|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Processor class for Florence-2.
|
|
"""
|
|
|
|
import re
|
|
import logging
|
|
from typing import List, Optional, Union
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from transformers.feature_extraction_utils import BatchFeature
|
|
from transformers.image_utils import ImageInput, is_valid_image
|
|
from transformers.processing_utils import ProcessorMixin
|
|
from transformers.tokenization_utils_base import (
|
|
PaddingStrategy,
|
|
PreTokenizedInput,
|
|
TextInput,
|
|
TruncationStrategy,
|
|
)
|
|
from transformers.utils import TensorType
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def is_url(val) -> bool:
|
|
return isinstance(val, str) and val.startswith("http")
|
|
|
|
|
|
def is_image_or_image_url(elem):
|
|
return is_url(elem) or is_valid_image(elem)
|
|
|
|
|
|
def _is_str_or_image(elem):
|
|
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
|
|
|
|
|
class Florence2Processor(ProcessorMixin):
|
|
r"""
|
|
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
|
|
|
|
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
|
|
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
|
|
|
|
Args:
|
|
image_processor ([`CLIPImageProcessor`], *optional*):
|
|
The image processor is a required input.
|
|
tokenizer ([`BartTokenizerFast`], *optional*):
|
|
The tokenizer is a required input.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
image_processor_class = "CLIPImageProcessor"
|
|
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
|
|
|
|
def __init__(
|
|
self,
|
|
image_processor=None,
|
|
tokenizer=None,
|
|
):
|
|
if image_processor is None:
|
|
raise ValueError("You need to specify an `image_processor`.")
|
|
if tokenizer is None:
|
|
raise ValueError("You need to specify a `tokenizer`.")
|
|
if not hasattr(image_processor, "image_seq_length"):
|
|
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
|
|
|
self.image_seq_length = image_processor.image_seq_length
|
|
|
|
tokens_to_add = {
|
|
'additional_special_tokens': \
|
|
tokenizer.additional_special_tokens + \
|
|
['<od>', '</od>', '<ocr>', '</ocr>'] + \
|
|
[f'<loc_{x}>' for x in range(1000)] + \
|
|
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
|
|
}
|
|
tokenizer.add_special_tokens(tokens_to_add)
|
|
|
|
self.tasks_answer_post_processing_type = {
|
|
'<OCR>': 'pure_text',
|
|
'<OCR_WITH_REGION>': 'ocr',
|
|
'<CAPTION>': 'pure_text',
|
|
'<DETAILED_CAPTION>': 'pure_text',
|
|
'<MORE_DETAILED_CAPTION>': 'pure_text',
|
|
'<OD>': 'description_with_bboxes',
|
|
'<DENSE_REGION_CAPTION>': 'description_with_bboxes',
|
|
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
|
|
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
|
|
'<REGION_TO_SEGMENTATION>': 'polygons',
|
|
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
|
|
'<REGION_TO_CATEGORY>': 'pure_text',
|
|
'<REGION_TO_DESCRIPTION>': 'pure_text',
|
|
'<REGION_TO_OCR>': 'pure_text',
|
|
'<REGION_PROPOSAL>': 'bboxes'
|
|
}
|
|
|
|
self.task_prompts_without_inputs = {
|
|
'<OCR>': 'What is the text in the image?',
|
|
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
|
|
'<CAPTION>': 'What does the image describe?',
|
|
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
|
|
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
|
|
'<OD>': 'Locate the objects with category name in the image.',
|
|
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
|
|
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
|
|
}
|
|
|
|
self.task_prompts_with_input = {
|
|
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
|
|
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
|
|
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
|
|
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
|
|
'<REGION_TO_CATEGORY>': 'What is the region {input}?',
|
|
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
|
|
'<REGION_TO_OCR>': 'What text is in the region {input}?',
|
|
}
|
|
|
|
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
|
|
|
|
|
|
super().__init__(image_processor, tokenizer)
|
|
|
|
def _construct_prompts(self, text):
|
|
|
|
prompts = []
|
|
for _text in text:
|
|
|
|
for task_token, task_prompt in self.task_prompts_without_inputs.items():
|
|
if task_token in _text:
|
|
assert _text == task_token, f"Task token {task_token} should be the only token in the text."
