chintagunta85 commited on
Commit
a4ee051
1 Parent(s): a062c50

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - bc2gm_corpus
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: electramed-small-BC2GM-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: bc2gm_corpus
19
+ type: bc2gm_corpus
20
+ config: bc2gm_corpus
21
+ split: train
22
+ args: bc2gm_corpus
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.7652071701439906
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.823399209486166
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7932373771989948
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9756735092182762
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # electramed-small-BC2GM-ner
42
+
43
+ This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the bc2gm_corpus dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.0720
46
+ - Precision: 0.7652
47
+ - Recall: 0.8234
48
+ - F1: 0.7932
49
+ - Accuracy: 0.9757
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 10
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.085 | 1.0 | 782 | 0.1112 | 0.6147 | 0.7777 | 0.6867 | 0.9634 |
81
+ | 0.0901 | 2.0 | 1564 | 0.0825 | 0.7141 | 0.8028 | 0.7559 | 0.9720 |
82
+ | 0.0303 | 3.0 | 2346 | 0.0759 | 0.7310 | 0.8049 | 0.7662 | 0.9724 |
83
+ | 0.0037 | 4.0 | 3128 | 0.0735 | 0.7430 | 0.8168 | 0.7781 | 0.9735 |
84
+ | 0.0325 | 5.0 | 3910 | 0.0723 | 0.7571 | 0.8142 | 0.7846 | 0.9748 |
85
+ | 0.0582 | 6.0 | 4692 | 0.0701 | 0.7664 | 0.8144 | 0.7897 | 0.9759 |
86
+ | 0.0073 | 7.0 | 5474 | 0.0701 | 0.7711 | 0.8212 | 0.7953 | 0.9761 |
87
+ | 0.1031 | 8.0 | 6256 | 0.0712 | 0.7602 | 0.8258 | 0.7916 | 0.9756 |
88
+ | 0.0248 | 9.0 | 7038 | 0.0722 | 0.7691 | 0.8231 | 0.7952 | 0.9759 |
89
+ | 0.0136 | 10.0 | 7820 | 0.0720 | 0.7652 | 0.8234 | 0.7932 | 0.9757 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.22.1
95
+ - Pytorch 1.12.1+cu113
96
+ - Datasets 2.4.0
97
+ - Tokenizers 0.12.1