reward_6.010.pth: 38%|███▊ | 13.4M/34.9M [00:05<00:09, 2.36MB/s]\n",
|
539 |
+
+ "best_000000254_1040384_reward_6.010.pth: 41%|████ | 14.2M/34.9M [00:06<00:08, 2.34MB/s]\n",
|
540 |
+
+ "best_000000254_1040384_reward_6.010.pth: 43%|████▎ | 14.9M/34.9M [00:06<00:08, 2.33MB/s]\n",
|
541 |
+
+ "best_000000254_1040384_reward_6.010.pth: 47%|████▋ | 16.4M/34.9M [00:07<00:08, 2.28MB/s]\n",
|
542 |
+
+ "best_000000254_1040384_reward_6.010.pth: 49%|████▉ | 17.2M/34.9M [00:07<00:07, 2.29MB/s]\n",
|
543 |
+
+ "best_000000254_1040384_reward_6.010.pth: 51%|█████▏ | 17.9M/34.9M [00:07<00:07, 2.27MB/s]\n",
|
544 |
+
+ "best_000000254_1040384_reward_6.010.pth: 53%|█████▎ | 18.7M/34.9M [00:08<00:07, 2.27MB/s]\n",
|
545 |
+
+ "best_000000254_1040384_reward_6.010.pth: 58%|█████▊ | 20.2M/34.9M [00:08<00:06, 2.24MB/s]\n",
|
546 |
+
+ "best_000000254_1040384_reward_6.010.pth: 60%|█████▉ | 20.9M/34.9M [00:09<00:06, 2.22MB/s]\n",
|
547 |
+
+ "best_000000254_1040384_reward_6.010.pth: 62%|██████▏ | 21.8M/34.9M [00:09<00:06, 2.20MB/s]\n",
|
548 |
+
+ "\u001b[A\n",
|
549 |
+
+ "best_000000254_1040384_reward_6.010.pth: 64%|██████▍ | 22.5M/34.9M [00:10<00:05, 2.09MB/s]\n",
|
550 |
+
+ "best_000000254_1040384_reward_6.010.pth: 67%|██████▋ | 23.3M/34.9M [00:10<00:05, 2.04MB/s]\n",
|
551 |
+
+ "best_000000254_1040384_reward_6.010.pth: 69%|██████▉ | 24.0M/34.9M [00:10<00:05, 1.98MB/s]\n",
|
552 |
+
+ "\u001b[A\n",
|
553 |
+
+ "best_000000254_1040384_reward_6.010.pth: 71%|███████ | 24.8M/34.9M [00:11<00:05, 1.94MB/s]\n",
|
554 |
+
+ "best_000000254_1040384_reward_6.010.pth: 73%|███████▎ | 25.5M/34.9M [00:11<00:04, 1.90MB/s]\n",
|
555 |
+
+ "\u001b[A\n",
|
556 |
+
+ "best_000000254_1040384_reward_6.010.pth: 75%|███████▌ | 26.3M/34.9M [00:12<00:04, 1.84MB/s]\n",
|
557 |
+
+ "best_000000254_1040384_reward_6.010.pth: 77%|███████▋ | 27.0M/34.9M [00:12<00:04, 1.81MB/s]\n",
|
558 |
+
+ "\u001b[A\n",
|
559 |
+
+ "best_000000254_1040384_reward_6.010.pth: 80%|███████▉ | 27.8M/34.9M [00:12<00:03, 1.79MB/s]\n",
|
560 |
+
+ "\u001b[A\n",
|
561 |
+
+ "best_000000254_1040384_reward_6.010.pth: 82%|████████▏ | 28.5M/34.9M [00:13<00:03, 1.76MB/s]\n",
|
562 |
+
+ "best_000000254_1040384_reward_6.010.pth: 84%|████████▍ | 29.3M/34.9M [00:13<00:03, 1.75MB/s]\n",
|
563 |
+
+ "\u001b[A\n",
|
564 |
+
+ "best_000000254_1040384_reward_6.010.pth: 86%|████████▌ | 30.0M/34.9M [00:14<00:02, 1.74MB/s]\n",
|
565 |
+
+ "\u001b[A\n",
|
566 |
+
+ "best_000000254_1040384_reward_6.010.pth: 88%|████████▊ | 30.8M/34.9M [00:14<00:02, 1.73MB/s]\n",
|
567 |
+
+ "best_000000254_1040384_reward_6.010.pth: 90%|█████████ | 31.6M/34.9M [00:15<00:01, 1.72MB/s]\n",
|
568 |
+
+ "\u001b[A\n",
|
569 |
+
+ "best_000000254_1040384_reward_6.010.pth: 93%|█████████▎| 32.3M/34.9M [00:15<00:01, 1.71MB/s]\n",
|
570 |
+
+ "\u001b[A\n",
|
571 |
+
+ "best_000000254_1040384_reward_6.010.pth: 95%|█████████▍| 33.1M/34.9M [00:16<00:01, 1.70MB/s]\n",
|
572 |
+
+ "best_000000254_1040384_reward_6.010.pth: 97%|█████████▋| 33.8M/34.9M [00:16<00:00, 1.70MB/s]\n",
|
573 |
+
+ "\u001b[A\n",
|
574 |
+
+ "best_000000254_1040384_reward_6.010.pth: 99%|█████████▉| 34.6M/34.9M [00:16<00:00, 1.70MB/s]\n",
|
575 |
+
+ "\u001b[A\n",
|
576 |
+
+ "\u001b[A\n",
|
577 |
+
+ "\u001b[A\n",
|
578 |
+
+ "\u001b[A\n",
|
579 |
+
+ "\u001b[A\n",
|
580 |
+
+ "\u001b[A\n",
|
581 |
+
+ "best_000000254_1040384_reward_6.010.pth: 100%|██████████| 34.9M/34.9M [00:18<00:00, 1.89MB/s]\n",
|
582 |
+
+ "\n",
|
583 |
+
+ "\n",
|
584 |
+
+ "\u001b[A\u001b[A\n",
|
585 |
+
+ "\u001b[A\n",
|
586 |
+
+ "\u001b[A\n",
|
587 |
+
+ "\u001b[A\n",
|
588 |
+
+ "\u001b[A\n",
|
589 |
+
+ "\u001b[A\n",
|
590 |
+
+ "\u001b[A\n",
|
591 |
+
+ "\u001b[A\n",
|
592 |
+
+ "\u001b[A\n",
|
593 |
+
+ "\u001b[A\n",
|
594 |
+
+ "\u001b[A\n",
|
595 |
+
+ "\u001b[A\n",
|
596 |
+
+ "\u001b[A\n",
|
597 |
+
+ "\u001b[A\n",
|
598 |
+
+ "\u001b[A\n",
|
599 |
+
+ "\u001b[A\n",
|
600 |
+
+ "\u001b[A\n",
|
601 |
+
+ "\u001b[A\n",
|
602 |
+
+ "\u001b[A\n",
|
603 |
+
+ "\u001b[A\n",
|
604 |
+
+ "\u001b[A\n",
|
605 |
+
+ "checkpoint_000000268_1097728.pth: 100%|██████████| 34.9M/34.9M [00:23<00:00, 1.49MB/s]\n",
|
606 |
+
+ "\n",
|
607 |
+
+ "\n",
|
608 |
+
+ "Upload 3 LFS files: 100%|██████████| 3/3 [00:23<00:00, 7.81s/it]\n",
|
609 |
+
+ "\u001b[37m\u001b[1m[2023-02-24 07:59:12,402][784615] The model has been pushed to https://huggingface.co/chqmatteo/rl_course_vizdoom_health_gathering_supreme\u001b[0m\n"
|
610 |
+
+ ]
|
611 |
+
+ }
|
612 |
+
+ ],
|
613 |
+
"source": [
|
614 |
+
"from sample_factory.enjoy import enjoy\n",
|
615 |
+
"\n",
|
616 |
+
- "hf_username = \"ThomasSimonini\" # insert your HuggingFace username here\n",
|
617 |
+
+ "hf_username = \"chqmatteo\" # insert your HuggingFace username here\n",
|
618 |
+
"\n",
|
619 |
+
"cfg = parse_vizdoom_cfg(argv=[f\"--env={env}\", \"--num_workers=1\", \"--save_video\", \"--no_render\", \"--max_num_episodes=10\", \"--max_num_frames=100000\", \"--push_to_hub\", f\"--hf_repository={hf_username}/rl_course_vizdoom_health_gathering_supreme\"], evaluation=True)\n",
|
620 |
+
"status = enjoy(cfg)"
|
621 |
+
@@ -493,14 +969,14 @@
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"cell_type": "markdown",