|
|
_text = task_prompt
|
|
break
|
|
|
|
for task_token, task_prompt in self.task_prompts_with_input.items():
|
|
if task_token in _text:
|
|
_text = task_prompt.format(input=_text.replace(task_token, ''))
|
|
break
|
|
prompts.append(_text)
|
|
return prompts
|
|
|
|
def __call__(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
|
images: ImageInput = None,
|
|
tokenize_newline_separately: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length=None,
|
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
|
do_resize: bool = None,
|
|
do_normalize: bool = None,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
data_format: Optional["ChannelDimension"] = "channels_first",
|
|
input_data_format: Optional[
|
|
Union[str, "ChannelDimension"]
|
|
] = None,
|
|
resample: "PILImageResampling" = None,
|
|
do_convert_rgb: bool = None,
|
|
do_thumbnail: bool = None,
|
|
do_align_long_axis: bool = None,
|
|
do_rescale: bool = None,
|
|
) -> BatchFeature:
|
|
"""
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
|
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
|
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
|
of the above two methods for more information.
|
|
|
|
Args:
|
|
text (`str`, `List[str]`, `List[List[str]]`):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
|
number of channels, H and W are image height and width.
|
|
tokenize_newline_separately (`bool`, defaults to `True`):
|
|
Adds a separately tokenized '\n' at the end of the prompt.
|
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
|
index) among:
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
|
acceptable input length for the model if that argument is not provided.
|
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
|
lengths).
|
|
max_length (`int`, *optional*):
|
|
Maximum length of the returned list and optionally padding length (see above).
|
|
truncation (`bool`, *optional*):
|
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
|
|
Returns:
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
|
is provided, the `input_ids` will also contain the suffix input ids.
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
`None`).
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
|
- **labels** -- Labels compatible with training if `suffix` is not None
|
|
"""
|
|
|
|
return_token_type_ids = False
|
|
|
|
if images is None:
|
|
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
|
|
if text is None:
|
|
logger.warning_once(
|
|
"You are using Florence-2 without a text prompt."
|
|
)
|
|
text = ""
|
|
|
|
if isinstance(text, List) and isinstance(images, List):
|
|
if len(images) < len(text):
|
|
raise ValueError(
|
|
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
|
|
)
|
|
if _is_str_or_image(text):
|
|
text = [text]
|
|
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
|
pass
|
|
|
|
pixel_values = self.image_processor(
|
|
images,
|
|
do_resize=do_resize,
|
|
do_normalize=do_normalize,
|
|
return_tensors=return_tensors,
|
|
image_mean=image_mean,
|
|
image_std=image_std,
|
|
input_data_format=input_data_format,
|
|
data_format=data_format,
|
|
resample=resample,
|
|
do_convert_rgb=do_convert_rgb,
|
|
)["pixel_values"]
|
|
|
|
if max_length is not None:
|
|
max_length -= self.image_seq_length
|
|
|
|
text = self._construct_prompts(text)
|
|
|
|
inputs = self.tokenizer(
|
|
text,
|
|
return_tensors=return_tensors,
|
|
padding=padding,
|
|
max_length=max_length,
|
|
truncation=truncation,
|
|
return_token_type_ids=return_token_type_ids,
|
|
)
|
|
|
|
return_data = {**inputs, "pixel_values": pixel_values}
|
|
|
|
if return_token_type_ids:
|
|
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
|
return_data.update({"labels": labels})
|
|
return BatchFeature(data=return_data)
|
|
|
|
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
@property
|
|
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
def post_process_generation(self, text, task, image_size):
|
|
"""
|
|
Post-process the output of the model to each of the task outputs.
