chinmaydan commited on
Commit
9e826e6
·
1 Parent(s): 49e917d

Initial Commit

Browse files
Files changed (47) hide show
  1. .gitignore +1 -0
  2. README.md +188 -0
  3. ckpt/bpe_vocab +0 -0
  4. ckpt/codes.bpe.32000 +0 -0
  5. data-bin/dict.en.txt +0 -0
  6. data-bin/dict.zh.txt +0 -0
  7. data-bin/preprocess.log +4 -0
  8. data-bin/test.en-zh.en +1 -0
  9. data-bin/test.en-zh.zh +1 -0
  10. data-bin/test.zh-en.en +1 -0
  11. data-bin/test.zh-en.zh +1 -0
  12. docs/img.png +0 -0
  13. eval.sh +166 -0
  14. examples/configs/eval_benchmarks.yml +80 -0
  15. examples/configs/parallel_mono_12e12d_contrastive.yml +44 -0
  16. mcolt/__init__.py +4 -0
  17. mcolt/__pycache__/__init__.cpython-310.pyc +0 -0
  18. mcolt/arches/__init__.py +1 -0
  19. mcolt/arches/__pycache__/__init__.cpython-310.pyc +0 -0
  20. mcolt/arches/__pycache__/transformer.cpython-310.pyc +0 -0
  21. mcolt/arches/transformer.py +380 -0
  22. mcolt/criterions/__init__.py +1 -0
  23. mcolt/criterions/__pycache__/__init__.cpython-310.pyc +0 -0
  24. mcolt/criterions/__pycache__/label_smoothed_cross_entropy_with_contrastive.cpython-310.pyc +0 -0
  25. mcolt/criterions/label_smoothed_cross_entropy_with_contrastive.py +123 -0
  26. mcolt/data/__init__.py +1 -0
  27. mcolt/data/__pycache__/__init__.cpython-310.pyc +0 -0
  28. mcolt/data/__pycache__/subsample_language_pair_dataset.cpython-310.pyc +0 -0
  29. mcolt/data/subsample_language_pair_dataset.py +124 -0
  30. mcolt/tasks/__init__.py +2 -0
  31. mcolt/tasks/__pycache__/__init__.cpython-310.pyc +0 -0
  32. mcolt/tasks/__pycache__/translation_w_langtok.cpython-310.pyc +0 -0
  33. mcolt/tasks/__pycache__/translation_w_mono.cpython-310.pyc +0 -0
  34. mcolt/tasks/translation_w_langtok.py +476 -0
  35. mcolt/tasks/translation_w_mono.py +214 -0
  36. requirements.txt +5 -0
  37. scripts/load_config.sh +48 -0
  38. scripts/utils.py +116 -0
  39. test/input.en +1 -0
  40. test/input.zh +1 -0
  41. test/output +0 -0
  42. test/output.en.no_bpe +1 -0
  43. test/output.en.no_bpe.moses +1 -0
  44. test/output.zh +3 -0
  45. test/output.zh.no_bpe +1 -0
  46. test/output.zh.no_bpe.moses +1 -0
  47. train_w_mono.sh +56 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .idea
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ```bash
2
+ conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
3
+ ```
4
+
5
+ # Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021
6
+ The code for training mCOLT/mRASP2, a multilingual neural machine translation training method, implemented based on [fairseq](https://github.com/pytorch/fairseq).
7
+
8
+ **mRASP2**: [paper](https://arxiv.org/abs/2105.09501) [blog](https://medium.com/@panxiao1994/mrasp2-multilingual-nmt-advances-via-contrastive-learning-ac8c4c35d63)
9
+
10
+ **mRASP**: [paper](https://www.aclweb.org/anthology/2020.emnlp-main.210.pdf),
11
+ [code](https://github.com/linzehui/mRASP)
12
+
13
+ ---
14
+ ## News
15
+ We have released two versions, this version is the original one. In this implementation:
16
+ - You should first merge all data, by pre-pending language token before each sentence to indicate the language.
17
+ - AA/RAS muse be done off-line (before binarize), check [this toolkit](https://github.com/linzehui/mRASP/blob/master/preprocess).
18
+
19
+ **New implementation**: https://github.com/PANXiao1994/mRASP2/tree/new_impl
20
+
21
+ * Acknowledgement: This work is supported by [Bytedance](https://bytedance.com). We thank [Chengqi](https://github.com/zhaocq-nlp) for uploading all files and checkpoints.
22
+
23
+ ## Introduction
24
+
25
+ mRASP2/mCOLT, representing multilingual Contrastive Learning for Transformer, is a multilingual neural machine translation model that supports complete many-to-many multilingual machine translation. It employs both parallel corpora and multilingual corpora in a unified training framework. For detailed information please refer to the paper.
26
+
27
+ ![img.png](docs/img.png)
28
+
29
+ ## Pre-requisite
30
+ ```bash
31
+ pip install -r requirements.txt
32
+ # install fairseq
33
+ git clone https://github.com/pytorch/fairseq
34
+ cd fairseq
35
+ pip install --editable ./
36
+ ```
37
+
38
+ ## Training Data and Checkpoints
39
+ We release our preprocessed training data and checkpoints in the following.
40
+ ### Dataset
41
+
42
+ We merge 32 English-centric language pairs, resulting in 64 directed translation pairs in total. The original 32 language pairs corpus contains about 197M pairs of sentences. We get about 262M pairs of sentences after applying RAS, since we keep both the original sentences and the substituted sentences. We release both the original dataset and dataset after applying RAS.
43
+
44
+ | Dataset | #Pair |
45
+ | --- | --- |
46
+ | [32-lang-pairs-TRAIN](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_parallel/download.sh) | 197603294 |
47
+ | [32-lang-pairs-RAS-TRAIN](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_parallel_ras/download.sh) | 262662792 |
48
+ | [mono-split-a](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_split_a/download.sh) | - |
49
+ | [mono-split-b](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_split_b/download.sh) | - |
50
+ | [mono-split-c](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_split_c/download.sh) | - |
51
+ | [mono-split-d](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_split_d/download.sh) | - |
52
+ | [mono-split-e](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_split_e/download.sh) | - |
53
+ | [mono-split-de-fr-en](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_de_fr_en/download.sh) | - |
54
+ | [mono-split-nl-pl-pt](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_mono_nl_pl_pt/download.sh) | - |
55
+ | [32-lang-pairs-DEV-en-centric](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_dev_en_centric/download.sh) | - |
56
+ | [32-lang-pairs-DEV-many-to-many](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bin_dev_m2m/download.sh) | - |
57
+ | [Vocab](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/bpe_vocab) | - |
58
+ | [BPE Code](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/emnlp2020/mrasp/pretrain/dataset/codes.bpe.32000) | - |
59
+
60
+
61
+ ### Checkpoints & Results
62
+ * **Please note that the provided checkpoint is sightly different from that in the paper.** In the following sections, we report the results of the provided checkpoints.
63
+
64
+ #### English-centric Directions
65
+ We report **tokenized BLEU** in the following table. Please click the model links to download. It is in pytorch format. (check eval.sh for details)
66
+
67
+ |Models | [6e6d-no-mono](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/6e6d_no_mono.pt) | [12e12d-no-mono](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/12e12d_no_mono.pt) | [12e12d](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/12e12d_last.pt) |
68
+ | --- | --- | --- | --- |
69
+ | en2cs/wmt16 | 21.0 | 22.3 | 23.8 |
70
+ | cs2en/wmt16 | 29.6 | 32.4 | 33.2 |
71
+ | en2fr/wmt14 | 42.0 | 43.3 | 43.4 |
72
+ | fr2en/wmt14 | 37.8 | 39.3 | 39.5 |
73
+ | en2de/wmt14 | 27.4 | 29.2 | 29.5 |
74
+ | de2en/wmt14 | 32.2 | 34.9 | 35.2 |
75
+ | en2zh/wmt17 | 33.0 | 34.9 | 34.1 |
76
+ | zh2en/wmt17 | 22.4 | 24.0 | 24.4 |
77
+ | en2ro/wmt16 | 26.6 | 28.1 | 28.7 |
78
+ | ro2en/wmt16 | 36.8 | 39.0 | 39.1 |
79
+ | en2tr/wmt16 | 18.6 | 20.3 | 21.2 |
80
+ | tr2en/wmt16 | 22.2 | 25.5 | 26.1 |
81
+ | en2ru/wmt19 | 17.4 | 18.5 | 19.2 |
82
+ | ru2en/wmt19 | 22.0 | 23.2 | 23.6 |
83
+ | en2fi/wmt17 | 20.2 | 22.1 | 22.9 |
84
+ | fi2en/wmt17 | 26.1 | 29.5 | 29.7 |
85
+ | en2es/wmt13 | 32.8 | 34.1 | 34.6 |
86
+ | es2en/wmt13 | 32.8 | 34.6 | 34.7 |
87
+ | en2it/wmt09 | 28.9 | 30.0 | 30.8 |
88
+ | it2en/wmt09 | 31.4 | 32.7 | 32.8 |
89
+
90
+ #### Unsupervised Directions
91
+ We report **tokenized BLEU** in the following table. (check eval.sh for details)
92
+
93
+ | | 12e12d |
94
+ | --- | --- |
95
+ | en2pl/wmt20 | 6.2 |
96
+ | pl2en/wmt20 | 13.5 |
97
+ | en2nl/iwslt14 | 8.8 |
98
+ | nl2en/iwslt14 | 27.1 |
99
+ | en2pt/opus100 | 18.9 |
100
+ | pt2en/opus100 | 29.2 |
101
+
102
+ #### Zero-shot Directions
103
+ * row: source language
104
+ * column: target language
105
+ We report **[sacreBLEU](https://github.com/mozilla/sacreBLEU)** in the following table.
106
+
107
+ | 12e12d | ar | zh | nl | fr | de | ru |
108
+ | --- | --- | --- | --- | --- | --- | --- |
109
+ | ar | - | 32.5 | 3.2 | 22.8 | 11.2 | 16.7 |
110
+ | zh | 6.5 | - | 1.9 | 32.9 | 7.6 | 23.7 |
111
+ | nl | 1.7 | 8.2 | - | 7.5 | 10.2 | 2.9 |
112
+ | fr | 6.2 | 42.3 | 7.5 | - | 18.9 | 24.4 |
113
+ | de | 4.9 | 21.6 | 9.2 | 24.7 | - | 14.4 |
114
+ | ru | 7.1 | 40.6 | 4.5 | 29.9 | 13.5 | - |
115
+
116
+ ## Training
117
+ ```bash
118
+ export NUM_GPU=4 && bash train_w_mono.sh ${model_config}
119
+ ```
120
+ * We give example of `${model_config}` in `${PROJECT_REPO}/examples/configs/parallel_mono_12e12d_contrastive.yml`
121
+
122
+ ## Inference
123
+ * You must pre-pend the corresponding language token to the source side before binarize the test data.
124
+ ```bash
125
+ fairseq-generate ${test_path} \
126
+ --user-dir ${repo_dir}/mcolt \
127
+ -s ${src} \
128
+ -t ${tgt} \
129
+ --skip-invalid-size-inputs-valid-test \
130
+ --path ${ckpts} \
131
+ --max-tokens ${batch_size} \
132
+ --task translation_w_langtok \
133
+ ${options} \
134
+ --lang-prefix-tok "LANG_TOK_"`echo "${tgt} " | tr '[a-z]' '[A-Z]'` \
135
+ --max-source-positions ${max_source_positions} \
136
+ --max-target-positions ${max_target_positions} \
137
+ --nbest 1 | grep -E '[S|H|P|T]-[0-9]+' > ${final_res_file}
138
+
139
+ python fairseq/fairseq_cli/preprocess.py --dataset-impl raw --srcdict ckpt/bpe_vocab --tgtdict ckpt/bpe_vocab --testpref test/input -s zh -t en
140
+
141
+ python fairseq/fairseq_cli/interactive.py /mnt/data2/siqiouyang/demo/mRASP2/data-bin \
142
+ --user-dir mcolt \
143
+ -s en \
144
+ -t zh \
145
+ --skip-invalid-size-inputs-valid-test \
146
+ --path ckpt/12e12d_last.pt \
147
+ --max-tokens 1024 \
148
+ --task translation_w_langtok \
149
+ --lang-prefix-tok "LANG_TOK_"`echo "zh " | tr '[a-z]' '[A-Z]'` \
150
+ --max-source-positions 1024 \
151
+ --max-target-positions 1024 \
152
+ --nbest 1 \
153
+ --bpe subword_nmt \
154
+ --bpe-codes ckpt/codes.bpe.32000 \
155
+ --post-process --tokenizer moses \
156
+ --input ./test/input.en | grep -E '[D]-[0-9]+' > test/output.zh.no_bpe.moses
157
+
158
+ python3 ${repo_dir}/scripts/utils.py ${res_file} ${ref_file} || exit 1;
159
+ ```
160
+
161
+ ## Synonym dictionaries
162
+ We use the bilingual synonym dictionaries provised by [MUSE](https://github.com/facebookresearch/MUSE).