|
625 |
+
+ "metadata": {
|
626 |
+
+ "id": "9PzeXx-qxVvw"
|
627 |
+
+ },
|
628 |
+
"source": [
|
629 |
+
"## Let's load another model\n",
|
630 |
+
"\n",
|
631 |
+
"\n"
|
632 |
+
- ],
|
633 |
+
- "metadata": {
|
634 |
+
- "id": "9PzeXx-qxVvw"
|
635 |
+
- }
|
636 |
+
+ ]
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"cell_type": "markdown",
|
640 |
+
@@ -566,16 +1042,16 @@
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"cell_type": "markdown",
|
644 |
+
+ "metadata": {
|
645 |
+
+ "id": "ie5YWC3NyKO8"
|
646 |
+
+ },
|
647 |
+
"source": [
|
648 |
+
"## Some additional challenges 🏆: Doom Deathmatch\n",
|
649 |
+
"\n",
|
650 |
+
"Training an agent to play a Doom deathmatch **takes many hours on a more beefy machine than is available in Colab**. \n",
|
651 |
+
"\n",
|
652 |
+
"Fortunately, we have have **already trained an agent in this scenario and it is available in the 🤗 Hub!** Let’s download the model and visualize the agent’s performance."
|
653 |
+
- ],
|
654 |
+
- "metadata": {
|
655 |
+
- "id": "ie5YWC3NyKO8"
|
656 |
+
- }
|
657 |
+
+ ]
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"cell_type": "code",
|
661 |
+
@@ -591,12 +1067,12 @@
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"cell_type": "markdown",
|
665 |
+
- "source": [
|
666 |
+
- "Given the agent plays for a long time the video generation can take **10 minutes**."
|
667 |
+
- ],
|
668 |
+
"metadata": {
|
669 |
+
"id": "7AX_LwxR2FQ0"
|
670 |
+
- }
|
671 |
+
+ },
|
672 |
+
+ "source": [
|
673 |
+
+ "Given the agent plays for a long time the video generation can take **10 minutes**."
|
674 |
+
+ ]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"cell_type": "code",
|
678 |
+
@@ -623,17 +1099,20 @@
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"cell_type": "markdown",
|
682 |
+
+ "metadata": {
|
683 |
+
+ "id": "N6mEC-4zyihx"
|
684 |
+
+ },
|
685 |
+
"source": [
|
686 |
+
"\n",
|
687 |
+
"You **can try to train your agent in this environment** using the code above, but not on colab.\n",
|
688 |
+
"**Good luck 🤞**"
|
689 |
+
- ],
|
690 |
+
- "metadata": {
|
691 |
+
- "id": "N6mEC-4zyihx"
|
692 |
+
- }
|
693 |
+
+ ]
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"cell_type": "markdown",
|
697 |
+
+ "metadata": {
|
698 |
+
+ "id": "YnDAngN6zeeI"
|
699 |
+
+ },
|
700 |
+
"source": [
|
701 |
+
"If you prefer an easier scenario, **why not try training in another ViZDoom scenario such as `doom_deadly_corridor` or `doom_defend_the_center`.**\n",
|
702 |
+
"\n",
|
703 |
+
@@ -645,34 +1124,46 @@
|
704 |
+
"This concludes the last unit. But we are not finished yet! 🤗 The following **bonus section include some of the most interesting, advanced and cutting edge work in Deep Reinforcement Learning**.\n",
|
705 |
+
"\n",
|
706 |
+
"## Keep learning, stay awesome 🤗"
|
707 |
+
- ],
|
708 |
+
- "metadata": {
|
709 |
+
- "id": "YnDAngN6zeeI"
|
710 |
+
- }
|
711 |
+
+ ]
|
712 |
+
}
|
713 |
+
],
|
714 |
+
"metadata": {
|
715 |
+
"accelerator": "GPU",
|
716 |
+
"colab": {
|
717 |
+
- "provenance": [],
|
718 |
+
"collapsed_sections": [
|
719 |
+
"PU4FVzaoM6fC",
|
720 |
+
"nB68Eb9UgC94",
|
721 |
+
"ez5UhUtYcWXF",
|
722 |
+
"sgRy6wnrgnij"
|
723 |
+
],
|
724 |
+
+ "include_colab_link": true,
|
725 |
+
"private_outputs": true,
|
726 |
+
- "include_colab_link": true
|
727 |
+
+ "provenance": []
|
728 |
+
},
|
729 |
+
"gpuClass": "standard",
|
730 |
+
"kernelspec": {
|
731 |
+
- "display_name": "Python 3",
|
732 |
+
+ "display_name": "deep-rl-class",
|
733 |
+
+ "language": "python",
|
734 |
+
"name": "python3"
|
735 |
+
},
|
736 |
+
"language_info": {
|
737 |
+
- "name": "python"
|
738 |
+
+ "codemirror_mode": {
|
739 |
+
+ "name": "ipython",
|
740 |
+
+ "version": 3
|
741 |
+
+ },
|
742 |
+
+ "file_extension": ".py",
|
743 |
+
+ "mimetype": "text/x-python",
|
744 |
+
+ "name": "python",
|
745 |
+
+ "nbconvert_exporter": "python",
|
746 |
+
+ "pygments_lexer": "ipython3",
|
747 |
+
+ "version": "3.10.9"
|
748 |
+
+ },
|
749 |
+
+ "vscode": {
|
750 |
+
+ "interpreter": {
|
751 |
+
+ "hash": "da4ecdf31b09708386948f91c5b725d7113689587e88c28098219103c44ec57b"
|
752 |
+
+ }
|
753 |
+
}
|
754 |
+
},
|
755 |
+
"nbformat": 4,
|
756 |
+
"nbformat_minor": 0
|
757 |
+
-}
|
758 |
+
|
759 |
+
+}
|
sf_log.txt
CHANGED
@@ -426,3 +426,408 @@ main_loop: 82.2510
|
|
426 |
[2023-02-24 07:58:44,250][784615] Avg episode rewards: #0: 7.220, true rewards: #0: 5.120
|
427 |
[2023-02-24 07:58:44,250][784615] Avg episode reward: 7.220, avg true_objective: 5.120
|
428 |
[2023-02-24 07:58:46,584][784615] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
[2023-02-24 07:58:44,250][784615] Avg episode rewards: #0: 7.220, true rewards: #0: 5.120
|
427 |
[2023-02-24 07:58:44,250][784615] Avg episode reward: 7.220, avg true_objective: 5.120
|
428 |
[2023-02-24 07:58:46,584][784615] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
|
429 |
+
[2023-02-24 07:59:12,402][784615] The model has been pushed to https://huggingface.co/chqmatteo/rl_course_vizdoom_health_gathering_supreme
|
430 |
+
[2023-02-24 08:02:31,136][784615] Environment doom_basic already registered, overwriting...
