chmanoj commited on
Commit
05052ff
1 Parent(s): 6bcaa05

Remove old files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.gitignore DELETED
@@ -1,2 +0,0 @@
1
- checkpoint-*/
2
- .ipynb_checkpoints/*
 
 
 
README.md DELETED
@@ -1,69 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- tags:
4
- - automatic-speech-recognition
5
- - openslr_SLR66
6
- - robust-speech-event
7
- - generated_from_trainer
8
- model-index:
9
- - name: ''
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- #
17
-
18
- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the OPENSLR_SLR66 - NA dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 0.9243
21
- - Wer: 0.9293
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
-
37
- ### Training hyperparameters
38
-
39
- The following hyperparameters were used during training:
40
- - learning_rate: 7.5e-05
41
- - train_batch_size: 4
42
- - eval_batch_size: 4
43
- - seed: 42
44
- - gradient_accumulation_steps: 8
45
- - total_train_batch_size: 32
46
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
- - lr_scheduler_type: linear
48
- - lr_scheduler_warmup_steps: 2000
49
- - num_epochs: 60.0
50
- - mixed_precision_training: Native AMP
51
-
52
- ### Training results
53
-
54
- | Training Loss | Epoch | Step | Validation Loss | Wer |
55
- |:-------------:|:-----:|:----:|:---------------:|:------:|
56
- | 1.8141 | 9.61 | 1000 | 0.7609 | 0.7778 |
57
- | 2.2935 | 19.23 | 2000 | 1.1849 | 0.9657 |
58
- | 2.2848 | 28.84 | 3000 | 1.1789 | 0.9760 |
59
- | 2.3325 | 38.46 | 4000 | 1.0878 | 0.9595 |
60
- | 2.25 | 48.08 | 5000 | 1.0888 | 0.9586 |
61
- | 2.0757 | 57.69 | 6000 | 0.9504 | 0.9412 |
62
-
63
-
64
- ### Framework versions
65
-
66
- - Transformers 4.16.0.dev0
67
- - Pytorch 1.10.1+cu102
68
- - Datasets 1.17.1.dev0
69
- - Tokenizers 0.11.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
added_tokens.json DELETED
@@ -1 +0,0 @@
1
- {"<s>": 77, "</s>": 78}
 
 
all_results.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "epoch": 60.0,
3
- "eval_loss": 0.9243341088294983,
4
- "eval_runtime": 80.7101,
5
- "eval_samples": 1112,
6
- "eval_samples_per_second": 13.778,
7
- "eval_steps_per_second": 3.444,
8
- "eval_wer": 0.9293273542600897,
9
- "train_loss": 2.2000570346147588,
10
- "train_runtime": 38994.8678,
11
- "train_samples": 3336,
12
- "train_samples_per_second": 5.133,
13
- "train_steps_per_second": 0.16
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json DELETED
@@ -1,107 +0,0 @@
1
- {
2
- "_name_or_path": "facebook/wav2vec2-xls-r-2b",
3
- "activation_dropout": 0.1,
4
- "adapter_kernel_size": 3,
5
- "adapter_stride": 2,
6
- "add_adapter": false,
7
- "apply_spec_augment": true,
8
- "architectures": [
9
- "Wav2Vec2ForCTC"
10
- ],
11
- "attention_dropout": 0.0,
12
- "bos_token_id": 1,
13
- "classifier_proj_size": 256,
14
- "codevector_dim": 1024,
15
- "contrastive_logits_temperature": 0.1,
16
- "conv_bias": true,
17
- "conv_dim": [
18
- 512,
19
- 512,
20
- 512,
21
- 512,
22
- 512,
23
- 512,
24
- 512
25
- ],
26
- "conv_kernel": [
27
- 10,
28
- 3,
29
- 3,
30
- 3,
31
- 3,
32
- 2,
33
- 2
34
- ],
35
- "conv_stride": [
36
- 5,
37
- 2,
38
- 2,
39
- 2,
40
- 2,
41
- 2,
42
- 2
43
- ],
44
- "ctc_loss_reduction": "mean",
45
- "ctc_zero_infinity": false,
46
- "diversity_loss_weight": 0.1,
47
- "do_stable_layer_norm": true,
48
- "eos_token_id": 2,
49
- "feat_extract_activation": "gelu",
50
- "feat_extract_dropout": 0.0,
51
- "feat_extract_norm": "layer",
52
- "feat_proj_dropout": 0.0,
53
- "feat_quantizer_dropout": 0.0,
54
- "final_dropout": 0.0,
55
- "hidden_act": "gelu",
56
- "hidden_dropout": 0.0,
57
- "hidden_size": 1920,
58
- "initializer_range": 0.02,
59
- "intermediate_size": 7680,
60
- "layer_norm_eps": 1e-05,
61
- "layerdrop": 0.0,
62
- "mask_feature_length": 64,
63
- "mask_feature_min_masks": 0,
64
- "mask_feature_prob": 0.25,
65
- "mask_time_length": 10,
66
- "mask_time_min_masks": 2,
67
- "mask_time_prob": 0.75,
68
- "model_type": "wav2vec2",
69
- "num_adapter_layers": 3,
70
- "num_attention_heads": 16,
71
- "num_codevector_groups": 2,
72
- "num_codevectors_per_group": 320,
73
- "num_conv_pos_embedding_groups": 16,
74
- "num_conv_pos_embeddings": 128,
75
- "num_feat_extract_layers": 7,
76
- "num_hidden_layers": 48,
77
- "num_negatives": 100,
78
- "output_hidden_size": 1920,
79
- "pad_token_id": 76,
80
- "proj_codevector_dim": 1024,
81
- "tdnn_dilation": [
82
- 1,
83
- 2,
84
- 3,
85
- 1,
86
- 1
87
- ],
88
- "tdnn_dim": [
89
- 512,
90
- 512,
91
- 512,
92
- 512,
93
- 1500
94
- ],
95
- "tdnn_kernel": [
96
- 5,
97
- 3,
98
- 3,
99
- 1,
100
- 1
101
- ],
102
- "torch_dtype": "float32",
103
- "transformers_version": "4.16.0.dev0",
104
- "use_weighted_layer_sum": false,
105
- "vocab_size": 79,
106
- "xvector_output_dim": 512
107
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eval_results.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "epoch": 60.0,
3
- "eval_loss": 0.9243341088294983,
4
- "eval_runtime": 80.7101,
5
- "eval_samples": 1112,
6
- "eval_samples_per_second": 13.778,
7
- "eval_steps_per_second": 3.444,
8
- "eval_wer": 0.9293273542600897
9
- }
 
 
 
 
 
 
 
 
 
 
preprocessor_config.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "do_normalize": true,
3
- "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
- "feature_size": 1,
5
- "padding_side": "right",
6
- "padding_value": 0,
7
- "return_attention_mask": true,
8
- "sampling_rate": 16000
9
- }
 
 
 
 
 
 
 
 
 
 
pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6447b9bfe1ae69ddefa68b10c300469609be3bdc873e1d729bcd1461962117a9
3
- size 8637973773
 
 
 