163
+
164
+ We generate multilingual synonym dictionaries using [this script](https://github.com/linzehui/mRASP/blob/master/preprocess/tools/ras/multi_way_word_graph.py), and apply
165
+ RAS using [this script](https://github.com/linzehui/mRASP/blob/master/preprocess/tools/ras/random_alignment_substitution_w_multi.sh).
166
+
167
+ | Description | File | Size |
168
+ | --- | --- | --- |
169
+ | dep=1 | [synonym_dict_raw_dep1](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/synonym_dict_raw_dep1) | 138.0 M |
170
+ | dep=2 | [synonym_dict_raw_dep2](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/synonym_dict_raw_dep2) | 1.6 G |
171
+ | dep=3 | [synonym_dict_raw_dep3](https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2021/mrasp2/synonym_dict_raw_dep3) | 2.2 G |
172
+
173
+ ## Contact
174
+ Please contact me via e-mail `panxiao94@163.com` or via [wechat/zhihu](https://fork-ball-95c.notion.site/mRASP2-4e9b3450d5aa4137ae1a2c46d5f3c1fa) or join [the slack group](https://mrasp2.slack.com/join/shared_invite/zt-10k9710mb-MbDHzDboXfls2Omd8cuWqA)!
175
+
176
+ ## Citation
177
+ Please cite as:
178
+ ```
179
+ @inproceedings{mrasp2,
180
+ title = {Contrastive Learning for Many-to-many Multilingual Neural Machine Translation},
181
+ author= {Xiao Pan and
182
+ Mingxuan Wang and
183
+ Liwei Wu and
184
+ Lei Li},
185
+ booktitle = {Proceedings of ACL 2021},
186
+ year = {2021},
187
+ }
188
+ ```
ckpt/bpe_vocab ADDED
The diff for this file is too large to render. See raw diff
 
ckpt/codes.bpe.32000 ADDED
The diff for this file is too large to render. See raw diff
 
data-bin/dict.en.txt ADDED
The diff for this file is too large to render. See raw diff
 
data-bin/dict.zh.txt ADDED
The diff for this file is too large to render. See raw diff
 
data-bin/preprocess.log ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Namespace(no_progress_bar=False, log_interval=100, log_format=None, log_file=None, aim_repo=None, aim_run_hash=None, tensorboard_logdir=None, wandb_project=None, azureml_logging=False, seed=1, cpu=False, tpu=False, bf16=False, memory_efficient_bf16=False, fp16=False, memory_efficient_fp16=False, fp16_no_flatten_grads=False, fp16_init_scale=128, fp16_scale_window=None, fp16_scale_tolerance=0.0, on_cpu_convert_precision=False, min_loss_scale=0.0001, threshold_loss_scale=None, amp=False, amp_batch_retries=2, amp_init_scale=128, amp_scale_window=None, user_dir=None, empty_cache_freq=0, all_gather_list_size=16384, model_parallel_size=1, quantization_config_path=None, profile=False, reset_logging=False, suppress_crashes=False, use_plasma_view=False, plasma_path='/tmp/plasma', criterion='cross_entropy', tokenizer=None, bpe=None, optimizer=None, lr_scheduler='fixed', scoring='bleu', task='translation', source_lang='en', target_lang='zh', trainpref=None, validpref=None, testpref='test/input', align_suffix=None, destdir='data-bin', thresholdtgt=0, thresholdsrc=0, tgtdict='ckpt/bpe_vocab', srcdict='ckpt/bpe_vocab', nwordstgt=-1, nwordssrc=-1, alignfile=None, dataset_impl='raw', joined_dictionary=False, only_source=False, padding_factor=8, workers=1, dict_only=False)
2
+ Wrote preprocessed data to data-bin
3
+ Namespace(no_progress_bar=False, log_interval=100, log_format=None, log_file=None, aim_repo=None, aim_run_hash=None, tensorboard_logdir=None, wandb_project=None, azureml_logging=False, seed=1, cpu=False, tpu=False, bf16=False, memory_efficient_bf16=False, fp16=False, memory_efficient_fp16=False, fp16_no_flatten_grads=False, fp16_init_scale=128, fp16_scale_window=None, fp16_scale_tolerance=0.0, on_cpu_convert_precision=False, min_loss_scale=0.0001, threshold_loss_scale=None, amp=False, amp_batch_retries=2, amp_init_scale=128, amp_scale_window=None, user_dir=None, empty_cache_freq=0, all_gather_list_size=16384, model_parallel_size=1, quantization_config_path=None, profile=False, reset_logging=False, suppress_crashes=False, use_plasma_view=False, plasma_path='/tmp/plasma', criterion='cross_entropy', tokenizer=None, bpe=None, optimizer=None, lr_scheduler='fixed', scoring='bleu', task='translation', source_lang='zh', target_lang='en', trainpref=None, validpref=None, testpref='test/input', align_suffix=None, destdir='data-bin', thresholdtgt=0, thresholdsrc=0, tgtdict='ckpt/bpe_vocab', srcdict='ckpt/bpe_vocab', nwordstgt=-1, nwordssrc=-1, alignfile=None, dataset_impl='raw', joined_dictionary=False, only_source=False, padding_factor=8, workers=1, dict_only=False)
4
+ Wrote preprocessed data to data-bin
data-bin/test.en-zh.en ADDED
@@ -0,0 +1 @@
 
 
1
+ LANG_TOK_EN Hello my friend!
data-bin/test.en-zh.zh ADDED
@@ -0,0 +1 @@
 
 
1
+ LANG_TOK_ZH
data-bin/test.zh-en.en ADDED
@@ -0,0 +1 @@
 
 
1
+ LANG_TOK_EN Hello my friend!
data-bin/test.zh-en.zh ADDED
@@ -0,0 +1 @@
 
 
1
+ LANG_TOK_ZH 你好!
docs/img.png ADDED
eval.sh ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ # repo_dir: root directory of the project
4
+ repo_dir="$( cd "$( dirname "$0" )" && pwd )"
5
+ echo "==== Working directory: ====" >&2
6
+ echo "${repo_dir}" >&2
7
+ echo "============================" >&2
8
+
9
+
10
+ test_config=$1
11
+ source ${repo_dir}/scripts/load_config.sh ${test_config} ${repo_dir}
12
+ model_dir=$2
13
+ choice=$3 # all|best|last
14
+
15
+ model_dir=${repo_dir}/model
16
+ data_dir=${repo_dir}/data
17
+ res_path=${model_dir}/results
18
+
19
+ mkdir -p ${model_dir} ${data_dir} ${res_path}
20
+
21
+ testset_name=data_testset_1_name
22
+ testset_path=data_testset_1_path
23
+ testset_ref=data_testset_1_ref
24
+ testset_direc=data_testset_1_direction
25
+ i=1
26
+ testsets=""
27
+ while [[ ! -z ${!testset_path} && ! -z ${!testset_direc} ]]; do
28
+ dataname=${!testset_name}
29
+ mkdir -p ${data_dir}/${!testset_direc}/${dataname} ${data_dir}/ref/${!testset_direc}/${dataname}
30
+ cp ${!testset_path}/* ${data_dir}/${!testset_direc}/${dataname}/
31
+ cp ${!testset_ref}/* ${data_dir}/ref/${!testset_direc}/${dataname}/
32
+ if [[ $testsets == "" ]]; then
33
+ testsets=${!testset_direc}/${dataname}
34
+ else
35
+ testsets=${testsets}:${!testset_direc}/${dataname}
36
+ fi
37
+ i=$((i+1))
38
+ testset_name=testset_${i}_name
39
+ testset_path=testset_${i}_path
40
+ testset_ref=testset_${i}_ref
41
+ testset_direc=testset_${i}_direction
42
+ done
43
+
44
+ IFS=':' read -r -a testset_list <<< ${testsets}
45
+
46
+
47
+ bleu () {
48
+ src=$1
49
+ tgt=$2
50
+ res_file=$3
51
+ ref_file=$4
52
+ if [[ -f ${res_file} ]]; then
53
+ f_dirname=`dirname ${res_file}`
54
+ python3 ${repo_dir}/scripts/utils.py ${res_file} ${ref_file} || exit 1;
55
+ input_file="${f_dirname}/hypo.out.nobpe"
56
+ output_file="${f_dirname}/hypo.out.nobpe.final"
57
+ # form command
58
+ cmd="cat ${input_file}"
59
+ lang_token="LANG_TOK_"`echo "${tgt} " | tr '[a-z]' '[A-Z]'`
60
+ if [[ $tgt == "fr" ]]; then
61
+ cmd=$cmd" | sed -Ee 's/\"([^\"]*)\"/« \1 »/g'"
62
+ elif [[ $tgt == "zh" ]]; then
63
+ tokenizer="zh"
64
+ elif [[ $tgt == "ja" ]]; then
65
+ tokenizer="ja-mecab"
66
+ fi
67
+ [[ -z $tokenizer ]] && tokenizer="none"
68
+ cmd=$cmd" | sed -e s'|${lang_token} ||g' > ${output_file}"
69
+ eval $cmd || { echo "$cmd FAILED !"; exit 1; }
70
+ cat ${output_file} | sacrebleu -l ${src}-${tgt} -tok $tokenizer --short "${f_dirname}/ref.out" | awk '{print $3}'
71
+ else
72
+ echo "${res_file} not exist!" >&2 && exit 1;
73
+ fi
74
+ }
75
+
76
+ # monitor
77
+ # ${ckptname}/${direction}/${testname}/orig.txt
78
+ (inotifywait -r -m -e close_write ${res_path} |
79
+ while read path action file; do
80
+ if [[ "$file" =~ .*txt$ ]]; then
81
+ tmp_str="${path%/*}"
82
+ testname="${tmp_str##*/}"
83
+ tmp_str="${tmp_str%/*}"
84
+ direction="${tmp_str##*/}"
85
+ tmp_str="${tmp_str%/*}"
86
+ ckptname="${tmp_str##*/}"
87
+ src_lang="${direction%2*}"
88
+ tgt_lang="${direction##*2}"
89
+ res_file=$path$file
90
+ ref_file=${data_dir}/ref/${direction}/${testname}/dev.${tgt_lang}
91
+ bleuscore=`bleu ${src_lang} ${tgt_lang} ${res_file} ${ref_file}`
92
+ bleu_str="$(date "+%Y-%m-%d %H:%M:%S")\t${ckptname}\t${direction}/${testname}\t$bleuscore"
93
+ echo -e ${bleu_str} # to stdout
94
+ echo -e ${bleu_str} >> ${model_dir}/summary.log
95
+ fi
96
+ done) &
97
+
98
+
99
+ if [[ ${choice} == "all" ]]; then
100
+ filelist=`ls -la ${model_dir} | sort -k6,7 -r | awk '{print $NF}' | grep .pt$ | tr '\n' ' '`
101
+ elif [[ ${choice} == "best" ]]; then
102
+ filelist="${model_dir}/checkpoint_best.pt"
103
+ elif [[ ${choice} == "last" ]]; then
104
+ filelist="${model_dir}/checkpoint_last.pt"
105
+ else
106
+ echo "invalid choice!" && exit 2;
107
+ fi
108
+
109
+ N=${NUM_GPU}
110
+ #export CUDA_VISIBLE_DEVICES=$(seq -s ',' 0 $(($N - 1)) )
111
+
112
+
113
+ infer_test () {
114
+ test_path=$1
115
+ ckpts=$2
116
+ gpu=$3
117
+ final_res_file=$4
118
+ src=$5
119
+ tgt=$6
120
+ gpu_cmd="CUDA_VISIBLE_DEVICES=$gpu "
121
+ lang_token="LANG_TOK_"`echo "${tgt} " | tr '[a-z]' '[A-Z]'`
122
+ [[ -z ${max_source_positions} ]] && max_source_positions=1024
123
+ [[ -z ${max_target_positions} ]] && max_target_positions=1024
124
+ command=${gpu_cmd}"fairseq-generate ${test_path} \
125
+ --user-dir ${repo_dir}/mcolt \
126
+ -s ${src} \
127
+ -t ${tgt} \
128
+ --skip-invalid-size-inputs-valid-test \
129
+ --path ${ckpts} \
130
+ --max-tokens 1024 \
131
+ --task translation_w_langtok \
132
+ ${options} \
133
+ --lang-prefix-tok ${lang_token} \
134
+ --max-source-positions ${max_source_positions} \
135
+ --max-target-positions ${max_target_positions} \
136
+ --nbest 1 | grep -E '[S|H|P|T]-[0-9]+' > ${final_res_file}
137
+ "
138
+ echo "$command"
139
+ }
140
+
141
+ export -f infer_test
142
+ i=0
143
+ (for ckpt in ${filelist}
144
+ do
145
+ for testset in "${testset_list[@]}"
146
+ do
147
+ ckptbase=`basename $ckpt`
148
+ ckptname="${ckptbase%.*}"
149
+ direction="${testset%/*}"
150
+ testname="${testset##*/}"
151
+ src_lang="${direction%2*}"
152
+ tgt_lang="${direction##*2}"
153
+
154
+ ((i=i%N)); ((i++==0)) && wait
155
+ test_path=${data_dir}/${testset}
156
+
157
+ echo "-----> "${ckptname}" | "${direction}/$testname" <-----" >&2
158
+ if [[ ! -d ${res_path}/${ckptname}/${direction}/${testname} ]]; then
159
+ mkdir -p ${res_path}/${ckptname}/${direction}/${testname}
160
+ fi
161
+ final_res_file="${res_path}/${ckptname}/${direction}/${testname}/orig.txt"
162
+ command=`infer_test ${test_path} ${model_dir}/${ckptname}.pt $((i-1)) ${final_res_file} ${src_lang} ${tgt_lang}`
163
+ echo "${command}"
164
+ eval $command &
165
+ done
166
+ done)
examples/configs/eval_benchmarks.yml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data_testset_1:
2
+ direction: en2de
3
+ name: wmt14
4
+ path: data/binarized/en_de/en2de/wmt14
5
+ ref: data/dev/en2de/wmt14
6
+ data_testset_10:
7
+ direction: ru2en
8
+ name: newstest2019
9
+ path: data/binarized/en_ru/ru2en/newstest2019
10
+ ref: data/dev/ru2en/newstest2019
11
+ data_testset_11:
12
+ direction: en2fi
13
+ name: newstest2017
14
+ path: data/binarized/en_fi/en2fi/newstest2017
15
+ ref: data/dev/en2fi/newstest2017
16
+ data_testset_12:
17
+ direction: fi2en
18
+ name: newstest2017
19
+ path: data/binarized/en_fi/fi2en/newstest2017
20
+ ref: data/dev/fi2en/newstest2017
21
+ data_testset_13:
22
+ direction: en2cs
23
+ name: newstest2016
24
+ path: data/binarized/en_cs/en2cs/newstest2016
25
+ ref: data/dev/en2cs/newstest2016
26
+ data_testset_14:
27
+ direction: cs2en
28
+ name: newstest2016
29
+ path: data/binarized/en_cs/cs2en/newstest2016
30
+ ref: data/dev/cs2en/newstest2016
31
+ data_testset_15:
32
+ direction: en2et
33
+ name: newstest2018
34
+ path: data/binarized/en_et/en2et/newstest2018
35
+ ref: data/dev/en2et/newstest2018
36
+ data_testset_16:
37
+ direction: et2en
38
+ name: newstest2018
39
+ path: data/binarized/en_et/et2en/newstest2018
40
+ ref: data/dev/et2en/newstest2018
41
+ data_testset_2:
42
+ direction: de2en
43
+ name: wmt14
44
+ path: data/binarized/en_de/de2en/wmt14
45
+ ref: data/dev/de2en/wmt14
46
+ data_testset_3:
47
+ direction: en2fr
48
+ name: newstest2014
49
+ path: data/binarized/en_fr/en2fr/newstest2014
50
+ ref: data/dev/en2fr/newstest2014
51
+ data_testset_4:
52
+ direction: fr2en
53
+ name: newstest2014
54
+ path: data/binarized/en_fr/fr2en/newstest2014
