chintagunta85
commited on
Commit
•
a4ee051
1
Parent(s):
a062c50
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- bc2gm_corpus
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: electramed-small-BC2GM-ner
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: bc2gm_corpus
|
19 |
+
type: bc2gm_corpus
|
20 |
+
config: bc2gm_corpus
|
21 |
+
split: train
|
22 |
+
args: bc2gm_corpus
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.7652071701439906
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.823399209486166
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.7932373771989948
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.9756735092182762
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# electramed-small-BC2GM-ner
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the bc2gm_corpus dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.0720
|
46 |
+
- Precision: 0.7652
|
47 |
+
- Recall: 0.8234
|
48 |
+
- F1: 0.7932
|
49 |
+
- Accuracy: 0.9757
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 16
|
70 |
+
- eval_batch_size: 16
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 10
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| 0.085 | 1.0 | 782 | 0.1112 | 0.6147 | 0.7777 | 0.6867 | 0.9634 |
|
81 |
+
| 0.0901 | 2.0 | 1564 | 0.0825 | 0.7141 | 0.8028 | 0.7559 | 0.9720 |
|
82 |
+
| 0.0303 | 3.0 | 2346 | 0.0759 | 0.7310 | 0.8049 | 0.7662 | 0.9724 |
|
83 |
+
| 0.0037 | 4.0 | 3128 | 0.0735 | 0.7430 | 0.8168 | 0.7781 | 0.9735 |
|
84 |
+
| 0.0325 | 5.0 | 3910 | 0.0723 | 0.7571 | 0.8142 | 0.7846 | 0.9748 |
|
85 |
+
| 0.0582 | 6.0 | 4692 | 0.0701 | 0.7664 | 0.8144 | 0.7897 | 0.9759 |
|
86 |
+
| 0.0073 | 7.0 | 5474 | 0.0701 | 0.7711 | 0.8212 | 0.7953 | 0.9761 |
|
87 |
+
| 0.1031 | 8.0 | 6256 | 0.0712 | 0.7602 | 0.8258 | 0.7916 | 0.9756 |
|
88 |
+
| 0.0248 | 9.0 | 7038 | 0.0722 | 0.7691 | 0.8231 | 0.7952 | 0.9759 |
|
89 |
+
| 0.0136 | 10.0 | 7820 | 0.0720 | 0.7652 | 0.8234 | 0.7932 | 0.9757 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.22.1
|
95 |
+
- Pytorch 1.12.1+cu113
|
96 |
+
- Datasets 2.4.0
|
97 |
+
- Tokenizers 0.12.1
|