 
run.sh DELETED
@@ -1,35 +0,0 @@
1
- python run_speech_recognition_ctc.py \
2
- --model_name_or_path="facebook/wav2vec2-xls-r-2b" \
3
- --dataset_name="openslr_SLR66" \
4
- --train_split_name="train" \
5
- --preprocessing_num_workers="8" \
6
- --output_dir="./" \
7
- --overwrite_output_dir \
8
- --num_train_epochs="5" \
9
- --per_device_train_batch_size="4" \
10
- --per_device_eval_batch_size="4" \
11
- --gradient_accumulation_steps="8" \
12
- --learning_rate="7.5e-5" \
13
- --warmup_steps="2000" \
14
- --length_column_name="input_length" \
15
- --evaluation_strategy="steps" \
16
- --text_column_name="sentence" \
17
- --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
18
- --save_steps="500" \
19
- --eval_steps="500" \
20
- --logging_steps="100" \
21
- --layerdrop="0.0" \
22
- --activation_dropout="0.1" \
23
- --save_total_limit="3" \
24
- --freeze_feature_encoder \
25
- --feat_proj_dropout="0.0" \
26
- --mask_time_prob="0.75" \
27
- --mask_time_length="10" \
28
- --mask_feature_prob="0.25" \
29
- --mask_feature_length="64" \
30
- --gradient_checkpointing \
31
- --use_auth_token \
32
- --fp16 \
33
- --group_by_length \
34
- --do_train --do_eval \
35
- --push_to_hub
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
run_bnb.sh DELETED
@@ -1,34 +0,0 @@
1
- python run_speech_recognition_ctc_bnb.py \
2
- --model_name_or_path="facebook/wav2vec2-xls-r-2b" \
3
- --dataset_name="openslr_SLR66" \
4
- --train_split_name="train" \
5
- --preprocessing_num_workers="8" \
6
- --output_dir="./" \
7
- --overwrite_output_dir \
8
- --num_train_epochs="60" \
9
- --per_device_train_batch_size="4" \
10
- --per_device_eval_batch_size="4" \
11
- --gradient_accumulation_steps="8" \
12
- --learning_rate="7.5e-5" \
13
- --warmup_steps="2000" \
14
- --length_column_name="input_length" \
15
- --evaluation_strategy="steps" \
16
- --text_column_name="sentence" \
17
- --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
18
- --save_steps="1000" \
19
- --eval_steps="1000" \
20
- --logging_steps="100" \
21
- --layerdrop="0.0" \
22
- --activation_dropout="0.1" \
23
- --save_total_limit="3" \
24
- --freeze_feature_encoder \
25
- --feat_proj_dropout="0.0" \
26
- --mask_time_prob="0.75" \
27
- --mask_time_length="10" \
28
- --mask_feature_prob="0.25" \
29
- --mask_feature_length="64" \
30
- --gradient_checkpointing \
31
- --use_auth_token \
32
- --fp16 \
33
- --group_by_length \
34
- --do_train --do_eval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
run_speech_recognition_ctc.py DELETED
@@ -1,756 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
-
16
- """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
-
18
- import functools
19
- import json
20
- import logging
21
- import os
22
- import re
23
- import sys
24
- import warnings
25
- from dataclasses import dataclass, field
26
- from typing import Dict, List, Optional, Union
27
-
28
- import datasets
29
- import numpy as np
30
- import torch
31
- from datasets import DatasetDict, load_dataset, load_metric
32
-
33
- import transformers
34
- from transformers import (
35
- AutoConfig,
36
- AutoFeatureExtractor,
37
- AutoModelForCTC,
38
- AutoProcessor,
39
- AutoTokenizer,
40
- HfArgumentParser,
41
- Trainer,
42
- TrainingArguments,
43
- Wav2Vec2Processor,
44
- set_seed,
45
- )
46
- from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
- from transformers.utils import check_min_version
48
- from transformers.utils.versions import require_version
49
-
50
-
51
- # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
- check_min_version("4.16.0.dev0")
53
-
54
- require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
-
56
-
57
- logger = logging.getLogger(__name__)
58
-
59
-
60
- def list_field(default=None, metadata=None):
61
- return field(default_factory=lambda: default, metadata=metadata)
62
-
63
- def get_telugu_dataset(validation_split=False):
64
- dataset = load_dataset('openslr', 'SLR66')
65
-
66
- seed=1242
67
-
68
- if validation_split:
69
- train_testvalid = dataset['train'].train_test_split(test_size=0.2, seed=seed)
70
- # Split the 10% test + valid in half test, half valid
71
- test_valid = train_testvalid['test'].train_test_split(test_size=0.33, seed=seed)
72
- # gather everyone if you want to have a single DatasetDict
73
- out_dataset = DatasetDict({
74
- 'train': train_testvalid['train'],
75
- 'test': test_valid['test'],
76
- 'valid': test_valid['train']})
77
- else:
78
- train_testvalid = dataset['train'].train_test_split(test_size=0.25, seed=seed)
79
- out_dataset = DatasetDict({
80
- 'train': train_testvalid['train'],
81
- 'test': train_testvalid['test']})
82
- return out_dataset
83
-
84
-
85
- @dataclass
86
- class ModelArguments:
87
- """
88
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
89
- """
90
-
91
- model_name_or_path: str = field(
92
- metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
93
- )
94
- tokenizer_name_or_path: Optional[str] = field(
95
- default=None,
96
- metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
97
- )
98
- cache_dir: Optional[str] = field(
99
- default=None,
100
- metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
101
- )
102
- freeze_feature_encoder: bool = field(
103
- default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
104
- )
105
- attention_dropout: float = field(
106
- default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
107
- )
108
- activation_dropout: float = field(
109
- default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
110
- )
111
- feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
112
- hidden_dropout: float = field(
113
- default=0.0,
114
- metadata={
115
- "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
116
- },
117
- )
118
- final_dropout: float = field(
119
- default=0.0,
120
- metadata={"help": "The dropout probability for the final projection layer."},
121
- )
122
- mask_time_prob: float = field(
123
- default=0.05,
124
- metadata={
125
- "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
126
- "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
127
- "vectors will be masked along the time axis."
128
- },
129
- )
130
- mask_time_length: int = field(
131
- default=10,
132
- metadata={"help": "Length of vector span to mask along the time axis."},
133
- )
134
- mask_feature_prob: float = field(
135
- default=0.0,
136
- metadata={
137
- "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
138
- "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
139
- },
140
- )
141
- mask_feature_length: int = field(
142
- default=10,
143
- metadata={"help": "Length of vector span to mask along the feature axis."},
144
- )
145
- layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
146
- ctc_loss_reduction: Optional[str] = field(
147
- default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
148
- )
149
-
150
-
151
- @dataclass
152
- class DataTrainingArguments:
153
- """
154
- Arguments pertaining to what data we are going to input our model for training and eval.
155
-
156
- Using `HfArgumentParser` we can turn this class
157
- into argparse arguments to be able to specify them on
158
- the command line.
159
- """
160
-
161
- dataset_name: str = field(
162
- metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
163
- )
164
- dataset_config_name: str = field(
165
- default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
166
- )
167
- train_split_name: str = field(
168
- default="train+validation",
169
- metadata={
170
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
171
- },
172
- )
173
- eval_split_name: str = field(
174
- default="test",
175
- metadata={
176
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
177
- },
178
- )
179
- audio_column_name: str = field(
180
- default="audio",
181
- metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
182
- )
183
- text_column_name: str = field(
184
- default="text",
185
- metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
186
- )
187
- overwrite_cache: bool = field(
188
- default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
189
- )
190
- preprocessing_num_workers: Optional[int] = field(
191
- default=None,
192
- metadata={"help": "The number of processes to use for the preprocessing."},
193
- )
194
- max_train_samples: Optional[int] = field(
195
- default=None,
196
- metadata={
197
- "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
198
- "value if set."
199
- },
200
- )
201
- max_eval_samples: Optional[int] = field(
202
- default=None,
203
- metadata={
204
- "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
205
- "value if set."
206
- },
207
- )
208
- chars_to_ignore: Optional[List[str]] = list_field(
209
- default=None,
210
- metadata={"help": "A list of characters to remove from the transcripts."},
211
- )
212
- eval_metrics: List[str] = list_field(
213
- default=["wer"],
214
- metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
215
- )
216
- max_duration_in_seconds: float = field(
217
- default=20.0,
218
- metadata={
219
- "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
220
- },
221
- )
222
- min_duration_in_seconds: float = field(
223
- default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
224
- )
225
- preprocessing_only: bool = field(
226
- default=False,
227
- metadata={
228
- "help": "Whether to only do data preprocessing and skip training. "
229
- "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
230
- "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
231
- "so that the cached datasets can consequently be loaded in distributed training"
232
- },
233
- )
234
- use_auth_token: bool = field(
235
- default=False,
236
- metadata={
237
- "help": "If :obj:`True`, will use the token generated when running"
238
- ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
239
- },
240
- )
241
- unk_token: str = field(
242
- default="[UNK]",
243
- metadata={"help": "The unk token for the tokenizer"},
244
- )
245
- pad_token: str = field(
246
- default="[PAD]",
247
- metadata={"help": "The padding token for the tokenizer"},
248
- )
249
- word_delimiter_token: str = field(
250
- default="|",
251
- metadata={"help": "The word delimiter token for the tokenizer"},
252
- )
253
- phoneme_language: Optional[str] = field(
254
- default=None,
255
- metadata={
256
- "help": "The target language that should be used be"
257
- " passed to the tokenizer for tokenization. Note that"
258
- " this is only relevant if the model classifies the"
259
- " input audio to a sequence of phoneme sequences."
260
- },
261
- )
262
-
263
-
264
- @dataclass
265
- class DataCollatorCTCWithPadding:
266
- """
267
- Data collator that will dynamically pad the inputs received.
268
- Args:
269
- processor (:class:`~transformers.AutoProcessor`)
270
- The processor used for proccessing the data.
271
- padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
272
- Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
273
- among:
274
- * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
275
- sequence if provided).
276
- * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
277
- maximum acceptable input length for the model if that argument is not provided.
278
- * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
279
- different lengths).
280
- max_length (:obj:`int`, `optional`):
281
- Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
282
- max_length_labels (:obj:`int`, `optional`):
283