|
|
|
|
Args:
|
|
text (`str`): The text to post-process.
|
|
task (`str`): The task to post-process the text for.
|
|
image_size (`Tuple[int, int]`): The size of the image. height x width.
|
|
"""
|
|
|
|
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
|
|
task_answer = self.post_processor(
|
|
text=text,
|
|
image_size=image_size,
|
|
parse_tasks=task_answer_post_processing_type,
|
|
)[task_answer_post_processing_type]
|
|
|
|
if task_answer_post_processing_type == 'pure_text':
|
|
final_answer = task_answer
|
|
|
|
final_answer = final_answer.replace('<s>', '').replace('</s>', '')
|
|
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
|
|
od_instances = task_answer
|
|
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
|
|
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
|
|
final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
|
|
elif task_answer_post_processing_type in ['ocr']:
|
|
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
|
|
labels = [str(_od_instance['text']) for _od_instance in task_answer]
|
|
final_answer = {'quad_boxes': bboxes, 'labels': labels}
|
|
elif task_answer_post_processing_type in ['phrase_grounding']:
|
|
bboxes = []
|
|
labels = []
|
|
for _grounded_phrase in task_answer:
|
|
for _bbox in _grounded_phrase['bbox']:
|
|
bboxes.append(_bbox)
|
|
labels.append(_grounded_phrase['cat_name'])
|
|
final_answer = {'bboxes': bboxes, 'labels': labels}
|
|
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
|
|
labels = []
|
|
polygons = []
|
|
for result in task_answer:
|
|
label = result['cat_name']
|
|
_polygons = result['polygons']
|
|
labels.append(label)
|
|
polygons.append(_polygons)
|
|
final_answer = {'polygons': polygons, 'labels': labels}
|
|
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
|
|
bboxes = []
|
|
bboxes_labels = []
|
|
polygons = []
|
|
polygons_labels = []
|
|
for result in task_answer:
|
|
label = result['cat_name']
|
|
if 'polygons' in result:
|
|
_polygons = result['polygons']
|
|
polygons.append(_polygons)
|
|
polygons_labels.append(label)
|
|
else:
|
|
_bbox = result['bbox']
|
|
bboxes.append(_bbox)
|
|
bboxes_labels.append(label)
|
|
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
|
|
else:
|
|
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
|
|
|
|
final_answer = {
|
|
task: final_answer}
|
|
return final_answer
|
|
|
|
class BoxQuantizer(object):
|
|
def __init__(self, mode, bins):
|
|
self.mode = mode
|
|
self.bins = bins
|
|
|
|
def quantize(self, boxes: torch.Tensor, size):
|
|
bins_w, bins_h = self.bins
|
|
size_w, size_h = size
|
|
size_per_bin_w = size_w / bins_w
|
|
size_per_bin_h = size_h / bins_h
|
|
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1)
|
|
|
|
if self.mode == 'floor':
|
|
quantized_xmin = (
|
|
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
|
quantized_ymin = (
|
|
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
|
quantized_xmax = (
|
|
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
|
quantized_ymax = (
|
|
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
|
|
|
elif self.mode == 'round':
|
|
raise NotImplementedError()
|
|
|
|
else:
|
|
raise ValueError('Incorrect quantization type.')
|
|
|
|
quantized_boxes = torch.cat(
|
|
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
|
|
).int()
|
|
|
|
return quantized_boxes
|
|
|
|
def dequantize(self, boxes: torch.Tensor, size):
|
|
bins_w, bins_h = self.bins
|
|
size_w, size_h = size
|
|
size_per_bin_w = size_w / bins_w
|
|
size_per_bin_h = size_h / bins_h
|
|
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1)
|
|
|
|
if self.mode == 'floor':
|
|
|
|
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
|
|
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
|
|
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
|
|
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
|
|
|
|
elif self.mode == 'round':
|
|
raise NotImplementedError()
|
|
|
|
else:
|
|
raise ValueError('Incorrect quantization type.')
