Upload veracity_with_scraped_text.py
Browse files
src/prediction/veracity_with_scraped_text.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
def load_url_text_map(knowledge_store_dir, claim_id):
|
8 |
+
url_text_map = {}
|
9 |
+
knowledge_file = os.path.join(knowledge_store_dir, f"{claim_id}.json")
|
10 |
+
|
11 |
+
if os.path.exists(knowledge_file):
|
12 |
+
with open(knowledge_file, "r") as f:
|
13 |
+
for line in f:
|
14 |
+
data = json.loads(line)
|
15 |
+
url = data["url"]
|
16 |
+
url2text = data["url2text"]
|
17 |
+
concatenated_text = " ".join(url2text)
|
18 |
+
url_text_map[url] = concatenated_text
|
19 |
+
|
20 |
+
return url_text_map
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
parser = argparse.ArgumentParser(
|
25 |
+
description="Add scraped_text field to the prediction file."
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"-i",
|
29 |
+
"--veracity_prediction_file",
|
30 |
+
default="data_store/dev_veracity_prediction.json",
|
31 |
+
help="Json file with the veracity predictions.",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"-o",
|
35 |
+
"--output_file",
|
36 |
+
default="data_store/dev_veracity_prediction_for_submission.json",
|
37 |
+
help="Json file with the veracity predictions and the scraped_text.",
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"--knowledge_store_dir",
|
41 |
+
type=str,
|
42 |
+
help="Directory of json files of the knowledge store containing url2text.",
|
43 |
+
)
|
44 |
+
args = parser.parse_args()
|
45 |
+
|
46 |
+
predictions = []
|
47 |
+
with open(args.veracity_prediction_file) as f:
|
48 |
+
predictions = json.load(f)
|
49 |
+
|
50 |
+
for claim in tqdm(predictions, desc="Processing claims"):
|
51 |
+
claim_id = claim["claim_id"]
|
52 |
+
url_text_map = load_url_text_map(args.knowledge_store_dir, claim_id)
|
53 |
+
|
54 |
+
# Process each evidence in the claim and add scraped_text
|
55 |
+
for evidence in claim["evidence"]:
|
56 |
+
url = evidence["url"]
|
57 |
+
scraped_text = url_text_map.get(url)
|
58 |
+
if scraped_text:
|
59 |
+
evidence["scraped_text"] = scraped_text
|
60 |
+
else:
|
61 |
+
print(
|
62 |
+
f"Warning: No scraped text found for claim_id {claim_id} and url {url}"
|
63 |
+
)
|
64 |
+
|
65 |
+
with open(args.output_file, "w", encoding="utf-8") as output_file:
|
66 |
+
json.dump(predictions, output_file, ensure_ascii=False, indent=4)
|
67 |
+
|
68 |
+
print(f"Updated JSON saved to {args.output_file}")
|