|
431 |
+
[2023-02-24 08:02:31,137][784615] Environment doom_two_colors_easy already registered, overwriting...
|
432 |
+
[2023-02-24 08:02:31,137][784615] Environment doom_two_colors_hard already registered, overwriting...
|
433 |
+
[2023-02-24 08:02:31,138][784615] Environment doom_dm already registered, overwriting...
|
434 |
+
[2023-02-24 08:02:31,138][784615] Environment doom_dwango5 already registered, overwriting...
|
435 |
+
[2023-02-24 08:02:31,139][784615] Environment doom_my_way_home_flat_actions already registered, overwriting...
|
436 |
+
[2023-02-24 08:02:31,139][784615] Environment doom_defend_the_center_flat_actions already registered, overwriting...
|
437 |
+
[2023-02-24 08:02:31,139][784615] Environment doom_my_way_home already registered, overwriting...
|
438 |
+
[2023-02-24 08:02:31,140][784615] Environment doom_deadly_corridor already registered, overwriting...
|
439 |
+
[2023-02-24 08:02:31,140][784615] Environment doom_defend_the_center already registered, overwriting...
|
440 |
+
[2023-02-24 08:02:31,140][784615] Environment doom_defend_the_line already registered, overwriting...
|
441 |
+
[2023-02-24 08:02:31,141][784615] Environment doom_health_gathering already registered, overwriting...
|
442 |
+
[2023-02-24 08:02:31,141][784615] Environment doom_health_gathering_supreme already registered, overwriting...
|
443 |
+
[2023-02-24 08:02:31,142][784615] Environment doom_battle already registered, overwriting...
|
444 |
+
[2023-02-24 08:02:31,142][784615] Environment doom_battle2 already registered, overwriting...
|
445 |
+
[2023-02-24 08:02:31,142][784615] Environment doom_duel_bots already registered, overwriting...
|
446 |
+
[2023-02-24 08:02:31,142][784615] Environment doom_deathmatch_bots already registered, overwriting...
|
447 |
+
[2023-02-24 08:02:31,143][784615] Environment doom_duel already registered, overwriting...
|
448 |
+
[2023-02-24 08:02:31,143][784615] Environment doom_deathmatch_full already registered, overwriting...
|
449 |
+
[2023-02-24 08:02:31,143][784615] Environment doom_benchmark already registered, overwriting...
|
450 |
+
[2023-02-24 08:02:31,144][784615] register_encoder_factory: <function make_vizdoom_encoder at 0x7f9fbe7ae680>
|
451 |
+
[2023-02-24 08:02:31,153][784615] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
|
452 |
+
[2023-02-24 08:02:31,154][784615] Overriding arg 'train_for_env_steps' with value 40000000 passed from command line
|
453 |
+
[2023-02-24 08:02:31,157][784615] Experiment dir /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment already exists!
|
454 |
+
[2023-02-24 08:02:31,158][784615] Resuming existing experiment from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment...
|
455 |
+
[2023-02-24 08:02:31,158][784615] Weights and Biases integration disabled
|
456 |
+
[2023-02-24 08:02:31,159][784615] Environment var CUDA_VISIBLE_DEVICES is 1
|
457 |
+
[2023-02-24 08:03:09,472][784615] Environment doom_basic already registered, overwriting...
|
458 |
+
[2023-02-24 08:03:09,474][784615] Environment doom_two_colors_easy already registered, overwriting...
|
459 |
+
[2023-02-24 08:03:09,475][784615] Environment doom_two_colors_hard already registered, overwriting...
|
460 |
+
[2023-02-24 08:03:09,476][784615] Environment doom_dm already registered, overwriting...
|
461 |
+
[2023-02-24 08:03:09,477][784615] Environment doom_dwango5 already registered, overwriting...
|
462 |
+
[2023-02-24 08:03:09,477][784615] Environment doom_my_way_home_flat_actions already registered, overwriting...
|
463 |
+
[2023-02-24 08:03:09,478][784615] Environment doom_defend_the_center_flat_actions already registered, overwriting...
|
464 |
+
[2023-02-24 08:03:09,478][784615] Environment doom_my_way_home already registered, overwriting...
|
465 |
+
[2023-02-24 08:03:09,479][784615] Environment doom_deadly_corridor already registered, overwriting...
|
466 |
+
[2023-02-24 08:03:09,479][784615] Environment doom_defend_the_center already registered, overwriting...
|
467 |
+
[2023-02-24 08:03:09,480][784615] Environment doom_defend_the_line already registered, overwriting...
|
468 |
+
[2023-02-24 08:03:09,480][784615] Environment doom_health_gathering already registered, overwriting...
|
469 |
+
[2023-02-24 08:03:09,481][784615] Environment doom_health_gathering_supreme already registered, overwriting...
|
470 |
+
[2023-02-24 08:03:09,481][784615] Environment doom_battle already registered, overwriting...
|
471 |
+
[2023-02-24 08:03:09,482][784615] Environment doom_battle2 already registered, overwriting...
|
472 |
+
[2023-02-24 08:03:09,482][784615] Environment doom_duel_bots already registered, overwriting...
|
473 |
+
[2023-02-24 08:03:09,483][784615] Environment doom_deathmatch_bots already registered, overwriting...
|
474 |
+
[2023-02-24 08:03:09,483][784615] Environment doom_duel already registered, overwriting...
|
475 |
+
[2023-02-24 08:03:09,483][784615] Environment doom_deathmatch_full already registered, overwriting...
|
476 |
+
[2023-02-24 08:03:09,484][784615] Environment doom_benchmark already registered, overwriting...
|
477 |
+
[2023-02-24 08:03:09,484][784615] register_encoder_factory: <function make_vizdoom_encoder at 0x7f9fbe7ae680>
|
478 |
+
[2023-02-24 08:03:09,494][784615] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
|
479 |
+
[2023-02-24 08:03:09,495][784615] Overriding arg 'train_for_env_steps' with value 40000000 passed from command line
|
480 |
+
[2023-02-24 08:03:09,498][784615] Experiment dir /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment already exists!
