Initial commit
Browse files- README.md +1 -1
- a2c-PandaPickAndPlace-v3.zip +2 -2
- a2c-PandaPickAndPlace-v3/data +15 -15
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +1 -1
- a2c-PandaPickAndPlace-v3/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaPickAndPlace-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaPickAndPlace-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -45.00 +/- 15.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaPickAndPlace-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2c4f4171365d01e9e7f1e53b8c97d92df7037f68474fdae82870af6a9c0bcc6
|
3 |
+
size 123168
|
a2c-PandaPickAndPlace-v3/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,20 +19,20 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"_last_obs": {
|
31 |
":type:": "<class 'collections.OrderedDict'>",
|
32 |
-
":serialized:": "
|
33 |
-
"achieved_goal": "[[ 0.
|
34 |
-
"desired_goal": "[[
|
35 |
-
"observation": "[[
|
36 |
},
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -40,10 +40,10 @@
|
|
40 |
},
|
41 |
"_last_original_obs": {
|
42 |
":type:": "<class 'collections.OrderedDict'>",
|
43 |
-
":serialized:": "
|
44 |
-
"achieved_goal": "[[-0.
|
45 |
-
"desired_goal": "[[ 0.
|
46 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -
|
47 |
},
|
48 |
"_episode_num": 0,
|
49 |
"use_sde": false,
|
@@ -52,13 +52,13 @@
|
|
52 |
"_stats_window_size": 100,
|
53 |
"ep_info_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"ep_success_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
},
|
61 |
-
"_n_updates":
|
62 |
"n_steps": 5,
|
63 |
"gamma": 0.99,
|
64 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78e34e7c8d30>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78e34e7c4f00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1695612821782729446,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"_last_obs": {
|
31 |
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcWnMPRqHcj9i9Ls9XGOMPwzEb77M/bs9XftKv2MFnT/M/bs9Qkp7P6pu5r3O9Ls9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg36GP3LStL9rRYu/JBWRP9XdCD9rRYu/x+ozv4Oft79CAKm+ylrSv+zdvD+HK0m+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD18C8/tVwqPpNzBT8RkJQ+Bt1zP1sQGcDrOn6/cWnMPRqHcj9i9Ls96keXvAwByzr206m7mLCCPXNmOzwyVDE9l7/1u5WMObyYFsO7j/ErP9rDuLzvphc/uKEnP0LDmz4cLfQ+Z/tOv1xjjD8MxG++zP27PWQBmrxYZM4685eCu62Dgz262kA8UFQxPdfE9buEjDm8Tmq1u/slSz/EU9o+RF3sPViK7D5aco09BfymP786fr9d+0q/YwWdP8z9uz2YE5m8sk24OuMW1ruOn4I9kJ83PFBUMT3ZxPW7g4w5vEj3y7u9gRe9ZAmNPpe3+L6fvx3AP9iQPfAf3r8A1Yk/Qkp7P6pu5r3O9Ls9WlaXvPAAyzqW8Ki7l7CCPfkWOzzYQjE97Zvyu3iMObzKFsO7lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[ 0.09981049 0.947374 0.09177472]\n [ 1.0967822 -0.2341463 0.09179267]\n [-0.792898 1.2267269 0.09179267]\n [ 0.98160183 -0.11251576 0.09177552]]",
|
34 |
+
"desired_goal": "[[ 1.0507358 -1.4126723 -1.088056 ]\n [ 1.1334577 0.5346349 -1.088056 ]\n [-0.70280117 -1.4345554 -0.3300801 ]\n [-1.6433957 1.4755225 -0.1964551 ]]",
|
35 |
+
"observation": "[[ 6.87270463e-01 1.66369274e-01 5.21294773e-01 2.90161639e-01\n 9.52591300e-01 -2.39162326e+00 -9.93086517e-01 9.98104885e-02\n 9.47373986e-01 9.17747170e-02 -1.84669085e-02 1.54879829e-03\n -5.18273842e-03 6.38133883e-02 1.14380000e-02 4.32931855e-02\n -7.49964593e-03 -1.13250213e-02 -5.95362112e-03]\n [ 6.71654642e-01 -2.25543268e-02 5.92390954e-01 6.54811382e-01\n 3.04224074e-01 4.76906657e-01 -8.08523595e-01 1.09678221e+00\n -2.34146297e-01 9.17926729e-02 -1.87994912e-02 1.57464575e-03\n -3.98539891e-03 6.42159954e-02 1.17708985e-02 4.32932973e-02\n -7.50027178e-03 -1.13250054e-02 -5.53635415e-03]\n [ 7.93548286e-01 4.26420331e-01 1.15412265e-01 4.61992979e-01\n 6.90657645e-02 1.30456603e+00 -9.93083894e-01 -7.92897999e-01\n 1.22672689e+00 9.17926729e-02 -1.86861008e-02 1.40612409e-03\n -6.53349003e-03 6.37808889e-02 1.12074763e-02 4.32932973e-02\n -7.50027271e-03 -1.13250045e-02 -6.22454658e-03]\n [-3.69889624e-02 2.75462270e-01 -4.85775679e-01 -2.46482062e+00\n 7.07249567e-02 -1.73534966e+00 1.07681274e+00 9.81601834e-01\n -1.12515762e-01 9.17755216e-02 -1.84737928e-02 1.54879503e-03\n -5.15563320e-03 6.38133809e-02 1.14190513e-02 4.32766378e-02\n -7.40384171e-03 -1.13249943e-02 -5.95364440e-03]]"
|
36 |
},
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
40 |
},
|
41 |
"_last_original_obs": {
|
42 |
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvNJ1vboggLwK16M8zSoTvkyKBz4K16M8TkCtvUGc6D0K16M8n6MGPqpoyD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsg0LPoAPtj0K16M8mvvuOmIHDj4K16M8L3wYvmwDbr377mc9FfmbPdrOEb4K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAvNJ1vboggLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAM0qE75Migc+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABOQK29QZzoPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAn6MGPqpoyD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[-0.06001543 -0.01564061 0.02 ]\n [-0.14371796 0.1323635 0.02 ]\n [-0.08459531 0.11357928 0.02 ]\n [ 0.13148354 0.09785588 0.02 ]]",
|
45 |
+
"desired_goal": "[[ 0.13579443 0.08889675 0.02 ]\n [ 0.00182329 0.13870004 0.02 ]\n [-0.14891122 -0.05810873 0.05662439]\n [ 0.07615868 -0.14239064 0.02 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.0015425e-02\n -1.5640605e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4371796e-01\n 1.3236350e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.4595308e-02\n 1.1357928e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3148354e-01\n 9.7855881e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