- Maximum length of the ``labels`` returned list and optionally padding length (see above).
284
- pad_to_multiple_of (:obj:`int`, `optional`):
285
- If set will pad the sequence to a multiple of the provided value.
286
- This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
287
- 7.5 (Volta).
288
- """
289
-
290
- processor: AutoProcessor
291
- padding: Union[bool, str] = "longest"
292
- pad_to_multiple_of: Optional[int] = None
293
- pad_to_multiple_of_labels: Optional[int] = None
294
-
295
- def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
296
- # split inputs and labels since they have to be of different lenghts and need
297
- # different padding methods
298
- input_features = [{"input_values": feature["input_values"]} for feature in features]
299
- label_features = [{"input_ids": feature["labels"]} for feature in features]
300
-
301
- batch = self.processor.pad(
302
- input_features,
303
- padding=self.padding,
304
- pad_to_multiple_of=self.pad_to_multiple_of,
305
- return_tensors="pt",
306
- )
307
-
308
- with self.processor.as_target_processor():
309
- labels_batch = self.processor.pad(
310
- label_features,
311
- padding=self.padding,
312
- pad_to_multiple_of=self.pad_to_multiple_of_labels,
313
- return_tensors="pt",
314
- )
315
-
316
- # replace padding with -100 to ignore loss correctly
317
- labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
318
-
319
- batch["labels"] = labels
320
-
321
- return batch
322
-
323
-
324
- def create_vocabulary_from_data(
325
- datasets: DatasetDict,
326
- word_delimiter_token: Optional[str] = None,
327
- unk_token: Optional[str] = None,
328
- pad_token: Optional[str] = None,
329
- ):
330
- # Given training and test labels create vocabulary
331
- def extract_all_chars(batch):
332
- all_text = " ".join(batch["target_text"])
333
- vocab = list(set(all_text))
334
- return {"vocab": [vocab], "all_text": [all_text]}
335
-
336
- vocabs = datasets.map(
337
- extract_all_chars,
338
- batched=True,
339
- batch_size=-1,
340
- keep_in_memory=True,
341
- remove_columns=datasets["train"].column_names,
342
- )
343
-
344
- # take union of all unique characters in each dataset
345
- vocab_set = functools.reduce(
346
- lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
347
- )
348
-
349
- vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
350
-
351
- # replace white space with delimiter token
352
- if word_delimiter_token is not None:
353
- vocab_dict[word_delimiter_token] = vocab_dict[" "]
354
- del vocab_dict[" "]
355
-
356
- # add unk and pad token
357
- if unk_token is not None:
358
- vocab_dict[unk_token] = len(vocab_dict)
359
-
360
- if pad_token is not None:
361
- vocab_dict[pad_token] = len(vocab_dict)
362
-
363
- return vocab_dict
364
-
365
-
366
- def main():
367
- # See all possible arguments in src/transformers/training_args.py
368
- # or by passing the --help flag to this script.
369
- # We now keep distinct sets of args, for a cleaner separation of concerns.
370
-
371
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
372
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
373
- # If we pass only one argument to the script and it's the path to a json file,
374
- # let's parse it to get our arguments.
375
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
376
- else:
377
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
378
-
379
- # Setup logging
380
- logging.basicConfig(
381
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
382
- datefmt="%m/%d/%Y %H:%M:%S",
383
- handlers=[logging.StreamHandler(sys.stdout)],
384
- )
385
- logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
386
-
387
- # Detecting last checkpoint.
388
- last_checkpoint = None
389
- if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
390
- last_checkpoint = get_last_checkpoint(training_args.output_dir)
391
- if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
392
- raise ValueError(
393
- f"Output directory ({training_args.output_dir}) already exists and is not empty. "
394
- "Use --overwrite_output_dir to overcome."
395
- )
396
- elif last_checkpoint is not None:
397
- logger.info(
398
- f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
399
- "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
400
- )
401
-
402
- # Log on each process the small summary:
403
- logger.warning(
404
- f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
405
- f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
406
- )
407
- # Set the verbosity to info of the Transformers logger (on main process only):
408
- if is_main_process(training_args.local_rank):
409
- transformers.utils.logging.set_verbosity_info()
410
- logger.info("Training/evaluation parameters %s", training_args)
411
-
412
- # Set seed before initializing model.
413
- set_seed(training_args.seed)
414
-
415
- # 1. First, let's load the dataset
416
- te_dataset = get_telugu_dataset(validation_split=False)
417
- def load_te_dataset(split):
418
- return te_dataset[split]
419
-
420
- raw_datasets = DatasetDict()
421
-
422
- if training_args.do_train:
423
- raw_datasets["train"] = load_te_dataset(
424
- split=data_args.train_split_name
425
- )
426
-
427
- if data_args.audio_column_name not in raw_datasets["train"].column_names:
428
- raise ValueError(
429
- f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
430
- "Make sure to set `--audio_column_name` to the correct audio column - one of "
431
- f"{', '.join(raw_datasets['train'].column_names)}."
432
- )
433
-
434
- if data_args.text_column_name not in raw_datasets["train"].column_names:
435
- raise ValueError(
436
- f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
437
- "Make sure to set `--text_column_name` to the correct text column - one of "
438
- f"{', '.join(raw_datasets['train'].column_names)}."
439
- )
440
-
441
- if data_args.max_train_samples is not None:
442
- raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
443
-
444
- if training_args.do_eval:
445
- raw_datasets["eval"] = load_te_dataset(
446
- split=data_args.eval_split_name
447
- )
448
-
449
- if data_args.max_eval_samples is not None:
450
- raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
451
-
452
- # 2. We remove some special characters from the datasets
453
- # that make training complicated and do not help in transcribing the speech
454
- # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
455
- # that could be easily picked up by the model
456
- chars_to_ignore_regex = (
457
- f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
458
- )
459
- text_column_name = data_args.text_column_name
460
-
461
- def remove_special_characters(batch):
462
- if chars_to_ignore_regex is not None:
463
- batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
464
- else:
465
- batch["target_text"] = batch[text_column_name].lower() + " "
466
- return batch
467
-
468
- with training_args.main_process_first(desc="dataset map special characters removal"):
469
- raw_datasets = raw_datasets.map(
470
- remove_special_characters,
471
- remove_columns=[text_column_name],
472
- desc="remove special characters from datasets",
473
- )
474
-
475
- # save special tokens for tokenizer
476
- word_delimiter_token = data_args.word_delimiter_token
477
- unk_token = data_args.unk_token
478
- pad_token = data_args.pad_token
479
-
480
- # 3. Next, let's load the config as we might need it to create
481
- # the tokenizer
482
- # load config
483
- config = AutoConfig.from_pretrained(
484
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
485
- )
486
-
487
- # 4. Next, if no tokenizer file is defined,
488
- # we create the vocabulary of the model by extracting all unique characters from
489
- # the training and evaluation datasets
490
- # We need to make sure that only first rank saves vocabulary
491
- # make sure all processes wait until vocab is created
492
- tokenizer_name_or_path = model_args.tokenizer_name_or_path
493
- tokenizer_kwargs = {}
494
- if tokenizer_name_or_path is None:
495
- # save vocab in training output dir
496
- tokenizer_name_or_path = training_args.output_dir
497
-
498
- vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
499
-
500
- with training_args.main_process_first():
501
- if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
502
- os.remove(vocab_file)
503
-
504
- with training_args.main_process_first(desc="dataset map vocabulary creation"):
505
- if not os.path.isfile(vocab_file):
506
- os.makedirs(tokenizer_name_or_path, exist_ok=True)
507
- vocab_dict = create_vocabulary_from_data(
508
- raw_datasets,
509
- word_delimiter_token=word_delimiter_token,
510
- unk_token=unk_token,
511
- pad_token=pad_token,
512
- )
513
-
514
- # save vocab dict to be loaded into tokenizer
515
- with open(vocab_file, "w") as file:
516
- json.dump(vocab_dict, file)
517
-
518
- # if tokenizer has just been created
519
- # it is defined by `tokenizer_class` if present in config else by `model_type`
520
- tokenizer_kwargs = {
521
- "config": config if config.tokenizer_class is not None else None,
522
- "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
523
- "unk_token": unk_token,
524
- "pad_token": pad_token,
525
- "word_delimiter_token": word_delimiter_token,
526
- }
527
-
528
- # 5. Now we can instantiate the feature extractor, tokenizer and model
529
- # Note for distributed training, the .from_pretrained methods guarantee that only
530
- # one local process can concurrently download model & vocab.
531
-
532
- # load feature_extractor and tokenizer
533
- tokenizer = AutoTokenizer.from_pretrained(
534
- tokenizer_name_or_path,
535
- use_auth_token=data_args.use_auth_token,
536
- **tokenizer_kwargs,
537
- )
538
- feature_extractor = AutoFeatureExtractor.from_pretrained(
539
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
540
- )
541
-
542
- # adapt config
543
- config.update(
544
- {
545
- "feat_proj_dropout": model_args.feat_proj_dropout,
546
- "attention_dropout": model_args.attention_dropout,
547
- "hidden_dropout": model_args.hidden_dropout,
548
- "final_dropout": model_args.final_dropout,
549
- "mask_time_prob": model_args.mask_time_prob,
550
- "mask_time_length": model_args.mask_time_length,
551
- "mask_feature_prob": model_args.mask_feature_prob,
552
- "mask_feature_length": model_args.mask_feature_length,
553
- "gradient_checkpointing": training_args.gradient_checkpointing,
554
- "layerdrop": model_args.layerdrop,
555
- "ctc_loss_reduction": model_args.ctc_loss_reduction,
556
- "pad_token_id": tokenizer.pad_token_id,
557
- "vocab_size": len(tokenizer),
558
- "activation_dropout": model_args.activation_dropout,
559
- }
560
- )
561
-
562
- # create model
563
- model = AutoModelForCTC.from_pretrained(
564
- model_args.model_name_or_path,
565
- cache_dir=model_args.cache_dir,
566
- config=config,
567
- use_auth_token=data_args.use_auth_token,
568
- )
569
-
570
- # freeze encoder
571
- if model_args.freeze_feature_encoder:
572
- model.freeze_feature_encoder()
573
-
574
- # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
575
- # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
576
- # so that we just need to set the correct target sampling rate and normalize the input
577
- # via the `feature_extractor`
578
-
579
- # make sure that dataset decodes audio with correct sampling rate
580
- dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
581
- if dataset_sampling_rate != feature_extractor.sampling_rate:
582
- raw_datasets = raw_datasets.cast_column(