|
481 |
+
[2023-02-24 08:03:09,499][784615] Resuming existing experiment from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment...
|
482 |
+
[2023-02-24 08:03:09,499][784615] Weights and Biases integration disabled
|
483 |
+
[2023-02-24 08:03:09,500][784615] Environment var CUDA_VISIBLE_DEVICES is 1
|
484 |
+
[2023-02-24 08:06:20,559][795538] Saving configuration to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json...
|
485 |
+
[2023-02-24 08:06:20,725][795538] Rollout worker 0 uses device cpu
|
486 |
+
[2023-02-24 08:06:20,726][795538] Rollout worker 1 uses device cpu
|
487 |
+
[2023-02-24 08:06:20,726][795538] Rollout worker 2 uses device cpu
|
488 |
+
[2023-02-24 08:06:20,727][795538] Rollout worker 3 uses device cpu
|
489 |
+
[2023-02-24 08:06:20,727][795538] Rollout worker 4 uses device cpu
|
490 |
+
[2023-02-24 08:06:20,727][795538] Rollout worker 5 uses device cpu
|
491 |
+
[2023-02-24 08:06:20,728][795538] Rollout worker 6 uses device cpu
|
492 |
+
[2023-02-24 08:06:20,728][795538] Rollout worker 7 uses device cpu
|
493 |
+
[2023-02-24 08:06:20,767][795538] Using GPUs [0] for process 0 (actually maps to GPUs [1])
|
494 |
+
[2023-02-24 08:06:20,768][795538] InferenceWorker_p0-w0: min num requests: 2
|
495 |
+
[2023-02-24 08:06:20,819][795538] Starting all processes...
|
496 |
+
[2023-02-24 08:06:20,820][795538] Starting process learner_proc0
|
497 |
+
[2023-02-24 08:06:20,869][795538] Starting all processes...
|
498 |
+
[2023-02-24 08:06:20,872][795538] Starting process inference_proc0-0
|
499 |
+
[2023-02-24 08:06:20,873][795538] Starting process rollout_proc0
|
500 |
+
[2023-02-24 08:06:20,873][795538] Starting process rollout_proc1
|
501 |
+
[2023-02-24 08:06:20,873][795538] Starting process rollout_proc2
|
502 |
+
[2023-02-24 08:06:20,873][795538] Starting process rollout_proc3
|
503 |
+
[2023-02-24 08:06:20,874][795538] Starting process rollout_proc4
|
504 |
+
[2023-02-24 08:06:20,874][795538] Starting process rollout_proc5
|
505 |
+
[2023-02-24 08:06:20,874][795538] Starting process rollout_proc6
|
506 |
+
[2023-02-24 08:06:20,875][795538] Starting process rollout_proc7
|
507 |
+
[2023-02-24 08:06:22,179][795628] Worker 1 uses CPU cores [1]
|
508 |
+
[2023-02-24 08:06:22,214][795634] Worker 6 uses CPU cores [6]
|
509 |
+
[2023-02-24 08:06:22,319][795626] Low niceness requires sudo!
|
510 |
+
[2023-02-24 08:06:22,319][795626] Using GPUs [0] for process 0 (actually maps to GPUs [1])
|
511 |
+
[2023-02-24 08:06:22,319][795626] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [0]) for inference process 0
|
512 |
+
[2023-02-24 08:06:22,336][795626] Num visible devices: 1
|
513 |
+
[2023-02-24 08:06:22,343][795613] Low niceness requires sudo!
|
514 |
+
[2023-02-24 08:06:22,343][795613] Using GPUs [0] for process 0 (actually maps to GPUs [1])
|
515 |
+
[2023-02-24 08:06:22,344][795613] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [0]) for learning process 0
|
516 |
+
[2023-02-24 08:06:22,361][795613] Num visible devices: 1
|
517 |
+
[2023-02-24 08:06:22,366][795632] Worker 5 uses CPU cores [5]
|
518 |
+
[2023-02-24 08:06:22,394][795613] Starting seed is not provided
|
519 |
+
[2023-02-24 08:06:22,394][795613] Using GPUs [0] for process 0 (actually maps to GPUs [1])
|
520 |
+
[2023-02-24 08:06:22,394][795613] Initializing actor-critic model on device cuda:0
|
521 |
+
[2023-02-24 08:06:22,395][795613] RunningMeanStd input shape: (3, 72, 128)
|
522 |
+
[2023-02-24 08:06:22,395][795613] RunningMeanStd input shape: (1,)
|
523 |
+
[2023-02-24 08:06:22,409][795613] ConvEncoder: input_channels=3
|
524 |
+
[2023-02-24 08:06:22,497][795613] Conv encoder output size: 512
|
525 |
+
[2023-02-24 08:06:22,497][795613] Policy head output size: 512
|
526 |
+
[2023-02-24 08:06:22,506][795613] Created Actor Critic model with architecture:
|
527 |
+
[2023-02-24 08:06:22,507][795613] ActorCriticSharedWeights(
|
528 |
+
(obs_normalizer): ObservationNormalizer(
|
529 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
530 |
+
(running_mean_std): ModuleDict(
|
531 |
+
(obs): RunningMeanStdInPlace()
|
532 |
+
)
|
533 |
+
)
|
534 |
+
)
|
535 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
536 |
+
(encoder): VizdoomEncoder(
|
537 |
+
(basic_encoder): ConvEncoder(
|
538 |
+
(enc): RecursiveScriptModule(
|
539 |
+
original_name=ConvEncoderImpl
|
540 |
+
(conv_head): RecursiveScriptModule(
|
541 |
+
original_name=Sequential
|
542 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
543 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
544 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
545 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
546 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
547 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
548 |
+
)
|
549 |
+
(mlp_layers): RecursiveScriptModule(
|
550 |
+
original_name=Sequential
|
551 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
552 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
553 |
+
)
|
554 |
+
)
|
555 |
+
)
|
556 |
+
)
|
557 |
+
(core): ModelCoreRNN(
|
558 |
+
(core): GRU(512, 512)
|
559 |
+
)
|
560 |
+
(decoder): MlpDecoder(
|
561 |
+
(mlp): Identity()
|
562 |
+
)
|
563 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
564 |
+
(action_parameterization): ActionParameterizationDefault(
|
565 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
[2023-02-24 08:06:22,514][795631] Worker 4 uses CPU cores [4]
|
569 |
+
[2023-02-24 08:06:22,542][795633] Worker 7 uses CPU cores [7]
|
570 |
+
[2023-02-24 08:06:22,548][795630] Worker 3 uses CPU cores [3]
|
571 |
+
[2023-02-24 08:06:22,590][795629] Worker 2 uses CPU cores [2]
|
572 |
+
[2023-02-24 08:06:22,604][795627] Worker 0 uses CPU cores [0]
|
573 |
+
[2023-02-24 08:06:25,136][795613] Using optimizer <class 'torch.optim.adam.Adam'>
|
574 |
+
[2023-02-24 08:06:25,137][795613] Loading state from checkpoint /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000268_1097728.pth...