},
|
48 |
"_episode_num": 0,
|
49 |
"use_sde": false,
|
|
|
52 |
"_stats_window_size": 100,
|
53 |
"ep_info_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmVzu/cnE3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmV5r/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWFUNSZSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmV62mP5pKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWF1d5Y5ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWLoxgy/LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWXPKU3XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWMr3j+72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWY9XT3IudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWfLxqfvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWrh0ZFXrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWhBtk4FSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWsUzKs+3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWyHLRrrPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmW86PsAvMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWybzbvgFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmW9BGYrrgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXC5hjOLSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXOxEv0yydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXEYtg8bJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXO9ugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXUosI3R5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXfPDgqEwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXUrpiZv2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXgPA44p+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXmNPxhDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXxRffGdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXmo9C/oJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXxPiT+vRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmX29DhLoPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYCf7BO58dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmX4B4lhPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYC7HAAQydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYIs9B8hLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYTwmu1WsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYJR5kbxWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYUxaHKwIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYa9iDujRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYlqHXVbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYbCQ1aW5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYl7Qb+98dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYrzru6VddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY2uuA7PqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYr/echC/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY2ouXeFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY8r433pOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZI1jiGWVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY+LKvFFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZJD7qIJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZO4r8R+SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZZvWQOnVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZPHqmj0udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZaT987ZGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZgaN2ki2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZrPES/TLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZgsxGlQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZrSL61stdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZxMEidJ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZ9arWAf/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZzNJnQIEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaBFZowmFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaHQkPczqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaTANPP9ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaIjA8B+4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaUHBciW3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaaJwS8J2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmanJSaVlgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmadFiay8jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmaqtc4YJmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaxNet0V8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cma97bUPQOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmazv7FbV0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbAWGATZhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbGbxusLfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbR4FqzqsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbHcfNiYtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbSZamoBJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbYIqCpWFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbjTspobodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbYuZssQNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbj2G7BfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbp+cQRPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb1fUF0PpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbq2y9mHydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb1rRSgoPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb7fWMCLddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcGmtp22YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb8KvNeMRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcIq5sj3VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcPL1mJ3xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmcb7oSteVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcRlDneSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcclEAo5QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmciu+h4+sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcvAavRqodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmckerMkhSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcvmITGo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc1ky+HrRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdAesYEW7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc154nndPdWUu"
|
56 |
},
|
57 |
"ep_success_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
},
|
61 |
+
"_n_updates": 50000,
|
62 |
"n_steps": 5,
|
63 |
"gamma": 0.99,
|
64 |
"gae_lambda": 1.0,
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 51646
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:562886575a258f8856fd4f9501e92f8ea7fba0ec565d5a196d81cf1854f14380
|
3 |
size 51646
|
a2c-PandaPickAndPlace-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 52926
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ae8a11f9064835114e819139c486fad6893c38d21c05fb1c246084eede80410
|
3 |
size 52926
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d4abfcb8b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4abfcb1880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695358508554840397, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlhKPPsKSAL8dsr09G1gnv8wIa78Iv709/qk7P8um174Rvb09q/uSv3ULm78Rvb09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzK7VvijQxj+0WDG+JQDIPcStYz4y7U+/PF1WvynD0T/LdtM9k2RXPz+ahT+mFSs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABtWfM+rejGP9Hfnz07wN49ZFT7PpBK8b+uJak/lhKPPsKSAL8dsr09e9iVu47VKjyd4Yi8BNhhPSsQH73JHC09m/Y/PEYgJbsYLai74Xxbvv1Xoz9aHzc/kdFcP2KYOz+6tZ0/gyupPxtYJ7/MCGu/CL+9Pd+1obtNYSY8JhiGvIxyYT0j0x29YCkuPSnMIDxBvbS7VKSsuwc3dL8M0Q4/6KC1vzYNgL82r4Q/yUSvvO8bpT/+qTs/y6bXvhG9vT3gyKK7Q20rPHZkebw+wGM944gdvckcLT2y9j887x8luyX+lrvnrfm+VgsQQNVUJ0CeOjI+dZBxPBr4qz5ZK6k/q/uSv3ULm78Rvb092siiu0htKzyrc3i8PcBjPeSIHb3JHC09svY/PO8fJbtH/pa7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.27943867 -0.50223935 0.09262488]\n [-0.65368813 -0.918103 0.09264952]\n [ 0.7330626 -0.4211944 0.09264577]\n [-1.1483053 -1.2112871 0.09264577]]", "desired_goal": "[[-0.41734922 1.5532274 -0.17318994]\n [ 0.09765653 0.22234255 -0.81221306]\n [-0.83736014 1.6387683 0.10325392]\n [ 0.8413784 1.0437697 0.6682991 ]]", "observation": "[[ 4.7529164e-01 1.5539757e+00 7.8063615e-02 1.0876509e-01\n 4.9087822e-01 -1.8850880e+00 1.3214624e+00 2.7943867e-01\n -5.0223935e-01 9.2624880e-02 -4.5729256e-03 1.0426892e-02\n -1.6709143e-02 5.5137649e-02 -3.8833778e-02 4.2263780e-02\n 1.1716510e-02 -2.5196238e-03 -5.1323287e-03]\n [-2.1434356e-01 1.2761227e+00 7.1532214e-01 8.6257273e-01\n 7.3279393e-01 1.2321084e+00 1.3216404e+00 -6.5368813e-01\n -9.1810298e-01 9.2649519e-02 -4.9350108e-03 1.0155034e-02\n -1.6368937e-02 5.5040881e-02 -3.8531434e-02 4.2519927e-02\n 9.8143006e-03 -5.5157249e-03 -5.2686129e-03]\n [-9.5396465e-01 5.5787730e-01 -1.4189730e+00 -1.0004032e+00\n 1.0365970e+00 -2.1395104e-02 1.2899150e+00 7.3306262e-01\n -4.2119440e-01 9.2645772e-02 -4.9677938e-03 1.0463062e-02\n -1.5221706e-02 5.5603258e-02 -3.8460623e-02 4.2263780e-02\n 1.1716532e-02 -2.5196036e-03 -4.6079331e-03]\n [-4.8765489e-01 2.2506919e+00 2.6145527e+00 1.7405173e-01\n 1.4743914e-02 3.3587724e-01 1.3216354e+00 -1.1483053e+00\n -1.2112871e+00 9.2645772e-02 -4.9677910e-03 1.0463066e-02\n -1.5164296e-02 5.5603255e-02 -3.8460627e-02 4.2263780e-02\n 1.1716532e-02 -2.5196036e-03 -4.6079489e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxUwJvejHjb0K16M8WpK6PcSW3D0K16M8n27QvZu6trwK16M8URbqPfky7b0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArq6pPUV3yL2yGY89AKu2PECzyT0EWQQ+VPwsvREKkT0K16M879r9Pb6b+b1Ck1M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxUwJvejHjb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFqSuj3Eltw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACfbtC9m7q2vArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAURbqPfky7b0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.03352048 -0.06922895 0.02 ]\n [ 0.09109946 0.10770944 0.02 ]\n [-0.10177349 -0.02230578 0.02 ]\n [ 0.11430038 -0.11581988 0.02 ]]", "desired_goal": "[[ 0.08285271 -0.09788374 0.06987323]\n [ 0.02229834 0.09848642 0.12924582]\n [-0.04223283 0.07081998 0.02 ]\n [ 0.12395274 -0.12187909 0.20661643]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.3520479e-02\n -6.9228947e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.1099456e-02\n 1.0770944e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.0177349e-01\n -2.2305777e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1430038e-01\n -1.1581988e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C0rqnIyTIOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0rqqrq+rVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C0rq5K8L8adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0rpHIyTIOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0rue8kD6ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ryvES/TLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0rzPTLGJfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0rxfMwDeTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0r28Wj45+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0r7JtvXK9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0r8Z+DvmYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0r6rxVhkRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sAik43m3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sFw5Jbt7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sIKfFrEcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sGgzDXOGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sMXA6+36dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sRCjYZl4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sRvZmI0qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sQBK6FufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sVhW912adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sZ8qvvBrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sbR6OYICdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C0sbdfsu3+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sZi6+WWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sfRYRujzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sjwW8AaOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0skJc1O0tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0siPllsgudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0snyhSLqEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ssJFCswMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ssyBkI5YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0sq3qu8sddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C0ss921UlzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0swRWYF7ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0s0UzCUHIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0syzLB9CvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0s04na37UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0s4Qxi5NHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0s8leOXE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0s8R1PnB+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0s+Y2sJY1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tCBtUGVzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tGVwxWT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tFMMEzO5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tHSL/CIldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tKsMVk+YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tPBInSfEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tOJ3cHnmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tQPB7/n4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tTo+nqFAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tX8J6Y3OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tW2nfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tY77oB7vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tcaAnUlSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tg3Mt9QXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tgKHwgDBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tiQ3DNyHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tl3tjTa1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tqH58BuGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tpRe9i+ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0trZKJ2t/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tu/0dzXCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tzyUcGTtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0tzmcSXdCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0t1s3qAz6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0t5iEtdzGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0t/bFfiPydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uASd8RcvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uCb+xW1ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uGJsGgSOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uKfQjUutdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uJbVz6rOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uLhA8jiXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uO8jzI3jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uTDpLVWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uRpcPe54dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uTvr0J4TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uXLAgxJvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ubZX+2mYdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C0ubjIq9XcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uZ1SflIVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ub6y4Wk8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ufSY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ujx0p3HJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uiJHqeK9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ukPqcEvCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uno6nzg/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0ur+rlvIfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uqvGVAzIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0us118stkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uwT9S/CZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0u05RoAXEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0uz6STyJ9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0u2BYFJQMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0u5cVk+X7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0u+AeNkvsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0u9BS1maqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0u/GsijcmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C0vCcb3oLYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78e34e7c8d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e34e7c4f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695612821782729446, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcWnMPRqHcj9i9Ls9XGOMPwzEb77M/bs9XftKv2MFnT/M/bs9Qkp7P6pu5r3O9Ls9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg36GP3LStL9rRYu/JBWRP9XdCD9rRYu/x+ozv4Oft79CAKm+ylrSv+zdvD+HK0m+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD18C8/tVwqPpNzBT8RkJQ+Bt1zP1sQGcDrOn6/cWnMPRqHcj9i9Ls96keXvAwByzr206m7mLCCPXNmOzwyVDE9l7/1u5WMObyYFsO7j/ErP9rDuLzvphc/uKEnP0LDmz4cLfQ+Z/tOv1xjjD8MxG++zP27PWQBmrxYZM4685eCu62Dgz262kA8UFQxPdfE9buEjDm8Tmq1u/slSz/EU9o+RF3sPViK7D5aco09BfymP786fr9d+0q/YwWdP8z9uz2YE5m8sk24OuMW1ruOn4I9kJ83PFBUMT3ZxPW7g4w5vEj3y7u9gRe9ZAmNPpe3+L6fvx3AP9iQPfAf3r8A1Yk/Qkp7P6pu5r3O9Ls9WlaXvPAAyzqW8Ki7l7CCPfkWOzzYQjE97Zvyu3iMObzKFsO7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.09981049 0.947374 0.09177472]\n [ 1.0967822 -0.2341463 0.09179267]\n [-0.792898 1.2267269 0.09179267]\n [ 0.98160183 -0.11251576 0.09177552]]", "desired_goal": "[[ 1.0507358 -1.4126723 -1.088056 ]\n [ 1.1334577 0.5346349 -1.088056 ]\n [-0.70280117 -1.4345554 -0.3300801 ]\n [-1.6433957 1.4755225 -0.1964551 ]]", "observation": "[[ 6.87270463e-01 1.66369274e-01 5.21294773e-01 2.90161639e-01\n 9.52591300e-01 -2.39162326e+00 -9.93086517e-01 9.98104885e-02\n 9.47373986e-01 9.17747170e-02 -1.84669085e-02 1.54879829e-03\n -5.18273842e-03 6.38133883e-02 1.14380000e-02 4.32931855e-02\n -7.49964593e-03 -1.13250213e-02 -5.95362112e-03]\n [ 6.71654642e-01 -2.25543268e-02 5.92390954e-01 6.54811382e-01\n 3.04224074e-01 4.76906657e-01 -8.08523595e-01 1.09678221e+00\n -2.34146297e-01 9.17926729e-02 -1.87994912e-02 1.57464575e-03\n -3.98539891e-03 6.42159954e-02 1.17708985e-02 4.32932973e-02\n -7.50027178e-03 -1.13250054e-02 -5.53635415e-03]\n [ 7.93548286e-01 4.26420331e-01 1.15412265e-01 4.61992979e-01\n 6.90657645e-02 1.30456603e+00 -9.93083894e-01 -7.92897999e-01\n 1.22672689e+00 9.17926729e-02 -1.86861008e-02 1.40612409e-03\n -6.53349003e-03 6.37808889e-02 1.12074763e-02 4.32932973e-02\n -7.50027271e-03 -1.13250045e-02 -6.22454658e-03]\n [-3.69889624e-02 2.75462270e-01 -4.85775679e-01 -2.46482062e+00\n 7.07249567e-02 -1.73534966e+00 1.07681274e+00 9.81601834e-01\n -1.12515762e-01 9.17755216e-02 -1.84737928e-02 1.54879503e-03\n -5.15563320e-03 6.38133809e-02 1.14190513e-02 4.32766378e-02\n -7.40384171e-03 -1.13249943e-02 -5.95364440e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvNJ1vboggLwK16M8zSoTvkyKBz4K16M8TkCtvUGc6D0K16M8n6MGPqpoyD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsg0LPoAPtj0K16M8mvvuOmIHDj4K16M8L3wYvmwDbr377mc9FfmbPdrOEb4K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAvNJ1vboggLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAM0qE75Migc+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABOQK29QZzoPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAn6MGPqpoyD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.06001543 -0.01564061 0.02 ]\n [-0.14371796 0.1323635 0.02 ]\n [-0.08459531 0.11357928 0.02 ]\n [ 0.13148354 0.09785588 0.02 ]]", "desired_goal": "[[ 0.13579443 0.08889675 0.02 ]\n [ 0.00182329 0.13870004 0.02 ]\n [-0.14891122 -0.05810873 0.05662439]\n [ 0.07615868 -0.14239064 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.0015425e-02\n -1.5640605e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4371796e-01\n 1.3236350e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.4595308e-02\n 1.1357928e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3148354e-01\n 9.7855881e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmVzu/cnE3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmV5r/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWFUNSZSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmV62mP5pKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWF1d5Y5ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWLoxgy/LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWXPKU3XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWMr3j+72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWY9XT3IudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWfLxqfvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWrh0ZFXrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWhBtk4FSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWsUzKs+3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWyHLRrrPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmW86PsAvMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmWybzbvgFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmW9BGYrrgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXC5hjOLSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXOxEv0yydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXEYtg8bJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXO9ugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXUosI3R5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXfPDgqEwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXUrpiZv2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXgPA44p+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXmNPxhDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXxRffGdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXmo9C/oJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmXxPiT+vRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmX29DhLoPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYCf7BO58dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmX4B4lhPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYC7HAAQydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYIs9B8hLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYTwmu1WsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYJR5kbxWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYUxaHKwIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYa9iDujRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYlqHXVbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYbCQ1aW5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYl7Qb+98dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYrzru6VddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY2uuA7PqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmYr/echC/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY2ouXeFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY8r433pOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZI1jiGWVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmY+LKvFFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZJD7qIJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZO4r8R+SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZZvWQOnVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZPHqmj0udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZaT987ZGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZgaN2ki2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZrPES/TLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZgsxGlQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZrSL61stdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZxMEidJ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZ9arWAf/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmZzNJnQIEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaBFZowmFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaHQkPczqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaTANPP9ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaIjA8B+4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaUHBciW3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaaJwS8J2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmanJSaVlgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmadFiay8jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmaqtc4YJmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmaxNet0V8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cma97bUPQOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmazv7FbV0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbAWGATZhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbGbxusLfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbR4FqzqsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbHcfNiYtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbSZamoBJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbYIqCpWFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbjTspobodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbYuZssQNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbj2G7BfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbp+cQRPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb1fUF0PpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbq2y9mHydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb1rRSgoPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb7fWMCLddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcGmtp22YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb8KvNeMRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcIq5sj3VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcPL1mJ3xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmcb7oSteVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcRlDneSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcclEAo5QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmciu+h4+sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcvAavRqodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmckerMkhSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcvmITGo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc1ky+HrRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdAesYEW7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc154nndPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-25T04:22:04.037385"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3013
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb8a22326600971ca7f73ac261b1dbf01ade2235c4a27f89a23ad3fcefb341f
|
3 |
size 3013
|