583
- data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
584
- )
585
-
586
- # derive max & min input length for sample rate & max duration
587
- max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
588
- min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
589
- audio_column_name = data_args.audio_column_name
590
- num_workers = data_args.preprocessing_num_workers
591
-
592
- # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
593
- phoneme_language = data_args.phoneme_language
594
-
595
- # Preprocessing the datasets.
596
- # We need to read the audio files as arrays and tokenize the targets.
597
- def prepare_dataset(batch):
598
- # load audio
599
- sample = batch[audio_column_name]
600
-
601
- inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
602
- batch["input_values"] = inputs.input_values[0]
603
- batch["input_length"] = len(batch["input_values"])
604
-
605
- # encode targets
606
- additional_kwargs = {}
607
- if phoneme_language is not None:
608
- additional_kwargs["phonemizer_lang"] = phoneme_language
609
-
610
- batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
611
- return batch
612
-
613
- with training_args.main_process_first(desc="dataset map preprocessing"):
614
- vectorized_datasets = raw_datasets.map(
615
- prepare_dataset,
616
- remove_columns=next(iter(raw_datasets.values())).column_names,
617
- num_proc=num_workers,
618
- desc="preprocess datasets",
619
- )
620
-
621
- def is_audio_in_length_range(length):
622
- return length > min_input_length and length < max_input_length
623
-
624
- # filter data that is shorter than min_input_length
625
- vectorized_datasets = vectorized_datasets.filter(
626
- is_audio_in_length_range,
627
- num_proc=num_workers,
628
- input_columns=["input_length"],
629
- )
630
-
631
- # 7. Next, we can prepare the training.
632
- # Let's use word error rate (WER) as our evaluation metric,
633
- # instantiate a data collator and the trainer
634
-
635
- # Define evaluation metrics during training, *i.e.* word error rate, character error rate
636
- eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
637
-
638
- # for large datasets it is advised to run the preprocessing on a
639
- # single machine first with ``args.preprocessing_only`` since there will mostly likely
640
- # be a timeout when running the script in distributed mode.
641
- # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
642
- # cached dataset
643
- if data_args.preprocessing_only:
644
- logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
645
- return
646
-
647
- def compute_metrics(pred):
648
- pred_logits = pred.predictions
649
- pred_ids = np.argmax(pred_logits, axis=-1)
650
-
651
- pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
652
-
653
- pred_str = tokenizer.batch_decode(pred_ids)
654
- # we do not want to group tokens when computing the metrics
655
- label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
656
-
657
- metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
658
-
659
- return metrics
660
-
661
- # Now save everything to be able to create a single processor later
662
- if is_main_process(training_args.local_rank):
663
- # save feature extractor, tokenizer and config
664
- feature_extractor.save_pretrained(training_args.output_dir)
665
- tokenizer.save_pretrained(training_args.output_dir)
666
- config.save_pretrained(training_args.output_dir)
667
-
668
- try:
669
- processor = AutoProcessor.from_pretrained(training_args.output_dir)
670
- except (OSError, KeyError):
671
- warnings.warn(
672
- "Loading a processor from a feature extractor config that does not"
673
- " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
674
- " attribute to your `preprocessor_config.json` file to suppress this warning: "
675
- " `'processor_class': 'Wav2Vec2Processor'`",
676
- FutureWarning,
677
- )
678
- processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
679
-
680
- # Instantiate custom data collator
681
- data_collator = DataCollatorCTCWithPadding(processor=processor)
682
-
683
- # Initialize Trainer
684
- trainer = Trainer(
685
- model=model,
686
- data_collator=data_collator,
687
- args=training_args,
688
- compute_metrics=compute_metrics,
689
- train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
690
- eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
691
- tokenizer=feature_extractor,
692
- )
693
-
694
- # 8. Finally, we can start training
695
-
696
- # Training
697
- if training_args.do_train:
698
-
699
- # use last checkpoint if exist
700
- if last_checkpoint is not None:
701
- checkpoint = last_checkpoint
702
- elif os.path.isdir(model_args.model_name_or_path):
703
- checkpoint = model_args.model_name_or_path
704
- else:
705
- checkpoint = None
706
-
707
- train_result = trainer.train(resume_from_checkpoint=checkpoint)
708
- trainer.save_model()
709
-
710
- metrics = train_result.metrics
711
- max_train_samples = (
712
- data_args.max_train_samples
713
- if data_args.max_train_samples is not None
714
- else len(vectorized_datasets["train"])
715
- )
716
- metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
717
-
718
- trainer.log_metrics("train", metrics)
719
- trainer.save_metrics("train", metrics)
720
- trainer.save_state()
721
-
722
- # Evaluation
723
- results = {}
724
- if training_args.do_eval:
725
- logger.info("*** Evaluate ***")
726
- metrics = trainer.evaluate()
727
- max_eval_samples = (
728
- data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
729
- )
730
- metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
731
-
732
- trainer.log_metrics("eval", metrics)
733
- trainer.save_metrics("eval", metrics)
734
-
735
- # Write model card and (optionally) push to hub
736
- config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
737
- kwargs = {
738
- "finetuned_from": model_args.model_name_or_path,
739
- "tasks": "speech-recognition",
740
- "tags": ["automatic-speech-recognition", data_args.dataset_name, "robust-speech-event"],
741
- "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
742
- "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
743
- }
744
- if "common_voice" in data_args.dataset_name:
745
- kwargs["language"] = config_name
746
-
747
- if training_args.push_to_hub:
748
- trainer.push_to_hub(**kwargs)
749
- else:
750
- trainer.create_model_card(**kwargs)
751
-
752
- return results
753
-
754
-
755
- if __name__ == "__main__":
756
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
run_speech_recognition_ctc_bnb.py DELETED
@@ -1,780 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
-
16
- """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
-
18
- import functools
19
- import json
20
- import logging
21
- import os
22
- import re
23
- import sys
24
- import warnings
25
- from dataclasses import dataclass, field
26
- from typing import Dict, List, Optional, Union
27
-
28
- import datasets
29
- import numpy as np
30
- import torch
31
- from datasets import DatasetDict, load_dataset, load_metric
32
-
33
- import bitsandbytes as bnb
34
- import transformers
35
- from transformers import (
36
- AutoConfig,
37
- AutoFeatureExtractor,
38
- AutoModelForCTC,
39
- AutoProcessor,
40
- AutoTokenizer,
41
- HfArgumentParser,
42
- Trainer,
43
- TrainingArguments,
44
- Wav2Vec2Processor,
45
- set_seed,
46
- )
47
- from transformers.trainer_pt_utils import get_parameter_names
48
- from transformers.trainer_utils import get_last_checkpoint, is_main_process
49
- from transformers.utils import check_min_version
50
- from transformers.utils.versions import require_version
51
-
52
-
53
- # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
54
- check_min_version("4.16.0.dev0")
55
-
56
- require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
57
-
58
-
59
- logger = logging.getLogger(__name__)
60
-
61
-
62
- def list_field(default=None, metadata=None):
63
- return field(default_factory=lambda: default, metadata=metadata)
64
-
65
- def get_telugu_dataset(validation_split=False):
66
- dataset = load_dataset('openslr', 'SLR66')
67
-
68
- seed=1242
69
-
70
- if validation_split:
71
- train_testvalid = dataset['train'].train_test_split(test_size=0.2, seed=seed)
72
- # Split the 10% test + valid in half test, half valid
73
- test_valid = train_testvalid['test'].train_test_split(test_size=0.33, seed=seed)
74
- # gather everyone if you want to have a single DatasetDict
75
- out_dataset = DatasetDict({
76
- 'train': train_testvalid['train'],
77
- 'test': test_valid['test'],
78
- 'valid': test_valid['train']})
79
- else:
80
- train_testvalid = dataset['train'].train_test_split(test_size=0.25, seed=seed)
81
- out_dataset = DatasetDict({
82
- 'train': train_testvalid['train'],
83
- 'test': train_testvalid['test']})
84
- return out_dataset
85
-
86
-
87
- @dataclass
88
- class ModelArguments:
89
- """
90
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
91
- """
92
-
93
- model_name_or_path: str = field(
94
- metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
95
- )
96
- tokenizer_name_or_path: Optional[str] = field(
97
- default=None,
98
- metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
99
- )
100
- cache_dir: Optional[str] = field(
101
- default=None,
102
- metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
103
- )
104
- freeze_feature_encoder: bool = field(
105
- default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
106
- )
107
- attention_dropout: float = field(
108
- default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
109
- )
110
- activation_dropout: float = field(
111
- default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
112
- )
113
- feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
114
- hidden_dropout: float = field(
115
- default=0.0,
116
- metadata={
117
- "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
118
- },
119
- )
120
- final_dropout: float = field(
121
- default=0.0,
122
- metadata={"help": "The dropout probability for the final projection layer."},
123
- )
124
- mask_time_prob: float = field(
125
- default=0.05,
126
- metadata={
127
- "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
128
- "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
129
- "vectors will be masked along the time axis."
130
- },
131
- )
132
- mask_time_length: int = field(
133
- default=10,
134
- metadata={"help": "Length of vector span to mask along the time axis."},
135
- )
136
- mask_feature_prob: float = field(
137
- default=0.0,
138
- metadata={
139
- "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
140
- "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
141
- },
142
- )
143
- mask_feature_length: int = field(
144
- default=10,
145
- metadata={"help": "Length of vector span to mask along the feature axis."},
146
- )
147
- layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
148
- ctc_loss_reduction: Optional[str] = field(
149
- default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
150
- )
151
-
152
-
153
- @dataclass
154
- class DataTrainingArguments:
155
- """
156
- Arguments pertaining to what data we are going to input our model for training and eval.
157
-
158
- Using `HfArgumentParser` we can turn this class
159
- into argparse arguments to be able to specify them on
160
- the command line.
161
- """
162
-
163
- dataset_name: str = field(
164
- metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
165
- )
166
- dataset_config_name: str = field(
167