55
+ ref: data/dev/fr2en/newstest2014
56
+ data_testset_5:
57
+ direction: en2ro
58
+ name: wmt16
59
+ path: data/binarized/en_ro/en_ro/wmt16
60
+ ref: data/dev/en_ro/wmt16
61
+ data_testset_6:
62
+ direction: ro2en
63
+ name: wmt16
64
+ path: data/binarized/en_ro/en_ro/wmt16
65
+ ref: data/dev/en_ro/wmt16
66
+ data_testset_7:
67
+ direction: en2zh
68
+ name: wmt17
69
+ path: data/binarized/en_zh/en2zh/wmt17
70
+ ref: data/dev/en2zh/wmt17
71
+ data_testset_8:
72
+ direction: zh2en
73
+ name: wmt17
74
+ path: data/binarized/en_zh/zh2en/wmt17
75
+ ref: data/dev/zh2en/wmt17
76
+ data_testset_9:
77
+ direction: en2ru
78
+ name: newstest2019
79
+ path: data/binarized/en_ru/en2ru/newstest2019
80
+ ref: data/dev/en2ru/newstest2019
examples/configs/parallel_mono_12e12d_contrastive.yml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model_dir: model/pretrain/lab/multilingual/l2r/multi_bpe32k/parallel_mono_contrastive_1/transformer_big_t2t_12e12d
2
+ data_1: data/multilingual/bin/merged_deduped_ras
3
+ data_mono_1: data/multilingual/bin/mono_only/splitaa
4
+ data_mono_2: data/multilingual/bin/mono_only/splitab
5
+ data_mono_3: data/multilingual/bin/mono_only/splitac
6
+ data_mono_4: data/multilingual/bin/mono_only/splitad
7
+ data_mono_5: data/multilingual/bin/mono_only/splitae
8
+ data_mono_6: data/multilingual/bin/mono_only/mono_de_fr_en
9
+ data_mono_7: data/multilingual/bin/mono_only/mono_nl_pl_pt
10
+ source_lang: src
11
+ target_lang: trg
12
+ task: translation_w_mono
13
+ parallel_ratio: 0.2
14
+ mono_ratio: 0.07
15
+ arch: transformer_big_t2t_12e12d
16
+ share_all_embeddings: true
17
+ encoder_learned_pos: true
18
+ decoder_learned_pos: true
19
+ max_source_positions: 1024
20
+ max_target_positions: 1024
21
+ dropout: 0.1
22
+ criterion: label_smoothed_cross_entropy_with_contrastive
23
+ contrastive_lambda: 1.0
24
+ temperature: 0.1
25
+ lr: 0.0003
26
+ clip_norm: 10.0
27
+ optimizer: adam
28
+ adam_eps: 1e-06
29
+ weight_decay: 0.01
30
+ warmup_updates: 10000
31
+ label_smoothing: 0.1
32
+ lr_scheduler: polynomial_decay
33
+ min_lr: -1
34
+ max_tokens: 1536
35
+ update_freq: 30
36
+ max_update: 5000000
37
+ no_scale_embedding: true
38
+ layernorm_embedding: true
39
+ save_interval_updates: 2000
40
+ skip_invalid_size_inputs_valid_test: true
41
+ log_interval: 500
42
+ num_workers: 1
43
+ fp16: true
44
+ seed: 33122
mcolt/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .arches import *
2
+ from . criterions import *
3
+ from .data import *
4
+ from .tasks import *
mcolt/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (222 Bytes). View file
 
mcolt/arches/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .transformer import *
mcolt/arches/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (179 Bytes). View file
 
mcolt/arches/__pycache__/transformer.cpython-310.pyc ADDED
Binary file (9.16 kB). View file
 
mcolt/arches/transformer.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fairseq.models import register_model_architecture
2
+
3
+
4
+ @register_model_architecture('transformer', 'transformer_bigger')
5
+ def transformer_bigger(args):
6
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.3)
7
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.3)
8
+ args.dropout = getattr(args, 'dropout', 0.1)
9
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000)
10
+ args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000)
11
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
12
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
13
+ transformer_wmt_en_de_big_t2t(args)
14
+
15
+
16
+ @register_model_architecture('transformer', 'transformer_bigger_16384')
17
+ def transformer_bigger_16384(args):
18
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.1)
19
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.1)
20
+ args.dropout = getattr(args, 'dropout', 0.1)
21
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 16384)
22
+ args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 16384)
23
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
24
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
25
+ transformer_wmt_en_de_big_t2t(args)
26
+
27
+
28
+ @register_model_architecture('transformer', 'transformer_bigger_no_share')
29
+ def transformer_bigger_no_share(args):
30
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.3)
31
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.3)
32
+ args.dropout = getattr(args, 'dropout', 0.1)
33
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000)
34
+ args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000)
35
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False)
36
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
37
+ transformer_wmt_en_de_big_t2t(args)
38
+
39
+
40
+ @register_model_architecture('transformer', 'transformer_deeper')
41
+ def transformer_deeper(args):
42
+ args.encoder_layers = getattr(args, 'encoder_layers', 15)
43
+ args.dense = False
44
+ args.bottleneck_component = getattr(args, 'bottleneck_component', 'mean_pool')
45
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.1)
46
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.1)
47
+ args.dropout = getattr(args, 'dropout', 0.1)
48
+ # args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000)
49
+ # args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000)
50
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
51
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
52
+ transformer_wmt_en_de_big_t2t(args)
53
+
54
+
55
+ @register_model_architecture('transformer', 'transformer_deeper_no_share')
56
+ def transformer_deeper_no_share(args):
57
+ args.encoder_layers = getattr(args, 'encoder_layers', 15)
58
+ args.dense = False
59
+ args.bottleneck_component = getattr(args, 'bottleneck_component', 'mean_pool')
60
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.1)
61
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.1)
62
+ args.dropout = getattr(args, 'dropout', 0.1)
63
+ # args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000)
64
+ # args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000)
65
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False)
66
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
67
+ transformer_wmt_en_de_big_t2t(args)
68
+
69
+
70
+ @register_model_architecture('transformer', 'transformer_deeper_dense')
71
+ def transformer_deeper_no_share(args):
72
+ args.encoder_layers = getattr(args, 'encoder_layers', 15)
73
+ args.dense = True
74
+ args.bottleneck_component = 'mean_pool'
75
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.1)
76
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.1)
77
+ args.dropout = getattr(args, 'dropout', 0.1)
78
+ # args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000)
79
+ # args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000)
80
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
81
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
82
+ transformer_wmt_en_de_big_t2t(args)
83
+
84
+
85
+ @register_model_architecture('transformer', 'transformer_deeper_dense_no_share')
86
+ def transformer_deeper_no_share(args):
87
+ args.encoder_layers = getattr(args, 'encoder_layers', 15)
88
+ args.dense = True
89
+ args.bottleneck_component = 'mean_pool'
90
+ args.attention_dropout = getattr(args, 'attention_dropout', 0.1)
91
+ args.activation_dropout = getattr(args, 'activation_dropout', 0.1)
92
+ args.dropout = getattr(args, 'dropout', 0.1)
93
+ # args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000)
94
+ # args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000)
95
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False)
96
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
97
+ transformer_wmt_en_de_big_t2t(args)
98
+
99
+
100
+ @register_model_architecture('transformer', 'transformer_big')
101
+ def transformer_big(args):
102
+ args.dropout = getattr(args, 'dropout', 0.1)
103
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
104
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
105
+ transformer_wmt_en_de_big_t2t(args)
106
+
107
+
108
+ @register_model_architecture('transformer', 'transformer_big_emb512')
109
+ def transformer_big_emb512(args):
110
+ args.dropout = getattr(args, 'dropout', 0.1)
111
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
112
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512)
113
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512)
114
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
115
+ transformer_wmt_en_de_big_t2t(args)
116
+
117
+
118
+ @register_model_architecture('transformer', 'transformer_big_no_share')
119
+ def transformer_big_no_share(args):
120
+ args.dropout = getattr(args, 'dropout', 0.1)
121
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False)
122
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
123
+ transformer_wmt_en_de_big_t2t(args)
124
+
125
+
126
+ @register_model_architecture('transformer', 'transformer_big_16e4d')
127
+ def transformer_big_16e4d(args):
128
+ args.dropout = getattr(args, 'dropout', 0.2)
129
+ args.encoder_layers = getattr(args, 'encoder_layers', 16)
130
+ args.decoder_layers = getattr(args, 'decoder_layers', 4)
131
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024)
132
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024)
133
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096)
134
+ args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16)
135
+ args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16)
136
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
137
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
138
+ transformer_wmt_en_de_big_t2t(args)
139
+
140
+
141
+ @register_model_architecture('transformer', 'transformer_big_16e6d')
142
+ def transformer_big_16e6d(args):
143
+ args.dropout = getattr(args, 'dropout', 0.2)
144
+ args.encoder_layers = getattr(args, 'encoder_layers', 16)
145
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
146
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024)
147
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024)
148
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096)
149
+ args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16)
150
+ args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16)
151
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
152
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
153
+ transformer_wmt_en_de_big_t2t(args)
154
+
155
+
156
+ @register_model_architecture('transformer', 'transformer_base')
157
+ def transformer_bigger(args):
158
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
159
+ from fairseq.models.transformer import transformer_wmt_en_de
160
+ transformer_wmt_en_de(args)
161
+
162
+
163
+ @register_model_architecture('transformer', 'transformer_mid_50e6d')
164
+ def transformer_mid_50e6d(args):
165
+ args.dropout = getattr(args, 'dropout', 0.1)
166
+ args.encoder_layers = getattr(args, 'encoder_layers', 50)
167
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
168
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
169
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
170
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
171
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
172
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
173
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
174
+ transformer_wmt_en_de_big_t2t(args)
175
+
176
+
177
+ @register_model_architecture('transformer', 'transformer_big_t2t_12e12d')
178
+ def transformer_big_t2t_12e12d(args):
179
+ args.dropout = getattr(args, 'dropout', 0.1)
180
+ args.encoder_layers = getattr(args, 'encoder_layers', 12)
181
+ args.decoder_layers = getattr(args, 'decoder_layers', 12)
182
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
183
+ transformer_wmt_en_de_big_t2t(args)
184
+
185
+
186
+ @register_model_architecture('transformer', 'mix_transformer_mid_50e6d')
187
+ def mix_transformer_mid_50e6d(args):
188
+ args.mix_prepost_norm = getattr(args, "mix_prepost_norm", True)
189
+ args.dropout = getattr(args, 'dropout', 0.1)
190
+ args.encoder_layers = getattr(args, 'encoder_layers', 50)