|
|
|
|
dequantized_boxes = torch.cat(
|
|
(dequantized_xmin, dequantized_ymin,
|
|
dequantized_xmax, dequantized_ymax), dim=-1
|
|
)
|
|
|
|
return dequantized_boxes
|
|
|
|
|
|
class CoordinatesQuantizer(object):
|
|
"""
|
|
Quantize coornidates (Nx2)
|
|
"""
|
|
|
|
def __init__(self, mode, bins):
|
|
self.mode = mode
|
|
self.bins = bins
|
|
|
|
def quantize(self, coordinates: torch.Tensor, size):
|
|
bins_w, bins_h = self.bins
|
|
size_w, size_h = size
|
|
size_per_bin_w = size_w / bins_w
|
|
size_per_bin_h = size_h / bins_h
|
|
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
|
x, y = coordinates.split(1, dim=-1)
|
|
|
|
if self.mode == 'floor':
|
|
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
|
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
|
|
|
elif self.mode == 'round':
|
|
raise NotImplementedError()
|
|
|
|
else:
|
|
raise ValueError('Incorrect quantization type.')
|
|
|
|
quantized_coordinates = torch.cat(
|
|
(quantized_x, quantized_y), dim=-1
|
|
).int()
|
|
|
|
return quantized_coordinates
|
|
|
|
def dequantize(self, coordinates: torch.Tensor, size):
|
|
bins_w, bins_h = self.bins
|
|
size_w, size_h = size
|
|
size_per_bin_w = size_w / bins_w
|
|
size_per_bin_h = size_h / bins_h
|
|
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
|
x, y = coordinates.split(1, dim=-1)
|
|
|
|
if self.mode == 'floor':
|
|
|
|
dequantized_x = (x + 0.5) * size_per_bin_w
|
|
dequantized_y = (y + 0.5) * size_per_bin_h
|
|
|
|
elif self.mode == 'round':
|
|
raise NotImplementedError()
|
|
|
|
else:
|
|
raise ValueError('Incorrect quantization type.')
|
|
|
|
dequantized_coordinates = torch.cat(
|
|
(dequantized_x, dequantized_y), dim=-1
|
|
)
|
|
|
|
return dequantized_coordinates
|
|
|
|
|
|
class Florence2PostProcesser(object):
|
|
r"""
|
|
Florence-2 post process for converting text prediction to various tasks results.
|
|
|
|
Args:
|
|
config: A dict of configs.
|
|
tokenizer: A tokenizer for decoding text to spans.
|
|
sample config:
|
|
UNIFIED_POST_PROCESS:
|
|
# commom configs
|
|
NUM_BBOX_HEIGHT_BINS: 1000
|
|
NUM_BBOX_WIDTH_BINS: 1000
|
|
COORDINATES_HEIGHT_BINS: 1000
|
|
COORDINATES_WIDTH_BINS: 1000
|
|
# task specific configs, override the common configs
|
|
PRASE_TASKS:
|
|
- TASK_NAME: 'video_dense_caption'
|
|
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
|
|
SCORE_MODE: 'avg_cat_name_scores'
|
|
NUM_BINS: 100
|
|
- TASK_NAME: 'od'
|
|
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
|
|
SCORE_MODE: 'avg_cat_name_scores'
|
|
|
|
Returns:
|
|
parsed_dict (dict): A dict of parsed results.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
tokenizer=None
|
|
):
|
|
parse_tasks = []
|
|
parse_task_configs = {}
|
|
config = self._create_default_config()
|
|
for task in config['PARSE_TASKS']:
|
|
parse_tasks.append(task['TASK_NAME'])
|
|
parse_task_configs[task['TASK_NAME']] = task
|
|
|
|
self.config = config
|
|
self.parse_tasks = parse_tasks
|
|
self.parse_tasks_configs = parse_task_configs
|
|
|
|
self.tokenizer = tokenizer
|
|
if self.tokenizer is not None:
|
|
self.all_special_tokens = set(self.tokenizer.all_special_tokens)
|
|
|
|
self.init_quantizers()
|
|
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
|
|
|
|
def _create_black_list_of_phrase_grounding(self):
|
|
black_list = {}
|
|