|
575 |
+
[2023-02-24 08:06:25,196][795613] Loading model from checkpoint
|
576 |
+
[2023-02-24 08:06:25,198][795613] Loaded experiment state at self.train_step=268, self.env_steps=1097728
|
577 |
+
[2023-02-24 08:06:25,198][795613] Initialized policy 0 weights for model version 268
|
578 |
+
[2023-02-24 08:06:25,199][795613] LearnerWorker_p0 finished initialization!
|
579 |
+
[2023-02-24 08:06:25,199][795613] Using GPUs [0] for process 0 (actually maps to GPUs [1])
|
580 |
+
[2023-02-24 08:06:26,272][795626] RunningMeanStd input shape: (3, 72, 128)
|
581 |
+
[2023-02-24 08:06:26,272][795626] RunningMeanStd input shape: (1,)
|
582 |
+
[2023-02-24 08:06:26,280][795626] ConvEncoder: input_channels=3
|
583 |
+
[2023-02-24 08:06:26,341][795626] Conv encoder output size: 512
|
584 |
+
[2023-02-24 08:06:26,342][795626] Policy head output size: 512
|
585 |
+
[2023-02-24 08:06:27,341][795538] Inference worker 0-0 is ready!
|
586 |
+
[2023-02-24 08:06:27,341][795538] All inference workers are ready! Signal rollout workers to start!
|
587 |
+
[2023-02-24 08:06:27,358][795628] Doom resolution: 160x120, resize resolution: (128, 72)
|
588 |
+
[2023-02-24 08:06:27,358][795631] Doom resolution: 160x120, resize resolution: (128, 72)
|
589 |
+
[2023-02-24 08:06:27,358][795627] Doom resolution: 160x120, resize resolution: (128, 72)
|
590 |
+
[2023-02-24 08:06:27,359][795629] Doom resolution: 160x120, resize resolution: (128, 72)
|
591 |
+
[2023-02-24 08:06:27,364][795634] Doom resolution: 160x120, resize resolution: (128, 72)
|
592 |
+
[2023-02-24 08:06:27,381][795632] Doom resolution: 160x120, resize resolution: (128, 72)
|
593 |
+
[2023-02-24 08:06:27,380][795630] Doom resolution: 160x120, resize resolution: (128, 72)
|
594 |
+
[2023-02-24 08:06:27,394][795633] Doom resolution: 160x120, resize resolution: (128, 72)
|
595 |
+
[2023-02-24 08:06:27,569][795627] Decorrelating experience for 0 frames...
|
596 |
+
[2023-02-24 08:06:27,619][795634] Decorrelating experience for 0 frames...
|
597 |
+
[2023-02-24 08:06:27,650][795629] Decorrelating experience for 0 frames...
|
598 |
+
[2023-02-24 08:06:27,665][795630] Decorrelating experience for 0 frames...
|
599 |
+
[2023-02-24 08:06:27,805][795634] Decorrelating experience for 32 frames...
|
600 |
+
[2023-02-24 08:06:27,881][795630] Decorrelating experience for 32 frames...
|
601 |
+
[2023-02-24 08:06:27,882][795627] Decorrelating experience for 32 frames...
|
602 |
+
[2023-02-24 08:06:27,882][795632] Decorrelating experience for 0 frames...
|
603 |
+
[2023-02-24 08:06:28,090][795630] Decorrelating experience for 64 frames...
|
604 |
+
[2023-02-24 08:06:28,092][795632] Decorrelating experience for 32 frames...
|
605 |
+
[2023-02-24 08:06:28,106][795627] Decorrelating experience for 64 frames...
|
606 |
+
[2023-02-24 08:06:28,308][795632] Decorrelating experience for 64 frames...
|
607 |
+
[2023-02-24 08:06:28,376][795628] Decorrelating experience for 0 frames...
|
608 |
+
[2023-02-24 08:06:28,383][795630] Decorrelating experience for 96 frames...
|
609 |
+
[2023-02-24 08:06:28,383][795629] Decorrelating experience for 32 frames...
|
610 |
+
[2023-02-24 08:06:28,395][795627] Decorrelating experience for 96 frames...
|
611 |
+
[2023-02-24 08:06:28,625][795628] Decorrelating experience for 32 frames...
|
612 |
+
[2023-02-24 08:06:28,660][795633] Decorrelating experience for 0 frames...
|
613 |
+
[2023-02-24 08:06:28,720][795632] Decorrelating experience for 96 frames...
|
614 |
+
[2023-02-24 08:06:28,729][795631] Decorrelating experience for 0 frames...
|
615 |
+
[2023-02-24 08:06:28,907][795633] Decorrelating experience for 32 frames...
|
616 |
+
[2023-02-24 08:06:28,955][795628] Decorrelating experience for 64 frames...
|
617 |
+
[2023-02-24 08:06:28,975][795634] Decorrelating experience for 64 frames...
|
618 |
+
[2023-02-24 08:06:29,141][795633] Decorrelating experience for 64 frames...
|
619 |
+
[2023-02-24 08:06:29,169][795631] Decorrelating experience for 32 frames...
|
620 |
+
[2023-02-24 08:06:29,237][795628] Decorrelating experience for 96 frames...
|
621 |
+
[2023-02-24 08:06:29,253][795629] Decorrelating experience for 64 frames...
|
622 |
+
[2023-02-24 08:06:29,425][795631] Decorrelating experience for 64 frames...
|
623 |
+
[2023-02-24 08:06:29,531][795629] Decorrelating experience for 96 frames...
|
624 |
+
[2023-02-24 08:06:29,537][795634] Decorrelating experience for 96 frames...
|
625 |
+
[2023-02-24 08:06:29,541][795633] Decorrelating experience for 96 frames...
|
626 |
+
[2023-02-24 08:06:29,684][795631] Decorrelating experience for 96 frames...
|
627 |
+
[2023-02-24 08:06:29,698][795538] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 1097728. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
628 |
+
[2023-02-24 08:06:30,658][795613] Signal inference workers to stop experience collection...
|
629 |
+
[2023-02-24 08:06:30,662][795626] InferenceWorker_p0-w0: stopping experience collection
|
630 |
+
[2023-02-24 08:06:32,942][795613] Signal inference workers to resume experience collection...
|
631 |
+
[2023-02-24 08:06:32,942][795626] InferenceWorker_p0-w0: resuming experience collection
|
632 |
+
[2023-02-24 08:06:34,697][795538] Fps is (10 sec: 5734.4, 60 sec: 5734.4, 300 sec: 5734.4). Total num frames: 1126400. Throughput: 0: 628.8. Samples: 3144. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
633 |
+
[2023-02-24 08:06:34,699][795538] Avg episode reward: [(0, '5.223')]
|
634 |
+
[2023-02-24 08:06:35,433][795626] Updated weights for policy 0, policy_version 278 (0.0234)
|
635 |
+
[2023-02-24 08:06:38,065][795626] Updated weights for policy 0, policy_version 288 (0.0006)
|
636 |
+
[2023-02-24 08:06:39,698][795538] Fps is (10 sec: 10649.4, 60 sec: 10649.4, 300 sec: 10649.4). Total num frames: 1204224. Throughput: 0: 2626.3. Samples: 26264. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
637 |
+
[2023-02-24 08:06:39,699][795538] Avg episode reward: [(0, '6.797')]
|
638 |
+
[2023-02-24 08:06:39,702][795613] Saving new best policy, reward=6.797!