191
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
192
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
193
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
194
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
195
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
196
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
197
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
198
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
199
+ args.mix_type = getattr(args, "mix_type", "learnable")
200
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
201
+ transformer_wmt_en_de_big_t2t(args)
202
+
203
+
204
+ @register_model_architecture('transformer', 're_zero_transformer_mid_50e6d')
205
+ def re_zero_transformer_mid_50e6d(args):
206
+ args.dropout = getattr(args, 'dropout', 0.1)
207
+ args.encoder_layers = getattr(args, 'encoder_layers', 50)
208
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
209
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
210
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
211
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
212
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
213
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
214
+ args.re_zero = getattr(args, "re_zero", True)
215
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
216
+ transformer_wmt_en_de_big_t2t(args)
217
+
218
+
219
+ @register_model_architecture('transformer', 'transformer_mid_50e3d_ed3072')
220
+ def transformer_mid_50e3d_ed3072(args):
221
+ args.dropout = getattr(args, 'dropout', 0.1)
222
+ args.encoder_layers = getattr(args, 'encoder_layers', 50)
223
+ args.decoder_layers = getattr(args, 'decoder_layers', 3)
224
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
225
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
226
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
227
+ args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
228
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
229
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
230
+ transformer_wmt_en_de_big_t2t(args)
231
+
232
+
233
+ @register_model_architecture('transformer', 'mix_transformer_mid_50e6d_3000fix_10000decay')
234
+ def mix_transformer_mid_50e6d_3000fix_10000decay(args):
235
+ args.mix_prepost_norm = getattr(args, "mix_prepost_norm", True)
236
+ args.mix_type = getattr(args, "mix_type", "step_moving")
237
+ args.pre_steps = getattr(args, "pre_steps", 3000)
238
+ args.change_steps = getattr(args, "change_steps", 10000)
239
+
240
+ args.dropout = getattr(args, 'dropout', 0.1)
241
+ args.encoder_layers = getattr(args, 'encoder_layers', 50)
242
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
243
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
244
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
245
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
246
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
247
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
248
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
249
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
250
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
251
+ transformer_wmt_en_de_big_t2t(args)
252
+
253
+
254
+ @register_model_architecture('transformer', 'mix_transformer_mid_50e6d_7000fix_7000decay')
255
+ def mix_transformer_mid_50e6d_3000fix_10000decay(args):
256
+ args.mix_prepost_norm = getattr(args, "mix_prepost_norm", True)
257
+ args.mix_type = getattr(args, "mix_type", "step_moving")
258
+ args.pre_steps = getattr(args, "pre_steps", 7000)
259
+ args.change_steps = getattr(args, "change_steps", 7000)
260
+
261
+ args.dropout = getattr(args, 'dropout', 0.1)
262
+ args.encoder_layers = getattr(args, 'encoder_layers', 50)
263
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
264
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
265
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
266
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
267
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
268
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
269
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
270
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
271
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
272
+ transformer_wmt_en_de_big_t2t(args)
273
+
274
+
275
+ @register_model_architecture('transformer', 'transformer_mid_75e6d')
276
+ def transformer_mid_75e6d(args):
277
+ args.dropout = getattr(args, 'dropout', 0.1)
278
+ args.encoder_layers = getattr(args, 'encoder_layers', 75)
279
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
280
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
281
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
282
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
283
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
284
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
285
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
286
+ transformer_wmt_en_de_big_t2t(args)
287
+
288
+
289
+ @register_model_architecture('transformer', 'transformer_mid_25e6d')
290
+ def transformer_mid_25e6d(args):
291
+ args.dropout = getattr(args, 'dropout', 0.1)
292
+ args.encoder_layers = getattr(args, 'encoder_layers', 25)
293
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
294
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
295
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
296
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
297
+ args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
298
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
299
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
300
+ transformer_wmt_en_de_big_t2t(args)
301
+
302
+
303
+ @register_model_architecture('transformer', 'transformer_mid_25e6d_ed3072')
304
+ def transformer_mid_25e6d_ed3072(args):
305
+ args.dropout = getattr(args, 'dropout', 0.1)
306
+ args.encoder_layers = getattr(args, 'encoder_layers', 25)
307
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
308
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
309
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
310
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
311
+ args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
312
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
313
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
314
+ transformer_wmt_en_de_big_t2t(args)
315
+
316
+
317
+ @register_model_architecture('transformer', 'transformer_mid_25e6d_e3072_d4096')
318
+ def transformer_mid_25e6d_e3072_d4096(args):
319
+ args.dropout = getattr(args, 'dropout', 0.1)
320
+ args.encoder_layers = getattr(args, 'encoder_layers', 25)
321
+ args.decoder_layers = getattr(args, 'decoder_layers', 6)
322
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
323
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
324
+ args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072)
325
+ args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096)
326
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
327
+ # args.share_all_embeddings = getattr(args, 'share_all_embeddings', True)
328
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
329
+ transformer_wmt_en_de_big_t2t(args)
330
+
331
+
332
+ # def transformer_fixed_multihead(args):
333
+ # args.head_dim = getattr(args, 'head_dim', 128)
334
+ # from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
335
+ # transformer_wmt_en_de_big_t2t(args)
336
+
337
+ @register_model_architecture('transformer', 'transformer_fixed_multihead_base')
338
+ def transformer_fixed_multihead_base(args):
339
+ args.head_dim = getattr(args, 'head_dim', 128)
340
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512)
341
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512)
342
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
343
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
344
+ transformer_wmt_en_de_big_t2t(args)
345
+
346
+
347
+ @register_model_architecture('transformer', 'transformer_fixed_multihead_embed_1024_nhead_16_hdim_128')
348
+ def transformer_fixed_multihead_embed_1024_nhead_16_hdim_128(args):
349
+ args.head_dim = getattr(args, 'head_dim', 128)
350
+ args.dropout = getattr(args, 'dropout', 0.1)
351
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
352
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
353
+ transformer_wmt_en_de_big_t2t(args)
354
+
355
+
356
+ @register_model_architecture('transformer', 'transformer_fixed_multihead_embed_1024_nhead_16_hdim_256')
357
+ def transformer_fixed_multihead_embed_1024_nhead_16_hdim_128(args):
358
+ args.head_dim = getattr(args, 'head_dim', 256)
359
+ args.dropout = getattr(args, 'dropout', 0.1)
360
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
361
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
362
+ transformer_wmt_en_de_big_t2t(args)
363
+
364
+
365
+ @register_model_architecture('transformer', 'transformer_fh_16x128_layer_12')
366
+ def transformer_fh_16x128_layer_12(args):
367
+ args.head_dim = getattr(args, 'head_dim', 128)
368
+ args.dropout = getattr(args, 'dropout', 0.1)
369
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
370
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
371
+ transformer_wmt_en_de_big_t2t(args)
372
+
373
+
374
+ @register_model_architecture('transformer', 'transformer_fh_16x256_layer_12')
375
+ def transformer_fh_16x256_layer_12(args):
376
+ args.head_dim = getattr(args, 'head_dim', 256)
377
+ args.dropout = getattr(args, 'dropout', 0.1)
378
+ args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
379
+ from fairseq.models.transformer import transformer_wmt_en_de_big_t2t
380
+ transformer_wmt_en_de_big_t2t(args)
mcolt/criterions/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .label_smoothed_cross_entropy_with_contrastive import *
mcolt/criterions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (217 Bytes). View file
 
mcolt/criterions/__pycache__/label_smoothed_cross_entropy_with_contrastive.cpython-310.pyc ADDED
Binary file (4.92 kB). View file
 
mcolt/criterions/label_smoothed_cross_entropy_with_contrastive.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from fairseq.criterions import register_criterion
4
+ from fairseq.criterions.label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterion
5
+ from fairseq import metrics, utils
6
+
7
+ from collections import deque
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+
13
+ @register_criterion("label_smoothed_cross_entropy_with_contrastive")
14
+ class LabelSmoothedCrossEntropyCriterionWithContrastive(
15
+ LabelSmoothedCrossEntropyCriterion
16
+ ):
17
+ def __init__(self, task, sentence_avg, label_smoothing, ignore_prefix_size=0, report_accuracy=False,
18
+ contrastive_lambda=0.0,
19
+ temperature=1.0):
20
+ super().__init__(task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy)
21
+ self.contrastive_lambda = contrastive_lambda
22
+ self.temperature = temperature
23
+
24
+ @staticmethod
25
+ def add_args(parser):
26
+ LabelSmoothedCrossEntropyCriterion.add_args(parser)
27
+ parser.add_argument("--contrastive-lambda", type=float,
28
+ default=0.0,
29
+ help="The contrastive loss weight")
30
+ parser.add_argument("--temperature", type=float,
31
+ default=1.0,)
32
+
33
+ def swap_sample(self, sample):
34
+ target = sample["target"]
35
+ prev_output_tokens = sample["net_input"]["prev_output_tokens"]
36
+ src_tokens = torch.cat((prev_output_tokens[:, :1], sample["net_input"]['src_tokens']), dim=-1)
37
+ return {
38
+ "net_input": {
39
+ "src_tokens": target.contiguous(),
40
+ "src_lengths": (target != self.padding_idx).int().sum(dim=1),
41
+ "prev_output_tokens": src_tokens[:, :-1].contiguous()
42
+ },
43
+ 'nsentences': sample['nsentences'],
44
+ 'ntokens': utils.item((src_tokens[:, 1:] != self.padding_idx).int().sum().data),
45
+ "target": src_tokens[:, 1:].contiguous(),
46
+ "id": sample["id"],
47
+ }
48
+
49
+ def forward(self, model, sample, reduce=True):
50
+ net_output = model(**sample["net_input"])
51
+ loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
52
+ encoder_out = model.encoder.forward(sample["net_input"]["src_tokens"], sample["net_input"]["src_lengths"]).encoder_out