- default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
168
- )
169
- train_split_name: str = field(
170
- default="train+validation",
171
- metadata={
172
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
173
- },
174
- )
175
- eval_split_name: str = field(
176
- default="test",
177
- metadata={
178
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
179
- },
180
- )
181
- audio_column_name: str = field(
182
- default="audio",
183
- metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
184
- )
185
- text_column_name: str = field(
186
- default="text",
187
- metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
188
- )
189
- overwrite_cache: bool = field(
190
- default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
191
- )
192
- preprocessing_num_workers: Optional[int] = field(
193
- default=None,
194
- metadata={"help": "The number of processes to use for the preprocessing."},
195
- )
196
- max_train_samples: Optional[int] = field(
197
- default=None,
198
- metadata={
199
- "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
200
- "value if set."
201
- },
202
- )
203
- max_eval_samples: Optional[int] = field(
204
- default=None,
205
- metadata={
206
- "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
207
- "value if set."
208
- },
209
- )
210
- chars_to_ignore: Optional[List[str]] = list_field(
211
- default=None,
212
- metadata={"help": "A list of characters to remove from the transcripts."},
213
- )
214
- eval_metrics: List[str] = list_field(
215
- default=["wer"],
216
- metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
217
- )
218
- max_duration_in_seconds: float = field(
219
- default=20.0,
220
- metadata={
221
- "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
222
- },
223
- )
224
- min_duration_in_seconds: float = field(
225
- default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
226
- )
227
- preprocessing_only: bool = field(
228
- default=False,
229
- metadata={
230
- "help": "Whether to only do data preprocessing and skip training. "
231
- "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
232
- "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
233
- "so that the cached datasets can consequently be loaded in distributed training"
234
- },
235
- )
236
- use_auth_token: bool = field(
237
- default=False,
238
- metadata={
239
- "help": "If :obj:`True`, will use the token generated when running"
240
- ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
241
- },
242
- )
243
- unk_token: str = field(
244
- default="[UNK]",
245
- metadata={"help": "The unk token for the tokenizer"},
246
- )
247
- pad_token: str = field(
248
- default="[PAD]",
249
- metadata={"help": "The padding token for the tokenizer"},
250
- )
251
- word_delimiter_token: str = field(
252
- default="|",
253
- metadata={"help": "The word delimiter token for the tokenizer"},
254
- )
255
- phoneme_language: Optional[str] = field(
256
- default=None,
257
- metadata={
258
- "help": "The target language that should be used be"
259
- " passed to the tokenizer for tokenization. Note that"
260
- " this is only relevant if the model classifies the"
261
- " input audio to a sequence of phoneme sequences."
262
- },
263
- )
264
-
265
-
266
- @dataclass
267
- class DataCollatorCTCWithPadding:
268
- """
269
- Data collator that will dynamically pad the inputs received.
270
- Args:
271
- processor (:class:`~transformers.AutoProcessor`)
272
- The processor used for proccessing the data.
273
- padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
274
- Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
275
- among:
276
- * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
277
- sequence if provided).
278
- * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
279
- maximum acceptable input length for the model if that argument is not provided.
280
- * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
281
- different lengths).
282
- max_length (:obj:`int`, `optional`):
283
- Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
284
- max_length_labels (:obj:`int`, `optional`):
285
- Maximum length of the ``labels`` returned list and optionally padding length (see above).
286
- pad_to_multiple_of (:obj:`int`, `optional`):
287
- If set will pad the sequence to a multiple of the provided value.
288
- This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
289
- 7.5 (Volta).
290
- """
291
-
292
- processor: AutoProcessor
293
- padding: Union[bool, str] = "longest"
294
- pad_to_multiple_of: Optional[int] = None
295
- pad_to_multiple_of_labels: Optional[int] = None
296
-
297
- def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
298
- # split inputs and labels since they have to be of different lenghts and need
299
- # different padding methods
300
- input_features = [{"input_values": feature["input_values"]} for feature in features]
301
- label_features = [{"input_ids": feature["labels"]} for feature in features]
302
-
303
- batch = self.processor.pad(
304
- input_features,
305
- padding=self.padding,
306
- pad_to_multiple_of=self.pad_to_multiple_of,
307
- return_tensors="pt",
308
- )
309
-
310
- with self.processor.as_target_processor():
311
- labels_batch = self.processor.pad(
312
- label_features,
313
- padding=self.padding,
314
- pad_to_multiple_of=self.pad_to_multiple_of_labels,
315
- return_tensors="pt",
316
- )
317
-
318
- # replace padding with -100 to ignore loss correctly
319
- labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
320
-
321
- batch["labels"] = labels
322
-
323
- return batch
324
-
325
-
326
- def create_vocabulary_from_data(
327
- datasets: DatasetDict,
328
- word_delimiter_token: Optional[str] = None,
329
- unk_token: Optional[str] = None,
330
- pad_token: Optional[str] = None,
331
- ):
332
- # Given training and test labels create vocabulary
333
- def extract_all_chars(batch):
334
- all_text = " ".join(batch["target_text"])
335
- vocab = list(set(all_text))
336
- return {"vocab": [vocab], "all_text": [all_text]}
337
-
338
- vocabs = datasets.map(
339
- extract_all_chars,
340
- batched=True,
341
- batch_size=-1,
342
- keep_in_memory=True,
343
- remove_columns=datasets["train"].column_names,
344
- )
345
-
346
- # take union of all unique characters in each dataset
347
- vocab_set = functools.reduce(
348
- lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
349
- )
350
-
351
- vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
352
-
353
- # replace white space with delimiter token
354
- if word_delimiter_token is not None:
355
- vocab_dict[word_delimiter_token] = vocab_dict[" "]
356
- del vocab_dict[" "]
357
-
358
- # add unk and pad token
359
- if unk_token is not None:
360
- vocab_dict[unk_token] = len(vocab_dict)
361
-
362
- if pad_token is not None:
363
- vocab_dict[pad_token] = len(vocab_dict)
364
-
365
- return vocab_dict
366
-
367
-
368
- def main():
369
- # See all possible arguments in src/transformers/training_args.py
370
- # or by passing the --help flag to this script.
371
- # We now keep distinct sets of args, for a cleaner separation of concerns.
372
-
373
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
374
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
375
- # If we pass only one argument to the script and it's the path to a json file,
376
- # let's parse it to get our arguments.
377
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
378
- else:
379
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
380
-
381
- # Setup logging
382
- logging.basicConfig(
383
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
384
- datefmt="%m/%d/%Y %H:%M:%S",
385
- handlers=[logging.StreamHandler(sys.stdout)],
386
- )
387
- logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
388
-
389
- # Detecting last checkpoint.
390
- last_checkpoint = None
391
- if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
392
- last_checkpoint = get_last_checkpoint(training_args.output_dir)
393
- if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
394
- raise ValueError(
395
- f"Output directory ({training_args.output_dir}) already exists and is not empty. "
396
- "Use --overwrite_output_dir to overcome."
397
- )
398
- elif last_checkpoint is not None:
399
- logger.info(
400
- f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
401
- "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
402
- )
403
-
404
-
405
- # Log on each process the small summary:
406
- logger.warning(
407
- f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
408
- f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
409
- )
410
- # Set the verbosity to info of the Transformers logger (on main process only):
411
- if is_main_process(training_args.local_rank):
412
- transformers.utils.logging.set_verbosity_info()
413
- logger.info("Training/evaluation parameters %s", training_args)
414
-
415
- # Set seed before initializing model.
416
- set_seed(training_args.seed)
417
-
418
- # 1. First, let's load the dataset
419
- te_dataset = get_telugu_dataset(validation_split=False)
420
- def load_te_dataset(split):
421
- return te_dataset[split]
422
-
423
- raw_datasets = DatasetDict()
424
-
425
- if training_args.do_train:
426
- raw_datasets["train"] = load_te_dataset(
427
- split=data_args.train_split_name
428
- )
429
-
430
- if data_args.audio_column_name not in raw_datasets["train"].column_names:
431
- raise ValueError(
432
- f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
433
- "Make sure to set `--audio_column_name` to the correct audio column - one of "
434
- f"{', '.join(raw_datasets['train'].column_names)}."
435
- )
436
-
437
- if data_args.text_column_name not in raw_datasets["train"].column_names:
438
- raise ValueError(
439
- f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
440
- "Make sure to set `--text_column_name` to the correct text column - one of "
441
- f"{', '.join(raw_datasets['train'].column_names)}."
442
- )
443
-
444
- if data_args.max_train_samples is not None:
445
- raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
446
-
447
- if training_args.do_eval:
448
- raw_datasets["eval"] = load_te_dataset(
449
- split=data_args.eval_split_name
450
- )
451
-
452
- if data_args.max_eval_samples is not None:
453
- raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
454
-
455
- # 2. We remove some special characters from the datasets
456
- # that make training complicated and do not help in transcribing the speech
457
- # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
458
- # that could be easily picked up by the model
459
- chars_to_ignore_regex = (
460
- f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
461
- )
462
- text_column_name = data_args.text_column_name
463
-
464
- def remove_special_characters(batch):
465
- if chars_to_ignore_regex is not None:
466
- batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
467
- else:
468
- batch["target_text"] = batch[text_column_name].lower() + " "
469
- return batch
470
-
471
- with training_args.main_process_first(desc="dataset map special characters removal"):
472
- raw_datasets = raw_datasets.map(
473
- remove_special_characters,
474
- remove_columns=[text_column_name],
475
- desc="remove special characters from datasets",
476
- )
477
-
478
- # save special tokens for tokenizer
479
- word_delimiter_token = data_args.word_delimiter_token
480
- unk_token = data_args.unk_token
481
- pad_token = data_args.pad_token
482
-
483
