chmanoj commited on
Commit
287473e
1 Parent(s): 19b5b0b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -19
README.md CHANGED
@@ -17,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 3.3845
21
- - Wer: 0.9869
22
 
23
  ## Model description
24
 
@@ -37,32 +37,53 @@ More information needed
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
- - learning_rate: 5e-07
41
  - train_batch_size: 16
42
  - eval_batch_size: 4
43
  - seed: 42
44
- - gradient_accumulation_steps: 4
45
- - total_train_batch_size: 64
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
- - lr_scheduler_warmup_steps: 300
49
- - num_epochs: 100.0
50
  - mixed_precision_training: Native AMP
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Wer |
55
- |:-------------:|:-----:|:----:|:---------------:|:------:|
56
- | 3.5131 | 9.61 | 500 | 3.5294 | 1.0 |
57
- | 2.8596 | 19.23 | 1000 | 3.5708 | 1.0 |
58
- | 1.9055 | 28.84 | 1500 | 3.6433 | 1.0007 |
59
- | 1.4239 | 38.46 | 2000 | 3.6569 | 0.9995 |
60
- | 1.2168 | 48.08 | 2500 | 3.6079 | 0.9957 |
61
- | 1.1063 | 57.69 | 3000 | 3.5738 | 0.9925 |
62
- | 1.0404 | 67.31 | 3500 | 3.4857 | 0.9889 |
63
- | 1.001 | 76.92 | 4000 | 3.4882 | 0.9858 |
64
- | 0.982 | 86.54 | 4500 | 3.3851 | 0.9871 |
65
- | 0.9612 | 96.15 | 5000 | 3.3869 | 0.9873 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.3119
21
+ - Wer: 0.2613
22
 
23
  ## Model description
24
 
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
  - train_batch_size: 16
42
  - eval_batch_size: 4
43
  - seed: 42
44
+ - gradient_accumulation_steps: 2
45
+ - total_train_batch_size: 32
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 2000
49
+ - num_epochs: 150.0
50
  - mixed_precision_training: Native AMP
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
55
+ |:-------------:|:------:|:-----:|:---------------:|:------:|
56
+ | 2.9038 | 4.8 | 500 | 3.0125 | 1.0 |
57
+ | 1.3777 | 9.61 | 1000 | 0.8681 | 0.8753 |
58
+ | 1.1436 | 14.42 | 1500 | 0.6256 | 0.7961 |
59
+ | 1.0997 | 19.23 | 2000 | 0.5244 | 0.6875 |
60
+ | 1.0363 | 24.04 | 2500 | 0.4585 | 0.6276 |
61
+ | 0.7996 | 28.84 | 3000 | 0.4072 | 0.5295 |
62
+ | 0.825 | 33.65 | 3500 | 0.3590 | 0.5222 |
63
+ | 0.8018 | 38.46 | 4000 | 0.3678 | 0.4671 |
64
+ | 0.7545 | 43.27 | 4500 | 0.3474 | 0.3962 |
65
+ | 0.7375 | 48.08 | 5000 | 0.3224 | 0.3869 |
66
+ | 0.6198 | 52.88 | 5500 | 0.3233 | 0.3630 |
67
+ | 0.6608 | 57.69 | 6000 | 0.3029 | 0.3308 |
68
+ | 0.645 | 62.5 | 6500 | 0.3195 | 0.3722 |
69
+ | 0.5249 | 67.31 | 7000 | 0.3004 | 0.3202 |
70
+ | 0.4875 | 72.11 | 7500 | 0.2826 | 0.2992 |
71
+ | 0.5171 | 76.92 | 8000 | 0.2962 | 0.2976 |
72
+ | 0.4974 | 81.73 | 8500 | 0.2990 | 0.2933 |
73
+ | 0.4387 | 86.54 | 9000 | 0.2834 | 0.2755 |
74
+ | 0.4511 | 91.34 | 9500 | 0.2886 | 0.2787 |
75
+ | 0.4112 | 96.15 | 10000 | 0.3093 | 0.2976 |
76
+ | 0.4064 | 100.96 | 10500 | 0.3123 | 0.2863 |
77
+ | 0.4047 | 105.77 | 11000 | 0.2968 | 0.2719 |
78
+ | 0.3519 | 110.57 | 11500 | 0.3106 | 0.2832 |
79
+ | 0.3719 | 115.38 | 12000 | 0.3030 | 0.2737 |
80
+ | 0.3669 | 120.19 | 12500 | 0.2964 | 0.2714 |
81
+ | 0.3386 | 125.0 | 13000 | 0.3101 | 0.2714 |
82
+ | 0.3137 | 129.8 | 13500 | 0.3063 | 0.2710 |
83
+ | 0.3008 | 134.61 | 14000 | 0.3082 | 0.2617 |
84
+ | 0.301 | 139.42 | 14500 | 0.3121 | 0.2628 |
85
+ | 0.3291 | 144.23 | 15000 | 0.3105 | 0.2612 |
86
+ | 0.3133 | 149.04 | 15500 | 0.3114 | 0.2624 |
87
 
88
 
89
  ### Framework versions