|
|
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
|
|
black_list = set(
|
|
['it', 'I', 'me', 'mine',
|
|
'you', 'your', 'yours',
|
|
'he', 'him', 'his',
|
|
'she', 'her', 'hers',
|
|
'they', 'them', 'their', 'theirs',
|
|
'one', 'oneself',
|
|
'we', 'us', 'our', 'ours',
|
|
'you', 'your', 'yours',
|
|
'they', 'them', 'their', 'theirs',
|
|
'mine', 'yours', 'his', 'hers', 'its',
|
|
'ours', 'yours', 'theirs',
|
|
'myself', 'yourself', 'himself', 'herself', 'itself',
|
|
'ourselves', 'yourselves', 'themselves',
|
|
'this', 'that',
|
|
'these', 'those',
|
|
'who', 'whom', 'whose', 'which', 'what',
|
|
'who', 'whom', 'whose', 'which', 'that',
|
|
'all', 'another', 'any', 'anybody', 'anyone', 'anything',
|
|
'each', 'everybody', 'everyone', 'everything',
|
|
'few', 'many', 'nobody', 'none', 'one', 'several',
|
|
'some', 'somebody', 'someone', 'something',
|
|
'each other', 'one another',
|
|
'myself', 'yourself', 'himself', 'herself', 'itself',
|
|
'ourselves', 'yourselves', 'themselves',
|
|
'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
|
|
'other objects', 'lots', 'a set',
|
|
]
|
|
)
|
|
|
|
return black_list
|
|
|
|
def _create_default_config(self):
|
|
config = {
|
|
'NUM_BBOX_HEIGHT_BINS': 1000,
|
|
'NUM_BBOX_WIDTH_BINS': 1000,
|
|
'BOX_QUANTIZATION_MODE': 'floor',
|
|
'COORDINATES_HEIGHT_BINS': 1000,
|
|
'COORDINATES_WIDTH_BINS': 1000,
|
|
'COORDINATES_QUANTIZATION_MODE': 'floor',
|
|
'PARSE_TASKS': [
|
|
{
|
|
'TASK_NAME': 'od',
|
|
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
|
|
},
|
|
{
|
|
'TASK_NAME': 'ocr',
|
|
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
|
|
'AREA_THRESHOLD': 0.00
|
|
},
|
|
{
|
|
'TASK_NAME': 'phrase_grounding',
|
|
'FILTER_BY_BLACK_LIST': True
|
|
},
|
|
{
|
|
'TASK_NAME': 'pure_text',
|
|
},
|
|
{
|
|
'TASK_NAME': 'description_with_bboxes',
|
|
},
|
|
{
|
|
'TASK_NAME': 'description_with_polygons',
|
|
},
|
|
{
|
|
'TASK_NAME': 'polygons',
|
|
},
|
|
{
|
|
'TASK_NAME': 'bboxes',
|
|
},
|
|
{
|
|
'TASK_NAME': 'description_with_bboxes_or_polygons',
|
|
}
|
|
]
|
|
}
|
|
|
|
return config
|
|
|
|
def init_quantizers(self):
|
|
|
|
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
|
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
|
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
|
self.box_quantizer = BoxQuantizer(
|
|
box_quantization_mode,
|
|
(num_bbox_width_bins, num_bbox_height_bins),
|
|
)
|
|
|
|
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
|
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
|
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
|
self.coordinates_quantizer = CoordinatesQuantizer(
|
|
box_quantization_mode,
|
|
(num_bbox_width_bins, num_bbox_height_bins),
|
|
)
|
|
|
|
def decode_with_spans(self, tokenizer, token_ids):
|
|
filtered_tokens = tokenizer.convert_ids_to_tokens(
|
|
token_ids, skip_special_tokens=False)
|
|
assert len(filtered_tokens) == len(token_ids)
|
|
|
|
|
|
|
|
|
|
sub_texts = []
|
|
for token in filtered_tokens:
|
|
if token in self.all_special_tokens:
|
|
sub_texts.append(token)
|
|
else:
|
|
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
|
|
sub_text = tokenizer.convert_tokens_to_string([token])
|
|
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
|
|
|
|
|
|
sub_text = token.replace('▁', ' ')