53
+ reverse_sample = self.swap_sample(sample)
54
+ reversed_encoder_out = model.encoder.forward(reverse_sample["net_input"]["src_tokens"], reverse_sample["net_input"]["src_lengths"]).encoder_out
55
+ contrastive_loss = self.get_contrastive_loss(
56
+ encoder_out,
57
+ reversed_encoder_out,
58
+ sample,
59
+ reverse_sample,
60
+ )
61
+ sample_size = (
62
+ sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
63
+ )
64
+ nsentences = sample["target"].size(0)
65
+ ntokens = sample["ntokens"]
66
+ all_loss = loss + contrastive_loss * self.contrastive_lambda * ntokens / nsentences
67
+ logging_output = {
68
+ "loss": loss.data,
69
+ "nll_loss": nll_loss.data,
70
+ "ntokens": ntokens,
71
+ "nsentences": nsentences,
72
+ "sample_size": sample_size,
73
+ }
74
+ if isinstance(contrastive_loss, int):
75
+ logging_output["contrastive_loss"] = 0
76
+ else:
77
+ logging_output["contrastive_loss"] = utils.item(contrastive_loss.data)
78
+
79
+ return all_loss, sample_size, logging_output
80
+
81
+ def similarity_function(self, ):
82
+ return nn.CosineSimilarity(dim=-1)
83
+
84
+ def get_contrastive_loss(self, encoder_out1, encoder_out2, sample1, sample2):
85
+
86
+ def _sentence_embedding(encoder_out, sample):
87
+ encoder_output = encoder_out.transpose(0, 1)
88
+ src_tokens = sample["net_input"]["src_tokens"]
89
+ mask = (src_tokens != self.padding_idx)
90
+ encoder_embedding = (encoder_output * mask.unsqueeze(-1)).sum(dim=1) / mask.float().sum(dim=1).unsqueeze(-1) # [batch, hidden_size]
91
+ return encoder_embedding
92
+
93
+ encoder_embedding1 = _sentence_embedding(encoder_out1, sample1) # [batch, hidden_size]
94
+ encoder_embedding2 = _sentence_embedding(encoder_out2, sample2) # [batch, hidden_size]
95
+
96
+ batch_size = encoder_embedding2.shape[0]
97
+ feature_dim = encoder_embedding2.shape[1]
98
+ anchor_feature = encoder_embedding1
99
+ contrast_feature = encoder_embedding2
100
+
101
+ similarity_function = self.similarity_function()
102
+ anchor_dot_contrast = similarity_function(anchor_feature.expand((batch_size, batch_size, feature_dim)),
103
+ torch.transpose(contrast_feature.expand((batch_size, batch_size, feature_dim)), 0, 1))
104
+
105
+ loss = -nn.LogSoftmax(0)(torch.div(anchor_dot_contrast, self.temperature)).diag().sum()
106
+
107
+ return loss
108
+
109
+ @classmethod
110
+ def reduce_metrics(cls, logging_outputs) -> None:
111
+ super().reduce_metrics(logging_outputs)
112
+ nsentences = utils.item(
113
+ sum(log.get("nsentences", 0) for log in logging_outputs)
114
+ )
115
+ contrastive_loss = utils.item(
116
+ sum(log.get("contrastive_loss", 0) for log in logging_outputs)
117
+ )
118
+ metrics.log_scalar(
119
+ "contrastive_loss",
120
+ contrastive_loss / nsentences / math.log(2),
121
+ nsentences,
122
+ round=3,
123
+ )
mcolt/data/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .subsample_language_pair_dataset import SubsampleLanguagePairDataset
mcolt/data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (233 Bytes). View file
 
mcolt/data/__pycache__/subsample_language_pair_dataset.cpython-310.pyc ADDED
Binary file (4.46 kB). View file
 
mcolt/data/subsample_language_pair_dataset.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fairseq.data import BaseWrapperDataset, LanguagePairDataset, plasma_utils
2
+ import numpy as np
3
+
4
+ import logging
5
+
6
+ logger = logging.getLogger(__name__)
7
+
8
+
9
+ class SubsampleLanguagePairDataset(BaseWrapperDataset):
10
+ """Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples
11
+
12
+ Args:
13
+ dataset (~torch.utils.data.Dataset): dataset to subsample
14
+ size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive)
15
+ """
16
+
17
+ def __init__(self, dataset, size_ratio, weights=None, replace=False, seed=0, epoch=1):
18
+ super().__init__(dataset)
19
+ assert size_ratio <= 1
20
+ self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int)
21
+ logger.info(
22
+ "subsampled dataset from {} to {} (ratio={})".format(
23
+ len(self.dataset), self.actual_size, size_ratio
24
+ )
25
+ )
26
+ self.src_dict = self.dataset.src_dict
27
+ self.tgt_dict = self.dataset.tgt_dict
28
+ self.left_pad_source = self.dataset.left_pad_source
29
+ self.left_pad_target = self.dataset.left_pad_target
30
+ self.seed = seed
31
+ self._cur_epoch = None
32
+ self._cur_indices = None
33
+ self.replace = replace
34
+ if weights is None:
35
+ self.weights = None
36
+ else:
37
+ assert len(weights) == len(dataset)
38
+ weights_arr = np.array(weights, dtype=np.float64)
39
+ weights_arr /= weights_arr.sum()
40
+ self.weights = plasma_utils.PlasmaArray(weights_arr)
41
+ self.set_epoch(epoch)
42
+
43
+ def __getitem__(self, index):
44
+ index = self._cur_indices.array[index]
45
+ return self.dataset.__getitem__(index)
46
+
47
+ def __len__(self):
48
+ return self.actual_size
49
+
50
+ @property
51
+ def sizes(self):
52
+ return self.dataset.sizes[self._cur_indices.array]
53
+
54
+ @property
55
+ def src_sizes(self):
56
+ return self.dataset.src_sizes[self._cur_indices.array]
57
+
58
+ @property
59
+ def tgt_sizes(self):
60
+ return self.dataset.tgt_sizes[self._cur_indices.array]
61
+
62
+ @property
63
+ def name(self):
64
+ return self.dataset.name
65
+
66
+ def num_tokens(self, index):
67
+ index = self._cur_indices.array[index]
68
+ return self.dataset.num_tokens(index)
69
+
70
+ def size(self, index):
71
+ index = self._cur_indices.array[index]
72
+ return self.dataset.size(index)
73
+
74
+ def ordered_indices(self):
75
+ if self.shuffle:
76
+ indices = np.random.permutation(len(self)).astype(np.int64)
77
+ else:
78
+ indices = np.arange(len(self), dtype=np.int64)
79
+ # sort by target length, then source length
80
+ if self.tgt_sizes is not None:
81
+ indices = indices[np.argsort(self.tgt_sizes[indices], kind="mergesort")]
82
+ return indices[np.argsort(self.src_sizes[indices], kind="mergesort")]
83
+
84
+ def prefetch(self, indices):
85
+ indices = self._cur_indices.array[indices]
86
+ self.dataset.prefetch(indices)
87
+
88
+ @property
89
+ def can_reuse_epoch_itr_across_epochs(self):
90
+ return False
91
+
92
+ def set_epoch(self, epoch):
93
+ logger.info("SubsampleLanguagePairDataset.set_epoch: {}".format(epoch))
94
+ super().set_epoch(epoch)
95
+
96
+ if epoch == self._cur_epoch:
97
+ return
98
+
99
+ self._cur_epoch = epoch
100
+
101
+ # Generate a weighted sample of indices as a function of the
102
+ # random seed and the current epoch.
103
+
104
+ rng = np.random.RandomState(
105
+ [
106
+ 42, # magic number
107
+ self.seed % (2 ** 32), # global seed
108
+ self._cur_epoch, # epoch index
109
+ ]
110
+ )
111
+ self._cur_indices = plasma_utils.PlasmaArray(
112
+ rng.choice(
113
+ len(self.dataset),
114
+ self.actual_size,
115
+ replace=self.replace,
116
+ p=(None if self.weights is None else self.weights.array),
117
+ )
118
+ )
119
+
120
+ logger.info(
121
+ "Dataset is sub-sampled: {} -> {}, first 3 ids are: {}".format(len(self.dataset), self.actual_size,
122
+ ",".join(
123
+ [str(_i) for _i in
124
+ self._cur_indices.array[:3]])))
mcolt/tasks/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .translation_w_mono import *
2
+ from .translation_w_langtok import *
mcolt/tasks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (218 Bytes). View file
 
mcolt/tasks/__pycache__/translation_w_langtok.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
mcolt/tasks/__pycache__/translation_w_mono.cpython-310.pyc ADDED
Binary file (6.39 kB). View file
 
mcolt/tasks/translation_w_langtok.py ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import itertools
7
+ import json
8
+ import logging
9
+ import os
10
+ import torch
11
+ from argparse import Namespace
12
+
13
+ import numpy as np
14
+ from fairseq import metrics, options, utils
15
+ from fairseq.data import (
16
+ AppendTokenDataset,
17
+ ConcatDataset,
18
+ LanguagePairDataset,
19
+ PrependTokenDataset,
20
+ StripTokenDataset,
21
+ TruncateDataset,
22
+ data_utils,
23
+ encoders,
24
+ indexed_dataset,
25
+ )
26
+ from fairseq.tasks.translation import TranslationTask
27
+ from fairseq.tasks import register_task, LegacyFairseqTask
28
+
29
+ EVAL_BLEU_ORDER = 4
30
+
31
+ logger = logging.getLogger(__name__)
32
+
33
+
34
+ def load_langpair_dataset(
35
+ data_path,
36
+ split,
37
+ src,
38
+ src_dict,
39
+ tgt,
40
+ tgt_dict,
41
+ combine,
42
+ dataset_impl,
43
+ upsample_primary,
44
+ left_pad_source,
45
+ left_pad_target,
46
+ max_source_positions,
47
+ max_target_positions,
48
+ prepend_bos=False,
49
+ load_alignments=False,
50
+ truncate_source=False,
51
+ append_source_id=False,
52
+ num_buckets=0,
53
+ shuffle=True,
54
+ pad_to_multiple=1,
55
+ ):
56
+ def split_exists(split, src, tgt, lang, data_path):
57
+ filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang))
58
+ return os.path.exists(filename)
59
+
60
+ src_datasets = []
61
+ tgt_datasets = []
62
+
63
+ for k in itertools.count():
64
+ split_k = split + (str(k) if k > 0 else "")
65
+
66
+ # infer langcode
67
+ if split_exists(split_k, src, tgt, src, data_path):
68
+ prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
69
+ elif split_exists(split_k, tgt, src, src, data_path):
70
+ prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
71
+ else:
72
+ if k > 0:
73
+ break
74
+ else:
75
+ raise FileNotFoundError(
76
+ "Dataset not found: {} ({})".format(split, data_path)
77
+ )
78
+
79
+ src_dataset = data_utils.load_indexed_dataset(
80
+ prefix + src, src_dict, dataset_impl
81
+ )
82
+ if truncate_source:
83
+ src_dataset = AppendTokenDataset(
84
+ TruncateDataset(
85
+ StripTokenDataset(src_dataset, src_dict.eos()),
86
+ max_source_positions - 1,
87
+ ),
88
+ src_dict.eos(),
89
+ )
90
+ src_datasets.append(src_dataset)
91
+
92
+ tgt_dataset = data_utils.load_indexed_dataset(
93
+ prefix + tgt, tgt_dict, dataset_impl
94
+ )
95
+ if tgt_dataset is not None:
96
+ tgt_datasets.append(tgt_dataset)
97
+
98
+ logger.info(
99
+ "{} {} {}-{} {} examples".format(
100
+ data_path, split_k, src, tgt, len(src_datasets[-1])
101
+ )
102
+ )
103
+
104
+ if not combine:
105
+ break
106
+
107
+ assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0
108
+
109
+ if len(src_datasets) == 1:
110
+ src_dataset = src_datasets[0]
111
+ tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None
112
+ else:
113
+ sample_ratios = [1] * len(src_datasets)
114
+ sample_ratios[0] = upsample_primary
115
+ src_dataset = ConcatDataset(src_datasets, sample_ratios)
116
+ if len(tgt_datasets) > 0:
117
+ tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
118
+ else:
119
+ tgt_dataset = None
120
+
121
+ if prepend_bos:
122
+ assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index")
123
+ src_dataset = PrependTokenDataset(src_dataset, src_dict.bos())
124
+ if tgt_dataset is not None:
125
+ tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos())
126
+
127
+ eos = None
128
+ if append_source_id:
129
+ src_dataset = AppendTokenDataset(
130
+ src_dataset, src_dict.index("[{}]".format(src))
131
+ )
132
+ if tgt_dataset is not None:
133
+ tgt_dataset = AppendTokenDataset(
134
+ tgt_dataset, tgt_dict.index("[{}]".format(tgt))
135
+ )
136
+ eos = tgt_dict.index("[{}]".format(tgt))
137
+
138
+ align_dataset = None
139
+ if load_alignments:
140
+ align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt))
141
+ if indexed_dataset.dataset_exists(align_path, impl=dataset_impl):
142
+ align_dataset = data_utils.load_indexed_dataset(
143
+ align_path, None, dataset_impl
144
+ )
145
+
146
+ tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None
147
+ return LanguagePairDataset(
148
+ src_dataset,
149
+ src_dataset.sizes,
150
+ src_dict,
151
+ tgt_dataset,
152
+ tgt_dataset_sizes,
153
+ tgt_dict,
154
+ left_pad_source=left_pad_source,
155
+ left_pad_target=left_pad_target,
156
+ align_dataset=align_dataset,
157
+ eos=eos,
158
+ num_buckets=num_buckets,
159
+ shuffle=shuffle,
160
+ pad_to_multiple=pad_to_multiple,
161
+ )
162
+
163
+
164
+ @register_task("translation_w_langtok")
165
+ class TranslationWithLangtokTask(LegacyFairseqTask):
166
+ """
167
+ Translate from one (source) language to another (target) language.