- # 3. Next, let's load the config as we might need it to create
484
- # the tokenizer
485
- # load config
486
- config = AutoConfig.from_pretrained(
487
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
488
- )
489
-
490
- # 4. Next, if no tokenizer file is defined,
491
- # we create the vocabulary of the model by extracting all unique characters from
492
- # the training and evaluation datasets
493
- # We need to make sure that only first rank saves vocabulary
494
- # make sure all processes wait until vocab is created
495
- tokenizer_name_or_path = model_args.tokenizer_name_or_path
496
- tokenizer_kwargs = {}
497
- if tokenizer_name_or_path is None:
498
- # save vocab in training output dir
499
- tokenizer_name_or_path = training_args.output_dir
500
-
501
- vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
502
-
503
- with training_args.main_process_first():
504
- if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
505
- os.remove(vocab_file)
506
-
507
- with training_args.main_process_first(desc="dataset map vocabulary creation"):
508
- if not os.path.isfile(vocab_file):
509
- os.makedirs(tokenizer_name_or_path, exist_ok=True)
510
- vocab_dict = create_vocabulary_from_data(
511
- raw_datasets,
512
- word_delimiter_token=word_delimiter_token,
513
- unk_token=unk_token,
514
- pad_token=pad_token,
515
- )
516
-
517
- # save vocab dict to be loaded into tokenizer
518
- with open(vocab_file, "w") as file:
519
- json.dump(vocab_dict, file)
520
-
521
- # if tokenizer has just been created
522
- # it is defined by `tokenizer_class` if present in config else by `model_type`
523
- tokenizer_kwargs = {
524
- "config": config if config.tokenizer_class is not None else None,
525
- "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
526
- "unk_token": unk_token,
527
- "pad_token": pad_token,
528
- "word_delimiter_token": word_delimiter_token,
529
- }
530
-
531
- # 5. Now we can instantiate the feature extractor, tokenizer and model
532
- # Note for distributed training, the .from_pretrained methods guarantee that only
533
- # one local process can concurrently download model & vocab.
534
-
535
- # load feature_extractor and tokenizer
536
- tokenizer = AutoTokenizer.from_pretrained(
537
- tokenizer_name_or_path,
538
- use_auth_token=data_args.use_auth_token,
539
- **tokenizer_kwargs,
540
- )
541
- feature_extractor = AutoFeatureExtractor.from_pretrained(
542
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
543
- )
544
-
545
- # adapt config
546
- config.update(
547
- {
548
- "feat_proj_dropout": model_args.feat_proj_dropout,
549
- "attention_dropout": model_args.attention_dropout,
550
- "hidden_dropout": model_args.hidden_dropout,
551
- "final_dropout": model_args.final_dropout,
552
- "mask_time_prob": model_args.mask_time_prob,
553
- "mask_time_length": model_args.mask_time_length,
554
- "mask_feature_prob": model_args.mask_feature_prob,
555
- "mask_feature_length": model_args.mask_feature_length,
556
- "gradient_checkpointing": training_args.gradient_checkpointing,
557
- "layerdrop": model_args.layerdrop,
558
- "ctc_loss_reduction": model_args.ctc_loss_reduction,
559
- "pad_token_id": tokenizer.pad_token_id,
560
- "vocab_size": len(tokenizer),
561
- "activation_dropout": model_args.activation_dropout,
562
- }
563
- )
564
-
565
- # create model
566
- model = AutoModelForCTC.from_pretrained(
567
- model_args.model_name_or_path,
568
- cache_dir=model_args.cache_dir,
569
- config=config,
570
- use_auth_token=data_args.use_auth_token,
571
- )
572
-
573
- # freeze encoder
574
- if model_args.freeze_feature_encoder:
575
- model.freeze_feature_encoder()
576
-
577
- # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
578
- # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
579
- # so that we just need to set the correct target sampling rate and normalize the input
580
- # via the `feature_extractor`
581
-
582
- # make sure that dataset decodes audio with correct sampling rate
583
- dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
584
- if dataset_sampling_rate != feature_extractor.sampling_rate:
585
- raw_datasets = raw_datasets.cast_column(
586
- data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
587
- )
588
-
589
- # derive max & min input length for sample rate & max duration
590
- max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
591
- min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
592
- audio_column_name = data_args.audio_column_name
593
- num_workers = data_args.preprocessing_num_workers
594
-
595
- # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
596
- phoneme_language = data_args.phoneme_language
597
-
598
- # Preprocessing the datasets.
599
- # We need to read the audio files as arrays and tokenize the targets.
600
- def prepare_dataset(batch):
601
- # load audio
602
- sample = batch[audio_column_name]
603
-
604
- inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
605
- batch["input_values"] = inputs.input_values[0]
606
- batch["input_length"] = len(batch["input_values"])
607
-
608
- # encode targets
609
- additional_kwargs = {}
610
- if phoneme_language is not None:
611
- additional_kwargs["phonemizer_lang"] = phoneme_language
612
-
613
- batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
614
- return batch
615
-
616
- with training_args.main_process_first(desc="dataset map preprocessing"):
617
- vectorized_datasets = raw_datasets.map(
618
- prepare_dataset,
619
- remove_columns=next(iter(raw_datasets.values())).column_names,
620
- num_proc=num_workers,
621
- desc="preprocess datasets",
622
- )
623
-
624
- def is_audio_in_length_range(length):
625
- return length > min_input_length and length < max_input_length
626
-
627
- # filter data that is shorter than min_input_length
628
- vectorized_datasets = vectorized_datasets.filter(
629
- is_audio_in_length_range,
630
- num_proc=num_workers,
631
- input_columns=["input_length"],
632
- )
633
-
634
- # 7. Next, we can prepare the training.
635
- # Let's use word error rate (WER) as our evaluation metric,
636
- # instantiate a data collator and the trainer
637
-
638
- # Define evaluation metrics during training, *i.e.* word error rate, character error rate
639
- eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
640
-
641
- # for large datasets it is advised to run the preprocessing on a
642
- # single machine first with ``args.preprocessing_only`` since there will mostly likely
643
- # be a timeout when running the script in distributed mode.
644
- # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
645
- # cached dataset
646
- if data_args.preprocessing_only:
647
- logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
648
- return
649
-
650
- def compute_metrics(pred):
651
- pred_logits = pred.predictions
652
- pred_ids = np.argmax(pred_logits, axis=-1)
653
-
654
- pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
655
-
656
- pred_str = tokenizer.batch_decode(pred_ids)
657
- # we do not want to group tokens when computing the metrics
658
- label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
659
-
660
- metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
661
-
662
- return metrics
663
-
664
- # Now save everything to be able to create a single processor later
665
- if is_main_process(training_args.local_rank):
666
- # save feature extractor, tokenizer and config
667
- feature_extractor.save_pretrained(training_args.output_dir)
668
- tokenizer.save_pretrained(training_args.output_dir)
669
- config.save_pretrained(training_args.output_dir)
670
-
671
- try:
672
- processor = AutoProcessor.from_pretrained(training_args.output_dir)
673
- except (OSError, KeyError):
674
- warnings.warn(
675
- "Loading a processor from a feature extractor config that does not"
676
- " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
677
- " attribute to your `preprocessor_config.json` file to suppress this warning: "
678
- " `'processor_class': 'Wav2Vec2Processor'`",
679
- FutureWarning,
680
- )
681
- processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
682
-
683
- # Instantiate custom data collator
684
- data_collator = DataCollatorCTCWithPadding(processor=processor)
685
-
686
- decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
687
- decay_parameters = [name for name in decay_parameters if "bias" not in name]
688
- optimizer_grouped_parameters = [
689
- {
690
- "params": [p for n, p in model.named_parameters() if n in decay_parameters],
691
- "weight_decay": training_args.weight_decay,
692
- },
693
- {
694
- "params": [p for n, p in model.named_parameters() if n not in decay_parameters],
695
- "weight_decay": 0.0,
696
- },
697
- ]
698
- optimizer = bnb.optim.Adam8bit(
699
- params=optimizer_grouped_parameters,
700
- betas=(training_args.adam_beta1, training_args.adam_beta2),
701
- eps=training_args.adam_epsilon,
702
- )
703
-
704
- optimizers = (optimizer, None)
705
-
706
- # Initialize Trainer
707
- trainer = Trainer(
708
- model=model,
709
- data_collator=data_collator,
710
- args=training_args,
711
- compute_metrics=compute_metrics,
712
- train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
713
- eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
714
- tokenizer=feature_extractor,
715
- optimizers=optimizers,
716
- )
717
-
718
- # 8. Finally, we can start training
719
-
720
- # Training
721
- if training_args.do_train:
722
-
723
- # use last checkpoint if exist
724
- if last_checkpoint is not None:
725
- checkpoint = last_checkpoint
726
- elif os.path.isdir(model_args.model_name_or_path):
727
- checkpoint = model_args.model_name_or_path
728
- else:
729
- checkpoint = None
730
-
731
- train_result = trainer.train(resume_from_checkpoint=checkpoint)
732
- trainer.save_model()
733
-
734
- metrics = train_result.metrics
735
- max_train_samples = (
736
- data_args.max_train_samples
737
- if data_args.max_train_samples is not None
738
- else len(vectorized_datasets["train"])
739
- )
740
- metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
741
-
742
- trainer.log_metrics("train", metrics)
743
- trainer.save_metrics("train", metrics)
744
- trainer.save_state()
745
-
746
- # Evaluation
747
- results = {}
748
- if training_args.do_eval:
749
- logger.info("*** Evaluate ***")
750
- metrics = trainer.evaluate()
751
- max_eval_samples = (
752
- data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
753
- )
754
- metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
755
-
756
- trainer.log_metrics("eval", metrics)
757
- trainer.save_metrics("eval", metrics)
758
-
759
- # Write model card and (optionally) push to hub
760
- config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
761
- kwargs = {
762
- "finetuned_from": model_args.model_name_or_path,
763
- "tasks": "speech-recognition",
764
- "tags": ["automatic-speech-recognition", data_args.dataset_name, "robust-speech-event"],
765
- "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
766
- "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
767
- }
768
- if "common_voice" in data_args.dataset_name:
769
- kwargs["language"] = config_name
770
-
771
- if training_args.push_to_hub:
772
- trainer.push_to_hub(**kwargs)
773
- else:
774
- trainer.create_model_card(**kwargs)
775
-
776
- return results
777
-
778
-
779
- if __name__ == "__main__":
780
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
special_tokens_map.json DELETED
@@ -1 +0,0 @@
1
- {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
 