|
|
else:
|
|
raise ValueError(f'type {type(tokenizer)} not supported')
|
|
sub_texts.append(sub_text)
|
|
|
|
text = ''
|
|
spans = []
|
|
for sub_text in sub_texts:
|
|
span = (len(text), len(text) + len(sub_text))
|
|
text += sub_text
|
|
spans.append(span)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return text, spans
|
|
|
|
def parse_od_from_text_and_spans(
|
|
self,
|
|
text,
|
|
pattern,
|
|
image_size,
|
|
phrase_centric=False
|
|
):
|
|
parsed = list(re.finditer(pattern, text))
|
|
|
|
instances = []
|
|
for i in range(len(parsed)):
|
|
|
|
instance = {}
|
|
|
|
if phrase_centric:
|
|
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
|
|
else:
|
|
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
|
|
instance['bbox'] = self.box_quantizer.dequantize(
|
|
boxes=torch.tensor(bbox_bins),
|
|
size=image_size
|
|
).tolist()
|
|
|
|
if phrase_centric:
|
|
instance['cat_name'] = parsed[i].group(1).lower().strip()
|
|
else:
|
|
instance['cat_name'] = parsed[i].group(5).lower().strip()
|
|
instances.append(instance)
|
|
|
|
return instances
|
|
|
|
def parse_ocr_from_text_and_spans(self,
|
|
text,
|
|
pattern,
|
|
image_size,
|
|
area_threshold=-1.0,
|
|
):
|
|
bboxes = []
|
|
labels = []
|
|
text = text.replace('<s>', '')
|
|
|
|
parsed = re.findall(pattern, text)
|
|
instances = []
|
|
image_width, image_height = image_size
|
|
|
|
for ocr_line in parsed:
|
|
ocr_content = ocr_line[0]
|
|
quad_box = ocr_line[1:]
|
|
quad_box = [int(i) for i in quad_box]
|
|
quad_box = self.coordinates_quantizer.dequantize(
|
|
torch.tensor(np.array(quad_box).reshape(-1, 2)),
|
|
size=image_size
|
|
).reshape(-1).tolist()
|
|
|
|
if area_threshold > 0:
|
|
x_coords = [i for i in quad_box[0::2]]
|
|
y_coords = [i for i in quad_box[1::2]]
|
|
|
|
|
|
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
|
|
|
|
if area < (image_width * image_height) * area_threshold:
|
|
continue
|
|
|
|
bboxes.append(quad_box)
|
|
labels.append(ocr_content)
|
|
instances.append({
|
|
'quad_box': quad_box,
|
|
'text': ocr_content,
|
|
})
|
|
return instances
|
|
|
|
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
|
|
|
|
cur_span = 0
|
|
if text.startswith('<s>'):
|
|
cur_span += 3
|
|
|
|
text = text.replace('<s>', '')
|
|
text = text.replace('</s>', '')
|
|
text = text.replace('<pad>', '')
|
|
|
|
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
|
phrases = re.findall(pattern, text)
|
|
|
|
|
|
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
|
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
|
|
|
instances = []
|
|
for pharse_text in phrases:
|
|
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
|
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
|
|
|
if phrase_text_strip == '':
|
|
cur_span += len(pharse_text)
|
|
continue
|
|
|
|
|
|
instance = {}
|
|
|
|
|
|
phrase = re.search(pattern, phrase_text_strip)
|
|
if phrase is None:
|
|
cur_span += len(pharse_text)
|
|
continue
|
|
|
|
|
|
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
|
if len(bboxes_parsed) == 0:
|
|
cur_span += len(pharse_text)
|
|
continue
|
|
|
|
phrase = phrase.group()
|
|
|
|
phrase = phrase.strip()
|
|
|
|
if phrase in self.black_list_of_phrase_grounding:
|
|
cur_span += len(pharse_text)
|
|
continue
|
|
|
|
|
|
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