|
639 |
+
[2023-02-24 08:06:40,702][795626] Updated weights for policy 0, policy_version 298 (0.0006)
|
640 |
+
[2023-02-24 08:06:40,762][795538] Heartbeat connected on Batcher_0
|
641 |
+
[2023-02-24 08:06:40,764][795538] Heartbeat connected on LearnerWorker_p0
|
642 |
+
[2023-02-24 08:06:40,771][795538] Heartbeat connected on InferenceWorker_p0-w0
|
643 |
+
[2023-02-24 08:06:40,775][795538] Heartbeat connected on RolloutWorker_w0
|
644 |
+
[2023-02-24 08:06:40,777][795538] Heartbeat connected on RolloutWorker_w2
|
645 |
+
[2023-02-24 08:06:40,778][795538] Heartbeat connected on RolloutWorker_w1
|
646 |
+
[2023-02-24 08:06:40,779][795538] Heartbeat connected on RolloutWorker_w3
|
647 |
+
[2023-02-24 08:06:40,783][795538] Heartbeat connected on RolloutWorker_w4
|
648 |
+
[2023-02-24 08:06:40,784][795538] Heartbeat connected on RolloutWorker_w5
|
649 |
+
[2023-02-24 08:06:40,819][795538] Heartbeat connected on RolloutWorker_w7
|
650 |
+
[2023-02-24 08:06:40,825][795538] Heartbeat connected on RolloutWorker_w6
|
651 |
+
[2023-02-24 08:06:43,242][795626] Updated weights for policy 0, policy_version 308 (0.0007)
|
652 |
+
[2023-02-24 08:06:44,698][795538] Fps is (10 sec: 15564.8, 60 sec: 12288.0, 300 sec: 12288.0). Total num frames: 1282048. Throughput: 0: 2536.4. Samples: 38046. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
653 |
+
[2023-02-24 08:06:44,698][795538] Avg episode reward: [(0, '7.215')]
|
654 |
+
[2023-02-24 08:06:44,700][795613] Saving new best policy, reward=7.215!
|
655 |
+
[2023-02-24 08:06:45,889][795626] Updated weights for policy 0, policy_version 318 (0.0007)
|
656 |
+
[2023-02-24 08:06:48,495][795626] Updated weights for policy 0, policy_version 328 (0.0007)
|
657 |
+
[2023-02-24 08:06:49,698][795538] Fps is (10 sec: 15565.1, 60 sec: 13107.2, 300 sec: 13107.2). Total num frames: 1359872. Throughput: 0: 3079.6. Samples: 61592. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
658 |
+
[2023-02-24 08:06:49,699][795538] Avg episode reward: [(0, '8.493')]
|
659 |
+
[2023-02-24 08:06:49,702][795613] Saving new best policy, reward=8.493!
|
660 |
+
[2023-02-24 08:06:51,107][795626] Updated weights for policy 0, policy_version 338 (0.0007)
|
661 |
+
[2023-02-24 08:06:53,724][795626] Updated weights for policy 0, policy_version 348 (0.0007)
|
662 |
+
[2023-02-24 08:06:54,698][795538] Fps is (10 sec: 15564.7, 60 sec: 13598.7, 300 sec: 13598.7). Total num frames: 1437696. Throughput: 0: 3404.3. Samples: 85108. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
663 |
+
[2023-02-24 08:06:54,699][795538] Avg episode reward: [(0, '10.669')]
|
664 |
+
[2023-02-24 08:06:54,700][795613] Saving new best policy, reward=10.669!
|
665 |
+
[2023-02-24 08:06:56,371][795626] Updated weights for policy 0, policy_version 358 (0.0007)
|
666 |
+
[2023-02-24 08:06:58,972][795626] Updated weights for policy 0, policy_version 368 (0.0007)
|
667 |
+
[2023-02-24 08:06:59,697][795538] Fps is (10 sec: 15564.8, 60 sec: 13926.4, 300 sec: 13926.4). Total num frames: 1515520. Throughput: 0: 3226.5. Samples: 96796. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
668 |
+
[2023-02-24 08:06:59,698][795538] Avg episode reward: [(0, '13.259')]
|
669 |
+
[2023-02-24 08:06:59,701][795613] Saving new best policy, reward=13.259!
|
670 |
+
[2023-02-24 08:07:01,613][795626] Updated weights for policy 0, policy_version 378 (0.0007)
|
671 |
+
[2023-02-24 08:07:04,206][795626] Updated weights for policy 0, policy_version 388 (0.0007)
|
672 |
+
[2023-02-24 08:07:04,698][795538] Fps is (10 sec: 15564.9, 60 sec: 14160.5, 300 sec: 14160.5). Total num frames: 1593344. Throughput: 0: 3437.5. Samples: 120312. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
673 |
+
[2023-02-24 08:07:04,698][795538] Avg episode reward: [(0, '13.989')]
|
674 |
+
[2023-02-24 08:07:04,699][795613] Saving new best policy, reward=13.989!
|
675 |
+
[2023-02-24 08:07:06,831][795626] Updated weights for policy 0, policy_version 398 (0.0007)
|
676 |
+
[2023-02-24 08:07:08,206][795538] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 795538], exiting...
|
677 |
+
[2023-02-24 08:07:08,207][795538] Runner profile tree view:
|
678 |
+
main_loop: 47.3880
|
679 |
+
[2023-02-24 08:07:08,208][795613] Stopping Batcher_0...
|
680 |
+
[2023-02-24 08:07:08,208][795613] Loop batcher_evt_loop terminating...
|
681 |
+
[2023-02-24 08:07:08,208][795538] Collected {0: 1650688}, FPS: 11668.8
|
682 |
+
[2023-02-24 08:07:08,209][795613] Saving /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000403_1650688.pth...
|
683 |
+
[2023-02-24 08:07:08,216][795632] Stopping RolloutWorker_w5...
|
684 |
+
[2023-02-24 08:07:08,216][795632] Loop rollout_proc5_evt_loop terminating...
|
685 |
+
[2023-02-24 08:07:08,218][795630] Stopping RolloutWorker_w3...
|
686 |
+
[2023-02-24 08:07:08,218][795630] Loop rollout_proc3_evt_loop terminating...
|
687 |
+
[2023-02-24 08:07:08,218][795628] Stopping RolloutWorker_w1...
|
688 |
+
[2023-02-24 08:07:08,218][795633] Stopping RolloutWorker_w7...
|
689 |
+
[2023-02-24 08:07:08,219][795628] Loop rollout_proc1_evt_loop terminating...
|
690 |
+
[2023-02-24 08:07:08,219][795633] Loop rollout_proc7_evt_loop terminating...