 
tokenizer_config.json DELETED
@@ -1 +0,0 @@
1
- {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
 
 
train_results.json DELETED
@@ -1,8 +0,0 @@
1
- {
2
- "epoch": 60.0,
3
- "train_loss": 2.2000570346147588,
4
- "train_runtime": 38994.8678,
5
- "train_samples": 3336,
6
- "train_samples_per_second": 5.133,
7
- "train_steps_per_second": 0.16
8
- }
 
 
 
 
 
 
 
 
 
trainer_state.json DELETED
@@ -1,451 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 59.99760191846523,
5
- "global_step": 6240,
6
- "is_hyper_param_search": false,
7
- "is_local_process_zero": true,
8
- "is_world_process_zero": true,
9
- "log_history": [
10
- {
11
- "epoch": 0.96,
12
- "learning_rate": 4.8e-05,
13
- "loss": 6.3756,
14
- "step": 100
15
- },
16
- {
17
- "epoch": 1.92,
18
- "learning_rate": 9.800000000000001e-05,
19
- "loss": 1.5856,
20
- "step": 200
21
- },
22
- {
23
- "epoch": 2.88,
24
- "learning_rate": 0.000148,
25
- "loss": 1.5323,
26
- "step": 300
27
- },
28
- {
29
- "epoch": 3.84,
30
- "learning_rate": 0.00019800000000000002,
31
- "loss": 1.5582,
32
- "step": 400
33
- },
34
- {
35
- "epoch": 4.81,
36
- "learning_rate": 0.000248,
37
- "loss": 1.6612,
38
- "step": 500
39
- },
40
- {
41
- "epoch": 5.77,
42
- "learning_rate": 0.000298,
43
- "loss": 1.6766,
44
- "step": 600
45
- },
46
- {
47
- "epoch": 6.73,
48
- "learning_rate": 0.000348,
49
- "loss": 1.7327,
50
- "step": 700
51
- },
52
- {
53
- "epoch": 7.69,
54
- "learning_rate": 0.000398,
55
- "loss": 1.7573,
56
- "step": 800
57
- },
58
- {
59
- "epoch": 8.65,
60
- "learning_rate": 0.000448,
61
- "loss": 1.7926,
62
- "step": 900
63
- },
64
- {
65
- "epoch": 9.61,
66
- "learning_rate": 0.000498,
67
- "loss": 1.8141,
68
- "step": 1000
69
- },
70
- {
71
- "epoch": 9.61,
72
- "eval_loss": 0.7609468102455139,
73
- "eval_runtime": 79.8366,
74
- "eval_samples_per_second": 13.928,
75
- "eval_steps_per_second": 3.482,
76
- "eval_wer": 0.7777578475336323,
77
- "step": 1000
78
- },
79
- {
80
- "epoch": 10.58,
81
- "learning_rate": 0.0005480000000000001,
82
- "loss": 1.8648,
83
- "step": 1100
84
- },
85
- {
86
- "epoch": 11.54,
87
- "learning_rate": 0.000598,
88
- "loss": 1.9241,
89
- "step": 1200
90
- },
91
- {
92
- "epoch": 12.5,
93
- "learning_rate": 0.000648,
94
- "loss": 1.9235,
95
- "step": 1300
96
- },
97
- {
98
- "epoch": 13.46,
99
- "learning_rate": 0.0006979999999999999,
100
- "loss": 1.9089,
101
- "step": 1400
102
- },
103
- {
104
- "epoch": 14.42,
105
- "learning_rate": 0.000748,
106
- "loss": 1.9364,
107
- "step": 1500
108
- },
109
- {
110
- "epoch": 15.38,
111
- "learning_rate": 0.0007980000000000001,
112
- "loss": 2.0406,
113
- "step": 1600
114
- },
115
- {
116
- "epoch": 16.35,
117
- "learning_rate": 0.000848,
118
- "loss": 2.1109,
119
- "step": 1700
120
- },
121
- {
122
- "epoch": 17.31,
123
- "learning_rate": 0.000898,
124
- "loss": 2.2393,
125
- "step": 1800
126
- },
127
- {
128
- "epoch": 18.27,
129
- "learning_rate": 0.000948,
130
- "loss": 2.2755,
131
- "step": 1900
132
- },
133
- {
134
- "epoch": 19.23,
135
- "learning_rate": 0.000998,
136
- "loss": 2.2935,
137
- "step": 2000
138
- },
139
- {
140
- "epoch": 19.23,
141
- "eval_loss": 1.1848976612091064,
142
- "eval_runtime": 80.3457,
143
- "eval_samples_per_second": 13.84,
144
- "eval_steps_per_second": 3.46,
145
- "eval_wer": 0.9657399103139014,
146
- "step": 2000
147
- },
148
- {
149
- "epoch": 20.19,
150
- "learning_rate": 0.0009773584905660377,
151
- "loss": 2.3135,
152
- "step": 2100
153
- },
154
- {
155
- "epoch": 21.15,
156
- "learning_rate": 0.0009537735849056604,
157
- "loss": 2.2768,
158
- "step": 2200
159
- },
160
- {
161
- "epoch": 22.12,
162
- "learning_rate": 0.000930188679245283,
163
- "loss": 2.2858,
164
- "step": 2300
165
- },
166
- {
167
- "epoch": 23.08,
168
- "learning_rate": 0.0009066037735849056,
169
- "loss": 2.2804,
170
- "step": 2400
171
- },
172
- {
173
- "epoch": 24.04,
174
- "learning_rate": 0.0008830188679245283,
175
- "loss": 2.2852,
176
- "step": 2500
177
- },
178
- {
179
- "epoch": 25.0,
180
- "learning_rate": 0.0008594339622641509,
181
- "loss": 2.2629,
182
- "step": 2600
183
- },
184
- {
185
- "epoch": 25.96,
186
- "learning_rate": 0.0008358490566037736,
187
- "loss": 2.3056,
188
- "step": 2700
189
- },
190
- {
191
- "epoch": 26.92,
192
- "learning_rate": 0.0008122641509433963,
193
- "loss": 2.2643,
194
- "step": 2800
195
- },
196
- {
197
- "epoch": 27.88,
198
- "learning_rate": 0.000788679245283019,
199
- "loss": 2.3471,
200
- "step": 2900
201
- },
202
- {
203
- "epoch": 28.84,
204
- "learning_rate": 0.0007650943396226416,
205
- "loss": 2.2848,
206
- "step": 3000
207
- },
208
- {
209
- "epoch": 28.84,
210
- "eval_loss": 1.178926944732666,
211
- "eval_runtime": 80.2197,
212
- "eval_samples_per_second": 13.862,
213
- "eval_steps_per_second": 3.465,
214
- "eval_wer": 0.9759641255605381,
215
- "step": 3000
216
- },
217
- {
218
- "epoch": 29.81,
219
- "learning_rate": 0.0007415094339622641,
220
- "loss": 2.3196,
221
- "step": 3100
222
- },
223
- {
224
- "epoch": 30.77,
225
- "learning_rate": 0.0007179245283018868,
226
- "loss": 2.3493,
227
- "step": 3200
228
- },
229
- {
230
- "epoch": 31.73,
231
- "learning_rate": 0.0006943396226415094,
232
- "loss": 2.4006,
233
- "step": 3300
234
- },
235
- {
236
- "epoch": 32.69,
237
- "learning_rate": 0.0006707547169811321,
238
- "loss": 2.3034,
239
- "step": 3400
240
- },
241
- {
242
- "epoch": 33.65,
243
- "learning_rate": 0.0006474056603773585,
244
- "loss": 2.3289,
245