168
+
169
+ Args:
170
+ src_dict (~fairseq.data.Dictionary): dictionary for the source language
171
+ tgt_dict (~fairseq.data.Dictionary): dictionary for the target language
172
+
173
+ .. note::
174
+
175
+ The translation task is compatible with :mod:`fairseq-train`,
176
+ :mod:`fairseq-generate` and :mod:`fairseq-interactive`.
177
+
178
+ The translation task provides the following additional command-line
179
+ arguments:
180
+
181
+ .. argparse::
182
+ :ref: fairseq.tasks.translation_parser
183
+ :prog:
184
+ """
185
+
186
+ @staticmethod
187
+ def add_args(parser):
188
+ """Add task-specific arguments to the parser."""
189
+ # fmt: off
190
+ parser.add_argument('data', help='colon separated path to data directories list, \
191
+ will be iterated upon during epochs in round-robin manner; \
192
+ however, valid and test data are always in the first directory to \
193
+ avoid the need for repeating them in all directories')
194
+ parser.add_argument('-s', '--source-lang', default=None, metavar='SRC',
195
+ help='source language')
196
+ parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET',
197
+ help='target language')
198
+ parser.add_argument('--load-alignments', action='store_true',
199
+ help='load the binarized alignments')
200
+ parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL',
201
+ help='pad the source on the left')
202
+ parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL',
203
+ help='pad the target on the left')
204
+ parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N',
205
+ help='max number of tokens in the source sequence')
206
+ parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N',
207
+ help='max number of tokens in the target sequence')
208
+ parser.add_argument('--upsample-primary', default=1, type=int,
209
+ help='amount to upsample primary dataset')
210
+ parser.add_argument('--truncate-source', action='store_true', default=False,
211
+ help='truncate source to max-source-positions')
212
+ parser.add_argument('--num-batch-buckets', default=0, type=int, metavar='N',
213
+ help='if >0, then bucket source and target lengths into N '
214
+ 'buckets and pad accordingly; this is useful on TPUs '
215
+ 'to minimize the number of compilations')
216
+ parser.add_argument('--lang-prefix-tok', default=None, type=str, help="starting token in decoder")
217
+
218
+ # options for reporting BLEU during validation
219
+ parser.add_argument('--eval-bleu', action='store_true',
220
+ help='evaluation with BLEU scores')
221
+ parser.add_argument('--eval-bleu-detok', type=str, default="space",
222
+ help='detokenize before computing BLEU (e.g., "moses"); '
223
+ 'required if using --eval-bleu; use "space" to '
224
+ 'disable detokenization; see fairseq.data.encoders '
225
+ 'for other options')
226
+ parser.add_argument('--eval-bleu-detok-args', type=str, metavar='JSON',
227
+ help='args for building the tokenizer, if needed')
228
+ parser.add_argument('--eval-tokenized-bleu', action='store_true', default=False,
229
+ help='compute tokenized BLEU instead of sacrebleu')
230
+ parser.add_argument('--eval-bleu-remove-bpe', nargs='?', const='@@ ', default=None,
231
+ help='remove BPE before computing BLEU')
232
+ parser.add_argument('--eval-bleu-args', type=str, metavar='JSON',
233
+ help='generation args for BLUE scoring, '
234
+ 'e.g., \'{"beam": 4, "lenpen": 0.6}\'')
235
+ parser.add_argument('--eval-bleu-print-samples', action='store_true',
236
+ help='print sample generations during validation')
237
+ # fmt: on
238
+
239
+ def __init__(self, args, src_dict, tgt_dict):
240
+ super().__init__(args)
241
+ self.src_dict = src_dict
242
+ self.tgt_dict = tgt_dict
243
+
244
+ @classmethod
245
+ def setup_task(cls, args, **kwargs):
246
+ """Setup the task (e.g., load dictionaries).
247
+
248
+ Args:
249
+ args (argparse.Namespace): parsed command-line arguments
250
+ """
251
+ args.left_pad_source = utils.eval_bool(args.left_pad_source)
252
+ args.left_pad_target = utils.eval_bool(args.left_pad_target)
253
+
254
+ paths = utils.split_paths(args.data)
255
+ assert len(paths) > 0
256
+ # find language pair automatically
257
+ if args.source_lang is None or args.target_lang is None:
258
+ args.source_lang, args.target_lang = data_utils.infer_language_pair(
259
+ paths[0]
260
+ )
261
+ if args.source_lang is None or args.target_lang is None:
262
+ raise Exception(
263
+ "Could not infer language pair, please provide it explicitly"
264
+ )
265
+
266
+ # load dictionaries
267
+ src_dict = cls.load_dictionary(
268
+ os.path.join(paths[0], "dict.{}.txt".format(args.source_lang))
269
+ )
270
+ tgt_dict = cls.load_dictionary(
271
+ os.path.join(paths[0], "dict.{}.txt".format(args.target_lang))
272
+ )
273
+ assert src_dict.pad() == tgt_dict.pad()
274
+ assert src_dict.eos() == tgt_dict.eos()
275
+ assert src_dict.unk() == tgt_dict.unk()
276
+ logger.info("[{}] dictionary: {} types".format(args.source_lang, len(src_dict)))
277
+ logger.info("[{}] dictionary: {} types".format(args.target_lang, len(tgt_dict)))
278
+
279
+ return cls(args, src_dict, tgt_dict)
280
+
281
+ def load_dataset(self, split, epoch=1, combine=False, **kwargs):
282
+ """Load a given dataset split.
283
+
284
+ Args:
285
+ split (str): name of the split (e.g., train, valid, test)
286
+ """
287
+ paths = utils.split_paths(self.args.data)
288
+ assert len(paths) > 0
289
+ if split != getattr(self.args, "train_subset", None):
290
+ # if not training data set, use the first shard for valid and test
291
+ paths = paths[:1]
292
+ data_path = paths[(epoch - 1) % len(paths)]
293
+
294
+ # infer langcode
295
+ src, tgt = self.args.source_lang, self.args.target_lang
296
+
297
+ self.datasets[split] = load_langpair_dataset(
298
+ data_path,
299
+ split,
300
+ src,
301
+ self.src_dict,
302
+ tgt,
303
+ self.tgt_dict,
304
+ combine=combine,
305
+ dataset_impl=self.args.dataset_impl,
306
+ upsample_primary=self.args.upsample_primary,
307
+ left_pad_source=self.args.left_pad_source,
308
+ left_pad_target=self.args.left_pad_target,
309
+ max_source_positions=self.args.max_source_positions,
310
+ max_target_positions=self.args.max_target_positions,
311
+ load_alignments=self.args.load_alignments,
312
+ truncate_source=self.args.truncate_source,
313
+ num_buckets=self.args.num_batch_buckets,
314
+ shuffle=(split != "test"),
315
+ pad_to_multiple=self.args.required_seq_len_multiple,
316
+ )
317
+
318
+ def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
319
+ return LanguagePairDataset(
320
+ src_tokens,
321
+ src_lengths,
322
+ self.source_dictionary,
323
+ tgt_dict=self.target_dictionary,
324
+ constraints=constraints,
325
+ )
326
+
327
+ def build_model(self, args):
328
+ model = super().build_model(args)
329
+ if getattr(args, "eval_bleu", False):
330
+ assert getattr(args, "eval_bleu_detok", None) is not None, (
331
+ "--eval-bleu-detok is required if using --eval-bleu; "
332
+ "try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
333
+ "to disable detokenization, e.g., when using sentencepiece)"
334
+ )
335
+ detok_args = json.loads(getattr(args, "eval_bleu_detok_args", "{}") or "{}")
336
+ self.tokenizer = encoders.build_tokenizer(
337
+ Namespace(
338
+ tokenizer=getattr(args, "eval_bleu_detok", None), **detok_args
339
+ )
340
+ )
341
+
342
+ gen_args = json.loads(getattr(args, "eval_bleu_args", "{}") or "{}")
343
+ self.sequence_generator = self.build_generator(
344
+ [model], Namespace(**gen_args)
345
+ )
346
+ return model
347
+
348
+ def valid_step(self, sample, model, criterion):
349
+ loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
350
+ if self.args.eval_bleu:
351
+ bleu = self._inference_with_bleu(self.sequence_generator, sample, model)
352
+ logging_output["_bleu_sys_len"] = bleu.sys_len
353
+ logging_output["_bleu_ref_len"] = bleu.ref_len
354
+ # we split counts into separate entries so that they can be
355
+ # summed efficiently across workers using fast-stat-sync
356
+ assert len(bleu.counts) == EVAL_BLEU_ORDER
357
+ for i in range(EVAL_BLEU_ORDER):
358
+ logging_output["_bleu_counts_" + str(i)] = bleu.counts[i]
359
+ logging_output["_bleu_totals_" + str(i)] = bleu.totals[i]
360
+ return loss, sample_size, logging_output
361
+
362
+ def inference_step(
363
+ self, generator, models, sample, prefix_tokens=None, constraints=None
364
+ ):
365
+ if self.args.lang_prefix_tok is None:
366
+ prefix_tokens = None
367
+ else:
368
+ prefix_tokens = self.target_dictionary.index(self.args.lang_prefix_tok)
369
+ assert prefix_tokens != self.target_dictionary.unk_index
370
+ with torch.no_grad():
371
+ net_input = sample["net_input"]
372
+ if "src_tokens" in net_input:
373
+ src_tokens = net_input["src_tokens"]
374
+ elif "source" in net_input:
375
+ src_tokens = net_input["source"]
376
+ else:
377
+ raise Exception("expected src_tokens or source in net input")
378
+
379
+ # bsz: total number of sentences in beam
380
+ # Note that src_tokens may have more than 2 dimenions (i.e. audio features)
381
+ bsz, _ = src_tokens.size()[:2]
382
+ if prefix_tokens is not None:
383
+ if isinstance(prefix_tokens, int):
384
+ prefix_tokens = torch.LongTensor([prefix_tokens]).unsqueeze(1) # 1,1
385
+ prefix_tokens = prefix_tokens.expand(bsz, -1)
386
+ prefix_tokens = prefix_tokens.to(src_tokens.device)
387
+ return generator.generate(models, sample, prefix_tokens=prefix_tokens)
388
+
389
+ def reduce_metrics(self, logging_outputs, criterion):
390
+ super().reduce_metrics(logging_outputs, criterion)
391
+ if self.args.eval_bleu:
392
+
393
+ def sum_logs(key):
394
+ return sum(log.get(key, 0) for log in logging_outputs)
395
+
396
+ counts, totals = [], []
397
+ for i in range(EVAL_BLEU_ORDER):
398
+ counts.append(sum_logs("_bleu_counts_" + str(i)))
399
+ totals.append(sum_logs("_bleu_totals_" + str(i)))
400
+
401
+ if max(totals) > 0:
402
+ # log counts as numpy arrays -- log_scalar will sum them correctly
403
+ metrics.log_scalar("_bleu_counts", np.array(counts))
404
+ metrics.log_scalar("_bleu_totals", np.array(totals))
405
+ metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len"))
406
+ metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len"))
407
+
408
+ def compute_bleu(meters):
409
+ import inspect
410
+ import sacrebleu
411
+
412
+ fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0]
413
+ if "smooth_method" in fn_sig:
414
+ smooth = {"smooth_method": "exp"}
415
+ else:
416
+ smooth = {"smooth": "exp"}
417
+ bleu = sacrebleu.compute_bleu(
418
+ correct=meters["_bleu_counts"].sum,
419
+ total=meters["_bleu_totals"].sum,
420
+ sys_len=meters["_bleu_sys_len"].sum,
421
+ ref_len=meters["_bleu_ref_len"].sum,
422
+ **smooth
423
+ )
424
+ return round(bleu.score, 2)
425
+
426
+ metrics.log_derived("bleu", compute_bleu)
427
+
428
+ def max_positions(self):
429
+ """Return the max sentence length allowed by the task."""