|
691 |
+
[2023-02-24 08:07:08,221][795631] Stopping RolloutWorker_w4...
|
692 |
+
[2023-02-24 08:07:08,221][795631] Loop rollout_proc4_evt_loop terminating...
|
693 |
+
[2023-02-24 08:07:08,228][795629] Stopping RolloutWorker_w2...
|
694 |
+
[2023-02-24 08:07:08,228][795629] Loop rollout_proc2_evt_loop terminating...
|
695 |
+
[2023-02-24 08:07:08,230][795627] Stopping RolloutWorker_w0...
|
696 |
+
[2023-02-24 08:07:08,230][795634] Stopping RolloutWorker_w6...
|
697 |
+
[2023-02-24 08:07:08,230][795634] Loop rollout_proc6_evt_loop terminating...
|
698 |
+
[2023-02-24 08:07:08,230][795627] Loop rollout_proc0_evt_loop terminating...
|
699 |
+
[2023-02-24 08:07:08,252][795626] Weights refcount: 2 0
|
700 |
+
[2023-02-24 08:07:08,256][795626] Stopping InferenceWorker_p0-w0...
|
701 |
+
[2023-02-24 08:07:08,260][795626] Loop inference_proc0-0_evt_loop terminating...
|
702 |
+
[2023-02-24 08:07:08,376][795613] Stopping LearnerWorker_p0...
|
703 |
+
[2023-02-24 08:07:08,377][795613] Loop learner_proc0_evt_loop terminating...
|
704 |
+
[2023-02-24 08:07:38,064][795538] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
|
705 |
+
[2023-02-24 08:07:38,065][795538] Overriding arg 'num_workers' with value 1 passed from command line
|
706 |
+
[2023-02-24 08:07:38,065][795538] Adding new argument 'no_render'=True that is not in the saved config file!
|
707 |
+
[2023-02-24 08:07:38,065][795538] Adding new argument 'save_video'=True that is not in the saved config file!
|
708 |
+
[2023-02-24 08:07:38,066][795538] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
709 |
+
[2023-02-24 08:07:38,066][795538] Adding new argument 'video_name'=None that is not in the saved config file!
|
710 |
+
[2023-02-24 08:07:38,066][795538] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
711 |
+
[2023-02-24 08:07:38,067][795538] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
712 |
+
[2023-02-24 08:07:38,067][795538] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
713 |
+
[2023-02-24 08:07:38,068][795538] Adding new argument 'hf_repository'='chqmatteo/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
714 |
+
[2023-02-24 08:07:38,068][795538] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
715 |
+
[2023-02-24 08:07:38,068][795538] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
716 |
+
[2023-02-24 08:07:38,068][795538] Adding new argument 'train_script'=None that is not in the saved config file!
|
717 |
+
[2023-02-24 08:07:38,069][795538] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
718 |
+
[2023-02-24 08:07:38,069][795538] Using frameskip 1 and render_action_repeat=4 for evaluation
|
719 |
+
[2023-02-24 08:07:38,076][795538] Doom resolution: 160x120, resize resolution: (128, 72)
|
720 |
+
[2023-02-24 08:07:38,077][795538] RunningMeanStd input shape: (3, 72, 128)
|
721 |
+
[2023-02-24 08:07:38,078][795538] RunningMeanStd input shape: (1,)
|
722 |
+
[2023-02-24 08:07:38,086][795538] ConvEncoder: input_channels=3
|
723 |
+
[2023-02-24 08:07:38,169][795538] Conv encoder output size: 512
|
724 |
+
[2023-02-24 08:07:38,170][795538] Policy head output size: 512
|
725 |
+
[2023-02-24 08:07:40,757][795538] Loading state from checkpoint /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000403_1650688.pth...
|
726 |
+
[2023-02-24 08:07:42,930][795538] Num frames 100...
|
727 |
+
[2023-02-24 08:07:43,007][795538] Num frames 200...
|
728 |
+
[2023-02-24 08:07:43,075][795538] Num frames 300...
|
729 |
+
[2023-02-24 08:07:43,138][795538] Num frames 400...
|
730 |
+
[2023-02-24 08:07:43,207][795538] Num frames 500...
|
731 |
+
[2023-02-24 08:07:43,275][795538] Num frames 600...
|
732 |
+
[2023-02-24 08:07:43,349][795538] Num frames 700...
|
733 |
+
[2023-02-24 08:07:43,409][795538] Avg episode rewards: #0: 16.090, true rewards: #0: 7.090
|
734 |
+
[2023-02-24 08:07:43,410][795538] Avg episode reward: 16.090, avg true_objective: 7.090
|
735 |
+
[2023-02-24 08:07:43,472][795538] Num frames 800...
|
736 |
+
[2023-02-24 08:07:43,536][795538] Num frames 900...
|
737 |
+
[2023-02-24 08:07:43,605][795538] Num frames 1000...
|
738 |
+
[2023-02-24 08:07:43,689][795538] Num frames 1100...
|
739 |
+
[2023-02-24 08:07:43,790][795538] Avg episode rewards: #0: 10.785, true rewards: #0: 5.785
|
740 |
+
[2023-02-24 08:07:43,791][795538] Avg episode reward: 10.785, avg true_objective: 5.785
|
741 |
+
[2023-02-24 08:07:43,819][795538] Num frames 1200...
|
742 |
+
[2023-02-24 08:07:43,885][795538] Num frames 1300...
|
743 |
+
[2023-02-24 08:07:43,956][795538] Num frames 1400...
|
744 |
+
[2023-02-24 08:07:44,024][795538] Num frames 1500...
|
745 |
+
[2023-02-24 08:07:44,102][795538] Num frames 1600...
|
746 |
+
[2023-02-24 08:07:44,182][795538] Num frames 1700...
|
747 |
+
[2023-02-24 08:07:44,280][795538] Avg episode rewards: #0: 10.217, true rewards: #0: 5.883
|
748 |
+
[2023-02-24 08:07:44,280][795538] Avg episode reward: 10.217, avg true_objective: 5.883
|
749 |
+
[2023-02-24 08:07:44,305][795538] Num frames 1800...
|
750 |
+
[2023-02-24 08:07:44,373][795538] Num frames 1900...
|
751 |
+
[2023-02-24 08:07:44,443][795538] Num frames 2000...
|
752 |
+
[2023-02-24 08:07:44,519][795538] Num frames 2100...
|
753 |
+
[2023-02-24 08:07:44,607][795538] Num frames 2200...
|
754 |
+
[2023-02-24 08:07:44,678][795538] Num frames 2300...
|
755 |
+
[2023-02-24 08:07:44,753][795538] Num frames 2400...
|
756 |
+
[2023-02-24 08:07:44,838][795538] Num frames 2500...
|
757 |
+
[2023-02-24 08:07:44,919][795538] Num frames 2600...
|
758 |
+
[2023-02-24 08:07:45,012][795538] Avg episode rewards: #0: 12.653, true rewards: #0: 6.652
|
759 |
+
[2023-02-24 08:07:45,013][795538] Avg episode reward: 12.653, avg true_objective: 6.652
|
760 |
+
[2023-02-24 08:07:45,040][795538] Num frames 2700...