|
instance['bbox'] = self.box_quantizer.dequantize(
|
|
boxes=torch.tensor(bbox_bins),
|
|
size=image_size
|
|
).tolist()
|
|
|
|
|
|
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
|
instance['cat_name'] = phrase
|
|
|
|
instances.append(instance)
|
|
|
|
return instances
|
|
|
|
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
|
|
|
|
|
|
|
|
text = text.replace('<s>', '')
|
|
text = text.replace('</s>', '')
|
|
text = text.replace('<pad>', '')
|
|
|
|
if allow_empty_phrase:
|
|
pattern = rf"(?:(?:<loc_\d+>){{4,}})"
|
|
else:
|
|
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
|
phrases = re.findall(pattern, text)
|
|
|
|
|
|
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
|
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
|
|
|
instances = []
|
|
for pharse_text in phrases:
|
|
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
|
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
|
|
|
if phrase_text_strip == '' and not allow_empty_phrase:
|
|
continue
|
|
|
|
|
|
phrase = re.search(pattern, phrase_text_strip)
|
|
if phrase is None:
|
|
continue
|
|
|
|
phrase = phrase.group()
|
|
|
|
phrase = phrase.strip()
|
|
|
|
|
|
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
|
if len(bboxes_parsed) == 0:
|
|
continue
|
|
|
|
|
|
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
|
|
|
bboxes = self.box_quantizer.dequantize(
|
|
boxes=torch.tensor(bbox_bins),
|
|
size=image_size
|
|
).tolist()
|
|
|
|
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
|
for _bboxes in bboxes:
|
|
|
|
instance = {}
|
|
instance['bbox'] = _bboxes
|
|
|
|
instance['cat_name'] = phrase
|
|
instances.append(instance)
|
|
|
|
return instances
|
|
|
|
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
|
|
allow_empty_phrase=False,
|
|
polygon_sep_token='<sep>',
|
|
polygon_start_token='<poly>',
|
|
polygon_end_token='</poly>',
|
|
with_box_at_start=False,
|
|
):
|
|
|
|
|
|
|
|
|
|
text = text.replace('<s>', '')
|
|
text = text.replace('</s>', '')
|
|
text = text.replace('<pad>', '')
|
|
|
|
if allow_empty_phrase:
|
|
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
|
else:
|
|
|
|
|
|
|
|
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
|
phrases = re.findall(pattern, text)
|
|
|
|
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
|
|
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
|
|
|
|
|
|
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
|
|
|
|
instances = []
|
|
for phrase_text in phrases:
|
|
|
|
|
|
|
|
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
|
|
|
|
|
|
|
|
|
|
if phrase_text_strip == '' and not allow_empty_phrase:
|
|
continue
|
|
|
|
|
|
|
|
phrase = re.search(phrase_string_pattern, phrase_text_strip)
|
|
if phrase is None:
|
|
continue
|
|
phrase = phrase.group()
|
|
|
|
phrase = phrase.strip()
|
|
|
|
|
|
|
|
|
|
if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
|
|
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
|
|
else:
|
|
polygons_instances_parsed = [phrase_text]
|
|
|
|
for _polygons_instances_parsed in polygons_instances_parsed:
|
|
|
|
instance = {}
|
|
|
|
|
|
if isinstance(_polygons_instances_parsed, str):
|
|
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
|
|
else:
|
|
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
|