430
+ return (self.args.max_source_positions, self.args.max_target_positions)
431
+
432
+ @property
433
+ def source_dictionary(self):
434
+ """Return the source :class:`~fairseq.data.Dictionary`."""
435
+ return self.src_dict
436
+
437
+ @property
438
+ def target_dictionary(self):
439
+ """Return the target :class:`~fairseq.data.Dictionary`."""
440
+ return self.tgt_dict
441
+
442
+ def _inference_with_bleu(self, generator, sample, model):
443
+ import sacrebleu
444
+
445
+ def decode(toks, escape_unk=False):
446
+ s = self.tgt_dict.string(
447
+ toks.int().cpu(),
448
+ self.args.eval_bleu_remove_bpe,
449
+ # The default unknown string in fairseq is `<unk>`, but
450
+ # this is tokenized by sacrebleu as `< unk >`, inflating
451
+ # BLEU scores. Instead, we use a somewhat more verbose
452
+ # alternative that is unlikely to appear in the real
453
+ # reference, but doesn't get split into multiple tokens.
454
+ unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
455
+ )
456
+ if self.tokenizer:
457
+ s = self.tokenizer.decode(s)
458
+ return s
459
+
460
+ gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None)
461
+ hyps, refs = [], []
462
+ for i in range(len(gen_out)):
463
+ hyps.append(decode(gen_out[i][0]["tokens"]))
464
+ refs.append(
465
+ decode(
466
+ utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
467
+ escape_unk=True, # don't count <unk> as matches to the hypo
468
+ )
469
+ )
470
+ if self.args.eval_bleu_print_samples:
471
+ logger.info("example hypothesis: " + hyps[0])
472
+ logger.info("example reference: " + refs[0])
473
+ if self.args.eval_tokenized_bleu:
474
+ return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none")
475
+ else:
476
+ return sacrebleu.corpus_bleu(hyps, [refs])
mcolt/tasks/translation_w_mono.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import os
7
+ from fairseq import options, utils
8
+ from fairseq.data import (
9
+ ConcatDataset,
10
+ data_utils,
11
+ LanguagePairDataset)
12
+
13
+ from ..data import SubsampleLanguagePairDataset
14
+
15
+ import logging
16
+ from fairseq.tasks import register_task
17
+ from fairseq.tasks.translation import TranslationTask, load_langpair_dataset
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ def concat_language_pair_dataset(*language_pair_datasets, up_sample_ratio=None,
23
+ all_dataset_upsample_ratio=None):
24
+ logger.info("To cancat the language pairs")
25
+ dataset_number = len(language_pair_datasets)
26
+ if dataset_number == 1:
27
+ return language_pair_datasets[0]
28
+ elif dataset_number < 1:
29
+ raise ValueError("concat_language_pair_dataset needs at least on dataset")
30
+ # for dataset in language_pair_datasets:
31
+ # assert isinstance(dataset, LanguagePairDataset), "concat_language_pair_dataset can only concat language pair" \
32
+ # "dataset"
33
+
34
+ src_list = [language_pair_datasets[0].src]
35
+ tgt_list = [language_pair_datasets[0].tgt]
36
+ src_dict = language_pair_datasets[0].src_dict
37
+ tgt_dict = language_pair_datasets[0].tgt_dict
38
+ left_pad_source = language_pair_datasets[0].left_pad_source
39
+ left_pad_target = language_pair_datasets[0].left_pad_target
40
+
41
+ logger.info("To construct the source dataset list and the target dataset list")
42
+ for dataset in language_pair_datasets[1:]:
43
+ assert dataset.src_dict == src_dict
44
+ assert dataset.tgt_dict == tgt_dict
45
+ assert dataset.left_pad_source == left_pad_source
46
+ assert dataset.left_pad_target == left_pad_target
47
+ src_list.append(dataset.src)
48
+ tgt_list.append(dataset.tgt)
49
+ logger.info("Have constructed the source dataset list and the target dataset list")
50
+
51
+ if all_dataset_upsample_ratio is None:
52
+ sample_ratio = [1] * len(src_list)
53
+ sample_ratio[0] = up_sample_ratio
54
+ else:
55
+ sample_ratio = [int(t) for t in all_dataset_upsample_ratio.strip().split(",")]
56
+ assert len(sample_ratio) == len(src_list)
57
+ src_dataset = ConcatDataset(src_list, sample_ratios=sample_ratio)
58
+ tgt_dataset = ConcatDataset(tgt_list, sample_ratios=sample_ratio)
59
+ res = LanguagePairDataset(
60
+ src_dataset, src_dataset.sizes, src_dict,
61
+ tgt_dataset, tgt_dataset.sizes, tgt_dict,
62
+ left_pad_source=left_pad_source,
63
+ left_pad_target=left_pad_target,
64
+ )
65
+ logger.info("Have created the concat language pair dataset")
66
+ return res
67
+
68
+
69
+ @register_task('translation_w_mono')
70
+ class TranslationWithMonoTask(TranslationTask):
71
+ """
72
+ Translate from one (source) language to another (target) language.
73
+
74
+ Args:
75
+ src_dict (~fairseq.data.Dictionary): dictionary for the source language
76
+ tgt_dict (~fairseq.data.Dictionary): dictionary for the target language
77
+
78
+ .. note::
79
+
80
+ The translation task is compatible with :mod:`fairseq-train`,
81
+ :mod:`fairseq-generate` and :mod:`fairseq-interactive`.
82
+
83
+ The translation task provides the following additional command-line
84
+ arguments:
85
+
86
+ .. argparse::
87
+ :ref: fairseq.tasks.translation_parser
88
+ :prog:
89
+ """
90
+
91
+ @staticmethod
92
+ def add_args(parser):
93
+ """Add task-specific arguments to the parser."""
94
+ # fmt: off
95
+ TranslationTask.add_args(parser)
96
+ parser.add_argument('--mono-data', default=None, help='monolingual data, split by :')
97
+ parser.add_argument('--mono-one-split-each-epoch', action='store_true', default=False, help='use on split of monolingual data at each epoch')
98
+ parser.add_argument('--parallel-ratio', default=1.0, type=float, help='subsample ratio of parallel data')
99
+ parser.add_argument('--mono-ratio', default=1.0, type=float, help='subsample ratio of mono data')
100
+
101
+ def __init__(self, args, src_dict, tgt_dict):
102
+ super().__init__(args, src_dict, tgt_dict)
103
+ self.src_dict = src_dict
104
+ self.tgt_dict = tgt_dict
105
+ self.update_number = 0
106
+
107
+ @classmethod
108
+ def setup_task(cls, args, **kwargs):
109
+ """Setup the task (e.g., load dictionaries).
110
+
111
+ Args:
112
+ args (argparse.Namespace): parsed command-line arguments
113
+ """
114
+ args.left_pad_source = options.eval_bool(args.left_pad_source)
115
+ args.left_pad_target = options.eval_bool(args.left_pad_target)
116
+ if getattr(args, 'raw_text', False):
117
+ utils.deprecation_warning('--raw-text is deprecated, please use --dataset-impl=raw')
118
+ args.dataset_impl = 'raw'
119
+ elif getattr(args, 'lazy_load', False):
120
+ utils.deprecation_warning('--lazy-load is deprecated, please use --dataset-impl=lazy')
121
+ args.dataset_impl = 'lazy'
122
+
123
+ paths = utils.split_paths(args.data)
124
+ assert len(paths) > 0
125
+ # find language pair automatically
126
+ if args.source_lang is None or args.target_lang is None:
127
+ args.source_lang, args.target_lang = data_utils.infer_language_pair(paths[0])
128
+ if args.source_lang is None or args.target_lang is None:
129
+ raise Exception('Could not infer language pair, please provide it explicitly')
130
+
131
+ # load dictionaries
132
+ src_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.source_lang)))
133
+ tgt_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.target_lang)))
134
+ assert src_dict.pad() == tgt_dict.pad()
135
+ assert src_dict.eos() == tgt_dict.eos()
136
+ assert src_dict.unk() == tgt_dict.unk()
137
+ logger.info('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
138
+ logger.info('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))
139
+
140
+ return cls(args, src_dict, tgt_dict)
141
+
142
+ def load_dataset(self, split, epoch=0, combine=False, **kwargs):
143
+ """Load a given dataset split.
