update model card README.md
Browse files
README.md
CHANGED
@@ -17,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Wer: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -37,32 +37,53 @@ More information needed
|
|
37 |
### Training hyperparameters
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
-
- learning_rate:
|
41 |
- train_batch_size: 16
|
42 |
- eval_batch_size: 4
|
43 |
- seed: 42
|
44 |
-
- gradient_accumulation_steps:
|
45 |
-
- total_train_batch_size:
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
-
- lr_scheduler_warmup_steps:
|
49 |
-
- num_epochs:
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch
|
55 |
-
|
56 |
-
|
|
57 |
-
|
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
| 0.
|
65 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3119
|
21 |
+
- Wer: 0.2613
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
37 |
### Training hyperparameters
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
- train_batch_size: 16
|
42 |
- eval_batch_size: 4
|
43 |
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 2000
|
49 |
+
- num_epochs: 150.0
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
56 |
+
| 2.9038 | 4.8 | 500 | 3.0125 | 1.0 |
|
57 |
+
| 1.3777 | 9.61 | 1000 | 0.8681 | 0.8753 |
|
58 |
+
| 1.1436 | 14.42 | 1500 | 0.6256 | 0.7961 |
|
59 |
+
| 1.0997 | 19.23 | 2000 | 0.5244 | 0.6875 |
|
60 |
+
| 1.0363 | 24.04 | 2500 | 0.4585 | 0.6276 |
|
61 |
+
| 0.7996 | 28.84 | 3000 | 0.4072 | 0.5295 |
|
62 |
+
| 0.825 | 33.65 | 3500 | 0.3590 | 0.5222 |
|
63 |
+
| 0.8018 | 38.46 | 4000 | 0.3678 | 0.4671 |
|
64 |
+
| 0.7545 | 43.27 | 4500 | 0.3474 | 0.3962 |
|
65 |
+
| 0.7375 | 48.08 | 5000 | 0.3224 | 0.3869 |
|
66 |
+
| 0.6198 | 52.88 | 5500 | 0.3233 | 0.3630 |
|
67 |
+
| 0.6608 | 57.69 | 6000 | 0.3029 | 0.3308 |
|
68 |
+
| 0.645 | 62.5 | 6500 | 0.3195 | 0.3722 |
|
69 |
+
| 0.5249 | 67.31 | 7000 | 0.3004 | 0.3202 |
|
70 |
+
| 0.4875 | 72.11 | 7500 | 0.2826 | 0.2992 |
|
71 |
+
| 0.5171 | 76.92 | 8000 | 0.2962 | 0.2976 |
|
72 |
+
| 0.4974 | 81.73 | 8500 | 0.2990 | 0.2933 |
|
73 |
+
| 0.4387 | 86.54 | 9000 | 0.2834 | 0.2755 |
|
74 |
+
| 0.4511 | 91.34 | 9500 | 0.2886 | 0.2787 |
|
75 |
+
| 0.4112 | 96.15 | 10000 | 0.3093 | 0.2976 |
|
76 |
+
| 0.4064 | 100.96 | 10500 | 0.3123 | 0.2863 |
|
77 |
+
| 0.4047 | 105.77 | 11000 | 0.2968 | 0.2719 |
|
78 |
+
| 0.3519 | 110.57 | 11500 | 0.3106 | 0.2832 |
|
79 |
+
| 0.3719 | 115.38 | 12000 | 0.3030 | 0.2737 |
|
80 |
+
| 0.3669 | 120.19 | 12500 | 0.2964 | 0.2714 |
|
81 |
+
| 0.3386 | 125.0 | 13000 | 0.3101 | 0.2714 |
|
82 |
+
| 0.3137 | 129.8 | 13500 | 0.3063 | 0.2710 |
|
83 |
+
| 0.3008 | 134.61 | 14000 | 0.3082 | 0.2617 |
|
84 |
+
| 0.301 | 139.42 | 14500 | 0.3121 | 0.2628 |
|
85 |
+
| 0.3291 | 144.23 | 15000 | 0.3105 | 0.2612 |
|
86 |
+
| 0.3133 | 149.04 | 15500 | 0.3114 | 0.2624 |
|
87 |
|
88 |
|
89 |
### Framework versions
|