- "step": 3500
246
- },
247
- {
248
- "epoch": 34.61,
249
- "learning_rate": 0.0006240566037735848,
250
- "loss": 2.2975,
251
- "step": 3600
252
- },
253
- {
254
- "epoch": 35.58,
255
- "learning_rate": 0.0006004716981132075,
256
- "loss": 2.2996,
257
- "step": 3700
258
- },
259
- {
260
- "epoch": 36.54,
261
- "learning_rate": 0.0005768867924528301,
262
- "loss": 2.327,
263
- "step": 3800
264
- },
265
- {
266
- "epoch": 37.5,
267
- "learning_rate": 0.0005533018867924528,
268
- "loss": 2.3041,
269
- "step": 3900
270
- },
271
- {
272
- "epoch": 38.46,
273
- "learning_rate": 0.0005297169811320755,
274
- "loss": 2.3325,
275
- "step": 4000
276
- },
277
- {
278
- "epoch": 38.46,
279
- "eval_loss": 1.087767481803894,
280
- "eval_runtime": 79.9787,
281
- "eval_samples_per_second": 13.904,
282
- "eval_steps_per_second": 3.476,
283
- "eval_wer": 0.9594618834080717,
284
- "step": 4000
285
- },
286
- {
287
- "epoch": 39.42,
288
- "learning_rate": 0.000506367924528302,
289
- "loss": 2.3006,
290
- "step": 4100
291
- },
292
- {
293
- "epoch": 40.38,
294
- "learning_rate": 0.0004827830188679245,
295
- "loss": 2.3251,
296
- "step": 4200
297
- },
298
- {
299
- "epoch": 41.35,
300
- "learning_rate": 0.0004591981132075472,
301
- "loss": 2.2754,
302
- "step": 4300
303
- },
304
- {
305
- "epoch": 42.31,
306
- "learning_rate": 0.00043561320754716983,
307
- "loss": 2.2903,
308
- "step": 4400
309
- },
310
- {
311
- "epoch": 43.27,
312
- "learning_rate": 0.00041202830188679247,
313
- "loss": 2.2868,
314
- "step": 4500
315
- },
316
- {
317
- "epoch": 44.23,
318
- "learning_rate": 0.0003884433962264151,
319
- "loss": 2.2541,
320
- "step": 4600
321
- },
322
- {
323
- "epoch": 45.19,
324
- "learning_rate": 0.00036485849056603774,
325
- "loss": 2.2362,
326
- "step": 4700
327
- },
328
- {
329
- "epoch": 46.15,
330
- "learning_rate": 0.00034127358490566043,
331
- "loss": 2.2357,
332
- "step": 4800
333
- },
334
- {
335
- "epoch": 47.12,
336
- "learning_rate": 0.00031768867924528306,
337
- "loss": 2.2935,
338
- "step": 4900
339
- },
340
- {
341
- "epoch": 48.08,
342
- "learning_rate": 0.00029410377358490565,
343
- "loss": 2.25,
344
- "step": 5000
345
- },
346
- {
347
- "epoch": 48.08,
348
- "eval_loss": 1.088808536529541,
349
- "eval_runtime": 80.2673,
350
- "eval_samples_per_second": 13.854,
351
- "eval_steps_per_second": 3.463,
352
- "eval_wer": 0.9585650224215246,
353
- "step": 5000
354
- },
355
- {
356
- "epoch": 49.04,
357
- "learning_rate": 0.0002705188679245283,
358
- "loss": 2.2023,
359
- "step": 5100
360
- },
361
- {
362
- "epoch": 50.0,
363
- "learning_rate": 0.0002469339622641509,
364
- "loss": 2.2132,
365
- "step": 5200
366
- },
367
- {
368
- "epoch": 50.96,
369
- "learning_rate": 0.00022334905660377358,
370
- "loss": 2.1842,
371
- "step": 5300
372
- },
373
- {
374
- "epoch": 51.92,
375
- "learning_rate": 0.00019976415094339622,
376
- "loss": 2.1644,
377
- "step": 5400
378
- },
379
- {
380
- "epoch": 52.88,
381
- "learning_rate": 0.00017617924528301888,
382
- "loss": 2.1449,
383
- "step": 5500
384
- },
385
- {
386
- "epoch": 53.84,
387
- "learning_rate": 0.00015259433962264152,
388
- "loss": 2.1539,
389
- "step": 5600
390
- },
391
- {
392
- "epoch": 54.81,
393
- "learning_rate": 0.00012900943396226418,
394
- "loss": 2.1193,
395
- "step": 5700
396
- },
397
- {
398
- "epoch": 55.77,
399
- "learning_rate": 0.0001054245283018868,
400
- "loss": 2.091,
401
- "step": 5800
402
- },
403
- {
404
- "epoch": 56.73,
405
- "learning_rate": 8.183962264150944e-05,
406
- "loss": 2.0871,
407
- "step": 5900
408
- },
409
- {
410
- "epoch": 57.69,
411
- "learning_rate": 5.825471698113208e-05,
412
- "loss": 2.0757,
413
- "step": 6000
414
- },
415
- {
416
- "epoch": 57.69,
417
- "eval_loss": 0.950368344783783,
418
- "eval_runtime": 79.8206,
419
- "eval_samples_per_second": 13.931,
420
- "eval_steps_per_second": 3.483,
421
- "eval_wer": 0.9411659192825113,
422
- "step": 6000
423
- },
424
- {
425
- "epoch": 58.65,
426
- "learning_rate": 3.4669811320754716e-05,
427
- "loss": 2.056,
428
- "step": 6100
429
- },
430
- {
431
- "epoch": 59.61,
432
- "learning_rate": 1.1084905660377358e-05,
433
- "loss": 2.0488,
434
- "step": 6200
435
- },
436
- {
437
- "epoch": 60.0,
438
- "step": 6240,
439
- "total_flos": 1.9322773224714512e+20,
440
- "train_loss": 2.2000570346147588,
441
- "train_runtime": 38994.8678,
442
- "train_samples_per_second": 5.133,
443
- "train_steps_per_second": 0.16
444
- }
445
- ],
446
- "max_steps": 6240,
447
- "num_train_epochs": 60,
448
- "total_flos": 1.9322773224714512e+20,
449
- "trial_name": null,
450
- "trial_params": null
451
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e671975c9fc29d251830e4bd90003705e709ea3d562726308fb5fc129d6750fe
3
- size 2991
 
 
 
 
vocab.json DELETED
@@ -1 +0,0 @@
1
- {"\\": 1, "_": 2, "e": 3, "g": 4, "l": 5, "n": 6, "p": 7, "r": 8, "s": 9, "t": 10, "ఁ": 11, "ం": 12, "ః": 13, "అ": 14, "ఆ": 15, "ఇ": 16, "ఈ": 17, "ఉ": 18, "ఊ": 19, "ఋ": 20, "ఎ": 21, "ఏ": 22, "ఐ": 23, "ఒ": 24, "ఓ": 25, "ఔ": 26, "క": 27, "ఖ": 28, "గ": 29, "ఘ": 30, "ఙ": 31, "చ": 32, "ఛ": 33, "జ": 34, "ఞ": 35, "ట": 36, "ఠ": 37, "డ": 38, "ఢ": 39, "ణ": 40, "త": 41, "థ": 42, "ద": 43, "ధ": 44, "న": 45, "ప": 46, "ఫ": 47, "బ": 48, "భ": 49, "మ": 50, "య": 51, "ర": 52, "ఱ": 53, "ల": 54, "ళ": 55, "వ": 56, "శ": 57, "ష": 58, "స": 59, "హ": 60, "ా": 61, "ి": 62, "ీ": 63, "ు": 64, "ూ": 65, "ృ": 66, "ె": 67, "ే": 68, "ై": 69, "ొ": 70, "ో": 71, "ౌ": 72, "్": 73, "‌": 74, "|": 0, "[UNK]": 75, "[PAD]": 76}