|
if len(polygons_parsed) == 0:
|
|
continue
|
|
|
|
|
|
bbox = []
|
|
polygons = []
|
|
for _polygon_parsed in polygons_parsed:
|
|
|
|
_polygon = _polygon_parsed.group(1)
|
|
|
|
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
|
|
if with_box_at_start and len(bbox) == 0:
|
|
if len(_polygon) > 4:
|
|
|
|
bbox = _polygon[:4]
|
|
_polygon = _polygon[4:]
|
|
else:
|
|
bbox = [0, 0, 0, 0]
|
|
|
|
if len(_polygon) % 2 == 1:
|
|
_polygon = _polygon[:-1]
|
|
|
|
|
|
_polygon = self.coordinates_quantizer.dequantize(
|
|
torch.tensor(np.array(_polygon).reshape(-1, 2)),
|
|
size=image_size
|
|
).reshape(-1).tolist()
|
|
|
|
polygons.append(_polygon)
|
|
|
|
instance['cat_name'] = phrase
|
|
instance['polygons'] = polygons
|
|
if len(bbox) != 0:
|
|
instance['bbox'] = self.box_quantizer.dequantize(
|
|
boxes=torch.tensor([bbox]),
|
|
size=image_size
|
|
).tolist()[0]
|
|
|
|
instances.append(instance)
|
|
|
|
return instances
|
|
|
|
def __call__(
|
|
self,
|
|
text=None,
|
|
image_size=None,
|
|
parse_tasks=None,
|
|
):
|
|
"""
|
|
Args:
|
|
text: model outputs
|
|
image_size: (width, height)
|
|
parse_tasks: a list of tasks to parse, if None, parse all tasks.
|
|
|
|
"""
|
|
if parse_tasks is not None:
|
|
if isinstance(parse_tasks, str):
|
|
parse_tasks = [parse_tasks]
|
|
for _parse_task in parse_tasks:
|
|
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
|
|
|
|
|
|
assert text is not None, 'text should be provided'
|
|
|
|
parsed_dict = {
|
|
'text': text
|
|
}
|
|
|
|
for task in self.parse_tasks:
|
|
if parse_tasks is not None and task not in parse_tasks:
|
|
continue
|
|
|
|
pattern = self.parse_tasks_configs[task].get('PATTERN', None)
|
|
|
|
if task == 'ocr':
|
|
instances = self.parse_ocr_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
|
|
)
|
|
parsed_dict['ocr'] = instances
|
|
elif task == 'phrase_grounding':
|
|
instances = self.parse_phrase_grounding_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
)
|
|
parsed_dict['phrase_grounding'] = instances
|
|
elif task == 'pure_text':
|
|
parsed_dict['pure_text'] = text
|
|
elif task == 'description_with_bboxes':
|
|
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
)
|
|
parsed_dict['description_with_bboxes'] = instances
|
|
elif task == 'description_with_polygons':
|
|
instances = self.parse_description_with_polygons_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
)
|
|
parsed_dict['description_with_polygons'] = instances
|
|
elif task == 'polygons':
|
|
instances = self.parse_description_with_polygons_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
allow_empty_phrase=True,
|
|
)
|
|
parsed_dict['polygons'] = instances
|
|
elif task == 'bboxes':
|
|
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
allow_empty_phrase=True,
|
|
)
|
|
parsed_dict['bboxes'] = instances
|
|
elif task == 'description_with_bboxes_or_polygons':
|
|
if '<poly>' in text:
|
|
|
|
instances = self.parse_description_with_polygons_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
)
|
|
else:
|
|
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
|
text,
|
|
pattern=pattern,
|
|
image_size=image_size,
|
|
)
|
|
parsed_dict['description_with_bboxes_or_polygons'] = instances
|
|
else:
|
|
raise ValueError("task {} is not supported".format(task))
|
|
|
|
return parsed_dict |