Add WER with LM on train data
Browse files
README.md
CHANGED
@@ -48,6 +48,21 @@ It achieves the following results on the evaluation set:
|
|
48 |
- Loss: 0.3119
|
49 |
- Wer: 0.2613
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
## Model description
|
52 |
|
53 |
More information needed
|
@@ -114,19 +129,6 @@ The following hyperparameters were used during training:
|
|
114 |
| 0.3133 | 149.04 | 15500 | 0.3114 | 0.2624 |
|
115 |
|
116 |
|
117 |
-
### Evaluation metrics
|
118 |
-
|
119 |
-
| Metric | Split | LM | Value |
|
120 |
-
|:------:|:------:|:-----:|:---------:|
|
121 |
-
| WER | Train | No | 5.36 |
|
122 |
-
| CER | Train | No | 1.11 |
|
123 |
-
| WER | Test | No | 26.14 |
|
124 |
-
| CER | Test | No | 4.93 |
|
125 |
-
| WER | Train | Yes | |
|
126 |
-
| CER | Train | Yes | |
|
127 |
-
| WER | Test | Yes | 20.69 |
|
128 |
-
| CER | Test | Yes | 3.986 |
|
129 |
-
|
130 |
### Framework versions
|
131 |
|
132 |
- Transformers 4.16.0.dev0
|
|
|
48 |
- Loss: 0.3119
|
49 |
- Wer: 0.2613
|
50 |
|
51 |
+
|
52 |
+
### Evaluation metrics
|
53 |
+
|
54 |
+
| Metric | Split | Decode with LM | Value |
|
55 |
+
|:------:|:------:|:--------------:|:---------:|
|
56 |
+
| WER | Train | No | 5.36 |
|
57 |
+
| CER | Train | No | 1.11 |
|
58 |
+
| WER | Test | No | 26.14 |
|
59 |
+
| CER | Test | No | 4.93 |
|
60 |
+
| WER | Train | Yes | 5.04 |
|
61 |
+
| CER | Train | Yes | 1.07 |
|
62 |
+
| WER | Test | Yes | 20.69 |
|
63 |
+
| CER | Test | Yes | 3.986 |
|
64 |
+
|
65 |
+
|
66 |
## Model description
|
67 |
|
68 |
More information needed
|
|
|
129 |
| 0.3133 | 149.04 | 15500 | 0.3114 | 0.2624 |
|
130 |
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
### Framework versions
|
133 |
|
134 |
- Transformers 4.16.0.dev0
|