144
+
145
+ Args:
146
+ split (str): name of the split (e.g., train, valid, test)
147
+ """
148
+ logger.info("To load the dataset {}".format(split))
149
+ paths = utils.split_paths(self.args.data)
150
+ assert len(paths) > 0
151
+ if split != getattr(self.args, "train_subset", None):
152
+ # if not training data set, use the first shard for valid and test
153
+ paths = paths[:1]
154
+ data_path = paths[(epoch - 1) % len(paths)]
155
+
156
+ mono_paths = utils.split_paths(self.args.mono_data)
157
+
158
+ # infer langcode
159
+ src, tgt = self.args.source_lang, self.args.target_lang
160
+
161
+ parallel_data = load_langpair_dataset(
162
+ data_path, split, src, self.src_dict, tgt, self.tgt_dict,
163
+ combine=combine, dataset_impl=self.args.dataset_impl,
164
+ upsample_primary=self.args.upsample_primary,
165
+ left_pad_source=self.args.left_pad_source,
166
+ left_pad_target=self.args.left_pad_target,
167
+ max_source_positions=self.args.max_source_positions,
168
+ max_target_positions=self.args.max_target_positions,
169
+ load_alignments=self.args.load_alignments,
170
+ num_buckets=self.args.num_batch_buckets,
171
+ shuffle=(split != "test"),
172
+ pad_to_multiple=self.args.required_seq_len_multiple,
173
+ )
174
+ if split == "train":
175
+ parallel_data = SubsampleLanguagePairDataset(parallel_data, size_ratio=self.args.parallel_ratio,
176
+ seed=self.args.seed,
177
+ epoch=epoch)
178
+ if self.args.mono_one_split_each_epoch:
179
+ mono_path = mono_paths[(epoch - 1) % len(mono_paths)] # each at one epoch
180
+ mono_data = load_langpair_dataset(
181
+ mono_path, split, src, self.src_dict, tgt, self.tgt_dict,
182
+ combine=combine, dataset_impl=self.args.dataset_impl,
183
+ upsample_primary=self.args.upsample_primary,
184
+ left_pad_source=self.args.left_pad_source,
185
+ left_pad_target=self.args.left_pad_target,
186
+ max_source_positions=self.args.max_source_positions,
187
+ shuffle=(split != "test"),
188
+ max_target_positions=self.args.max_target_positions,
189
+ )
190
+ mono_data = SubsampleLanguagePairDataset(mono_data, size_ratio=self.args.mono_ratio,
191
+ seed=self.args.seed,
192
+ epoch=epoch)
193
+ all_dataset = [parallel_data, mono_data]
194
+ else:
195
+ mono_datas = []
196
+ for mono_path in mono_paths:
197
+ mono_data = load_langpair_dataset(
198
+ mono_path, split, src, self.src_dict, tgt, self.tgt_dict,
199
+ combine=combine, dataset_impl=self.args.dataset_impl,
200
+ upsample_primary=self.args.upsample_primary,
201
+ left_pad_source=self.args.left_pad_source,
202
+ left_pad_target=self.args.left_pad_target,
203
+ max_source_positions=self.args.max_source_positions,
204
+ shuffle=(split != "test"),
205
+ max_target_positions=self.args.max_target_positions,
206
+ )
207
+ mono_data = SubsampleLanguagePairDataset(mono_data, size_ratio=self.args.mono_ratio,
208
+ seed=self.args.seed,
209
+ epoch=epoch)
210
+ mono_datas.append(mono_data)
211
+ all_dataset = [parallel_data] + mono_datas
212
+ self.datasets[split] = ConcatDataset(all_dataset)
213
+ else:
214
+ self.datasets[split] = parallel_data
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ subword-nmt
2
+ sacrebleu
3
+ sacremoses
4
+ kytea
5
+ six
scripts/load_config.sh ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+
4
+ function parse_yaml {
5
+ local prefix=$2
6
+ local s='[[:space:]]*' w='[a-zA-Z0-9_]*' fs=$(echo @|tr @ '\034')
7
+ sed -ne "s|^\($s\):|\1|" \
8
+ -e "s|^\($s\)\($w\)$s:$s[\"']\(.*\)[\"']$s\$|\1$fs\2$fs\3|p" \
9
+ -e "s|^\($s\)\($w\)$s:$s\(.*\)$s\$|\1$fs\2$fs\3|p" $1 |
10
+ awk -F$fs '{
11
+ indent = length($1)/2;
12
+ vname[indent] = $2;
13
+ for (i in vname) {if (i > indent) {delete vname[i]}}
14
+ if (length($3) > 0) {
15
+ vn=""; for (i=0; i<indent; i++) {vn=(vn)(vname[i])("_")}
16
+ printf("%s%s%s=\"%s\"\n", "'$prefix'",vn, $2, $3);
17
+ }
18
+ }'
19
+ }
20
+ main_config_yml=$1
21
+ local_root=$2
22
+ if [[ ${main_config_yml} == "hdfs://"* ]]; then
23
+ config_filename=`basename ${main_config_yml}`
24
+ echo 'download config from ${main_config_yml}...'
25
+ local_config="${local_root}/config" && mkdir -p ${local_config}
26
+ hadoop fs -get ${main_config_yml} ${local_config}/
27
+ echo 'finish download config from ${main_config_yml}...'
28
+ main_config_yml=${local_config}/${config_filename}
29
+ fi
30
+
31
+ compgen -A variable > ~/.env-vars
32
+ eval $(parse_yaml ${main_config_yml})
33
+
34
+ # set option flags
35
+ options=""
36
+ for var in `compgen -A variable | grep -Fxvf ~/.env-vars`
37
+ do
38
+ if [[ ${var} == "model_"* || ${var} == "data_"* || ${var} == "options" ]]; then
39
+ continue
40
+ fi
41
+ if [[ ${!var} == "true" ]]; then
42
+ varname=`echo ${var} | sed 's/\_/\-/g'`
43
+ options=${options}" --${varname}"
44
+ else
45
+ varname=`echo ${var} | sed 's/\_/\-/g'`
46
+ options=${options}" --${varname} ${!var}"
47
+ fi
48
+ done
scripts/utils.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import os
3
+ import sys
4
+ from tqdm import tqdm
5
+
6
+
7
+ def remove_bpe(line, bpe_symbol="@@ "):
8
+ line = line.replace("\n", '')
9
+ line = (line + ' ').replace(bpe_symbol, '').rstrip()
10
+ return line + ("\n")
11
+
12
+
13
+ def remove_bpe_fn(i=sys.stdin, o=sys.stdout, bpe="@@ "):
14
+ lines = tqdm(i)
15
+ lines = map(lambda x: remove_bpe(x, bpe), lines)
16
+ # _write_lines(lines, f=o)
17
+ for line in lines:
18
+ o.write(line)
19
+
20
+
21
+ def reprocess(fle):
22
+ # takes in a file of generate.py translation generate_output
23
+ # returns a source dict and hypothesis dict, where keys are the ID num (as a string)
24
+ # and values and the corresponding source and translation. There may be several translations
25
+ # per source, so the values for hypothesis_dict are lists.
26
+ # parses output of generate.py
27
+
28
+ with open(fle, 'r') as f:
29
+ txt = f.read()
30
+
31
+ """reprocess generate.py output"""
32
+ p = re.compile(r"[STHP][-]\d+\s*")
33
+ hp = re.compile(r"(\s*[-]?\d+[.]?\d+(e[+-]?\d+)?\s*)|(\s*(-inf)\s*)")
34
+ source_dict = {}
35
+ hypothesis_dict = {}
36
+ score_dict = {}
37
+ target_dict = {}
38
+ pos_score_dict = {}
39
+ lines = txt.split("\n")
40
+
41
+ for line in lines:
42
+ line += "\n"
43
+ prefix = re.search(p, line)
44
+ if prefix is not None:
45
+ assert len(prefix.group()) > 2, "prefix id not found"
46
+ _, j = prefix.span()
47
+ id_num = prefix.group()[2:]
48
+ id_num = int(id_num)
49
+ line_type = prefix.group()[0]
50
+ if line_type == "H":
51
+ h_txt = line[j:]
52
+ hypo = re.search(hp, h_txt)
53
+ assert hypo is not None, ("regular expression failed to find the hypothesis scoring")
54
+ _, i = hypo.span()
55
+ score = hypo.group()
56
+ hypo_str = h_txt[i:]
57
+ # if r2l: # todo: reverse score as well
58
+ # hypo_str = " ".join(reversed(hypo_str.strip().split(" "))) + "\n"
59
+ if id_num in hypothesis_dict:
60
+ hypothesis_dict[id_num].append(hypo_str)
61
+ score_dict[id_num].append(float(score))
62
+ else:
63
+ hypothesis_dict[id_num] = [hypo_str]
64
+ score_dict[id_num] = [float(score)]
65
+
66
+ elif line_type == "S":
67
+ source_dict[id_num] = (line[j:])
68
+ elif line_type == "T":
69
+ # target_dict[id_num] = (line[j:])
70
+ continue
71
+ elif line_type == "P":
72
+ pos_scores = (line[j:]).split()
73
+ pos_scores = [float(x) for x in pos_scores]
74
+ if id_num in pos_score_dict:
75
+ pos_score_dict[id_num].append(pos_scores)
76
+ else:
77
+ pos_score_dict[id_num] = [pos_scores]
78
+
79
+ return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
80
+
81
+
82
+ def get_hypo_and_ref(fle, hyp_file, ref_input, ref_file, rank=0):
83
+ with open(ref_input, 'r') as f:
84
+ refs = f.readlines()
85
+ _, hypo_dict, _, _, _ = reprocess(fle)
86
+ assert rank < len(hypo_dict[0])
87
+ maxkey = max(hypo_dict, key=int)
88
+ f_hyp = open(hyp_file, "w")
89
+ f_ref = open(ref_file, "w")
90
+ for idx in range(maxkey + 1):
91
+ if idx not in hypo_dict:
92
+ continue
93
+ f_hyp.write(hypo_dict[idx][rank])
94
+ f_ref.write(refs[idx])
95
+ f_hyp.close()
96
+ f_ref.close()
97
+
98
+
99
+ def recover_bpe(hyp_file):
100
+ f_hyp = open(hyp_file, "r")
101
+ f_hyp_out = open(hyp_file + ".nobpe", "w")
102
+ for _s in ["hyp"]:
103
+ f = eval("f_{}".format(_s))
104
+ fout = eval("f_{}_out".format(_s))
105
+ remove_bpe_fn(i=f, o=fout)
106
+ f_hyp.close()
107
+ f_hyp_out.close()
108
+
109
+
110
+ if __name__ == "__main__":
111
+ filename = sys.argv[1]
112
+ ref_in = sys.argv[2]
113
+ hypo_file = os.path.join(os.path.dirname(filename), "hypo.out")
114
+ ref_out = os.path.join(os.path.dirname(filename), "ref.out")
115
+ get_hypo_and_ref(filename, hypo_file, ref_in, ref_out)
116
+ recover_bpe(hypo_file)
test/input.en ADDED
@@ -0,0 +1 @@
 
 
1
+ LANG_TOK_EN Hello my friend!
test/input.zh ADDED
@@ -0,0 +1 @@
 
 
1
+ LANG_TOK_ZH 你好!
test/output ADDED
File without changes
test/output.en.no_bpe ADDED
@@ -0,0 +1 @@
 
 
1
+ D-0 -0.34370458126068115 LANG_TOK_EN ANG_TOK_ZH Hello !
test/output.en.no_bpe.moses ADDED
@@ -0,0 +1 @@
 
 
1
+ D-0 -1.3185505867004395 LANG_TOK_EN Hello!
test/output.zh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ S-0 L@@ AN@@ G@@ _@@ T@@ OK@@ _@@ EN H@@ ello my fri@@ end@@ !
2
+ H-0 -0.6148621439933777 LANG_TOK_ZH 你@@ 好 , 我 的 朋@@ 友 !
3
+ P-0 -2.1448 -1.4575 -0.0638 -0.8495 -0.6207 -0.1953 -0.2082 -0.0769 -0.3801 -0.1517
test/output.zh.no_bpe ADDED
@@ -0,0 +1 @@
 
 
1
+ D-0 -0.6148621439933777 LANG_TOK_ZH 你好 , 我 的 朋友 !
test/output.zh.no_bpe.moses ADDED
@@ -0,0 +1 @@
 
 
1
+ D-0 -0.7665940523147583 LANG_TOK_ZH 你好 , 我的朋友 !
train_w_mono.sh ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ # repo_dir: root directory of the project
4
+ repo_dir="$( cd "$( dirname "$0" )" && pwd )"
5
+ echo "==== Working directory: ====" >&2
6
+ echo "${repo_dir}" >&2
7
+ echo "============================" >&2
8
+
9
+ main_config=$1
10
+ source ${repo_dir}/scripts/load_config.sh ${main_config} ${repo_dir}
11
+
12
+ model_dir=${repo_dir}/model
13
+ data_dir=${repo_dir}/data
14
+
15
+ mkdir -p ${model_dir} ${data_dir}/mono
16
+
17
+
18
+ # parallel data
19
+ data_var=data_1
20
+ i=1
21
+ data=""
22
+ while [[ ! -z ${!data_var} ]]; do
23
+ if [[ $data == "" ]]; then
24
+ data=${!data_var}
25
+ else
26
+ data=$data:${!data_var}
27
+ fi
28
+ i=$((i+1))
29
+ data_var=data_$i
30
+ done
31
+
32
+ # mono data
33
+ mono_data_var=data_mono_1
34
+ y=1
35
+ mono_data=""
36
+ while [[ ! -z ${!mono_data_var} ]]; do
37
+ if [[ ${mono_data} == "" ]]; then
38
+ mono_data=${!mono_data_var}
39
+ else
40
+ mono_data=${mono_data}:${!mono_data_var}
41
+ fi
42
+ y=$((y+1))
43
+ mono_data_var=data_mono_$y
44
+ done
45
+
46
+
47
+ command="CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES} fairseq-train ${data} \
48
+ --user-dir ${repo_dir}/mcolt \
49
+ --save-dir ${model_dir} \
50
+ --mono-data ${mono_data} \
51
+ ${options} \
52
+ --ddp-backend no_c10d 1>&2"
53
+
54
+ echo $command
55
+ eval $command
56
+