|
761 |
+
[2023-02-24 08:07:45,115][795538] Num frames 2800...
|
762 |
+
[2023-02-24 08:07:45,187][795538] Num frames 2900...
|
763 |
+
[2023-02-24 08:07:45,261][795538] Num frames 3000...
|
764 |
+
[2023-02-24 08:07:45,381][795538] Num frames 3100...
|
765 |
+
[2023-02-24 08:07:45,448][795538] Num frames 3200...
|
766 |
+
[2023-02-24 08:07:45,513][795538] Num frames 3300...
|
767 |
+
[2023-02-24 08:07:45,581][795538] Num frames 3400...
|
768 |
+
[2023-02-24 08:07:45,652][795538] Num frames 3500...
|
769 |
+
[2023-02-24 08:07:45,717][795538] Num frames 3600...
|
770 |
+
[2023-02-24 08:07:45,790][795538] Num frames 3700...
|
771 |
+
[2023-02-24 08:07:45,860][795538] Num frames 3800...
|
772 |
+
[2023-02-24 08:07:45,935][795538] Num frames 3900...
|
773 |
+
[2023-02-24 08:07:46,006][795538] Num frames 4000...
|
774 |
+
[2023-02-24 08:07:46,078][795538] Num frames 4100...
|
775 |
+
[2023-02-24 08:07:46,213][795538] Avg episode rewards: #0: 17.194, true rewards: #0: 8.394
|
776 |
+
[2023-02-24 08:07:46,214][795538] Avg episode reward: 17.194, avg true_objective: 8.394
|
777 |
+
[2023-02-24 08:07:46,216][795538] Num frames 4200...
|
778 |
+
[2023-02-24 08:07:46,291][795538] Num frames 4300...
|
779 |
+
[2023-02-24 08:07:46,369][795538] Num frames 4400...
|
780 |
+
[2023-02-24 08:07:46,449][795538] Num frames 4500...
|
781 |
+
[2023-02-24 08:07:46,522][795538] Num frames 4600...
|
782 |
+
[2023-02-24 08:07:46,591][795538] Num frames 4700...
|
783 |
+
[2023-02-24 08:07:46,662][795538] Num frames 4800...
|
784 |
+
[2023-02-24 08:07:46,732][795538] Num frames 4900...
|
785 |
+
[2023-02-24 08:07:46,831][795538] Avg episode rewards: #0: 16.942, true rewards: #0: 8.275
|
786 |
+
[2023-02-24 08:07:46,831][795538] Avg episode reward: 16.942, avg true_objective: 8.275
|
787 |
+
[2023-02-24 08:07:46,855][795538] Num frames 5000...
|
788 |
+
[2023-02-24 08:07:46,919][795538] Num frames 5100...
|
789 |
+
[2023-02-24 08:07:46,986][795538] Num frames 5200...
|
790 |
+
[2023-02-24 08:07:47,056][795538] Num frames 5300...
|
791 |
+
[2023-02-24 08:07:47,141][795538] Num frames 5400...
|
792 |
+
[2023-02-24 08:07:47,210][795538] Num frames 5500...
|
793 |
+
[2023-02-24 08:07:47,278][795538] Num frames 5600...
|
794 |
+
[2023-02-24 08:07:47,382][795538] Avg episode rewards: #0: 16.394, true rewards: #0: 8.109
|
795 |
+
[2023-02-24 08:07:47,383][795538] Avg episode reward: 16.394, avg true_objective: 8.109
|
796 |
+
[2023-02-24 08:07:47,406][795538] Num frames 5700...
|
797 |
+
[2023-02-24 08:07:47,483][795538] Num frames 5800...
|
798 |
+
[2023-02-24 08:07:47,567][795538] Num frames 5900...
|
799 |
+
[2023-02-24 08:07:47,636][795538] Num frames 6000...
|
800 |
+
[2023-02-24 08:07:47,706][795538] Num frames 6100...
|
801 |
+
[2023-02-24 08:07:47,783][795538] Num frames 6200...
|
802 |
+
[2023-02-24 08:07:47,861][795538] Num frames 6300...
|
803 |
+
[2023-02-24 08:07:47,935][795538] Num frames 6400...
|
804 |
+
[2023-02-24 08:07:48,009][795538] Num frames 6500...
|
805 |
+
[2023-02-24 08:07:48,093][795538] Num frames 6600...
|
806 |
+
[2023-02-24 08:07:48,166][795538] Num frames 6700...
|
807 |
+
[2023-02-24 08:07:48,237][795538] Num frames 6800...
|
808 |
+
[2023-02-24 08:07:48,313][795538] Num frames 6900...
|
809 |
+
[2023-02-24 08:07:48,383][795538] Num frames 7000...
|
810 |
+
[2023-02-24 08:07:48,450][795538] Num frames 7100...
|
811 |
+
[2023-02-24 08:07:48,516][795538] Num frames 7200...
|
812 |
+
[2023-02-24 08:07:48,594][795538] Num frames 7300...
|
813 |
+
[2023-02-24 08:07:48,669][795538] Num frames 7400...
|
814 |
+
[2023-02-24 08:07:48,742][795538] Num frames 7500...
|
815 |
+
[2023-02-24 08:07:48,814][795538] Num frames 7600...
|
816 |
+
[2023-02-24 08:07:48,895][795538] Num frames 7700...
|
817 |
+
[2023-02-24 08:07:48,996][795538] Avg episode rewards: #0: 21.345, true rewards: #0: 9.720
|
818 |
+
[2023-02-24 08:07:48,997][795538] Avg episode reward: 21.345, avg true_objective: 9.720
|
819 |
+
[2023-02-24 08:07:49,018][795538] Num frames 7800...
|
820 |
+
[2023-02-24 08:07:49,092][795538] Num frames 7900...
|
821 |
+
[2023-02-24 08:07:49,171][795538] Num frames 8000...
|
822 |
+
[2023-02-24 08:07:49,241][795538] Num frames 8100...
|
823 |
+
[2023-02-24 08:07:49,311][795538] Num frames 8200...
|
824 |
+
[2023-02-24 08:07:49,424][795538] Avg episode rewards: #0: 20.098, true rewards: #0: 9.209
|
825 |
+
[2023-02-24 08:07:49,425][795538] Avg episode reward: 20.098, avg true_objective: 9.209
|
826 |
+
[2023-02-24 08:07:49,434][795538] Num frames 8300...
|
827 |
+
[2023-02-24 08:07:49,502][795538] Num frames 8400...
|
828 |
+
[2023-02-24 08:07:49,568][795538] Num frames 8500...
|
829 |
+
[2023-02-24 08:07:49,643][795538] Num frames 8600...
|
830 |
+
[2023-02-24 08:07:49,707][795538] Num frames 8700...
|
831 |
+
[2023-02-24 08:07:49,763][795538] Avg episode rewards: #0: 18.704, true rewards: #0: 8.704
|
832 |
+
[2023-02-24 08:07:49,764][795538] Avg episode reward: 18.704, avg true_objective: 8.704
|
833 |
+
[2023-02-24 08:07:53,791][795538] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
|