AVeriTeC / src /prediction /veracity_prediction.py
Chenxi Whitehouse
update src
a6e9308
raw
history blame
5.2 kB
import argparse
import json
import tqdm
import torch
import pytorch_lightning as pl
from transformers import BertTokenizer, BertForSequenceClassification
from src.models.SequenceClassificationModule import SequenceClassificationModule
LABEL = [
"Supported",
"Refuted",
"Not Enough Evidence",
"Conflicting Evidence/Cherrypicking",
]
class SequenceClassificationDataLoader(pl.LightningDataModule):
def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False):
super().__init__()
self.tokenizer = tokenizer
self.data_file = data_file
self.batch_size = batch_size
self.add_extra_nee = add_extra_nee
def tokenize_strings(
self,
source_sentences,
max_length=512,
pad_to_max_length=False,
return_tensors="pt",
):
encoded_dict = self.tokenizer(
source_sentences,
max_length=max_length,
padding="max_length" if pad_to_max_length else "longest",
truncation=True,
return_tensors=return_tensors,
)
input_ids = encoded_dict["input_ids"]
attention_masks = encoded_dict["attention_mask"]
return input_ids, attention_masks
def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
if bool_explanation is not None and len(bool_explanation) > 0:
bool_explanation = ", because " + bool_explanation.lower().strip()
else:
bool_explanation = ""
return (
"[CLAIM] "
+ claim.strip()
+ " [QUESTION] "
+ question.strip()
+ " "
+ answer.strip()
+ bool_explanation
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Given a claim and its 3 QA pairs as evidence, we use another pre-trained BERT model to predict the veracity label."
)
parser.add_argument(
"-i",
"--claim_with_evidence_file",
default="data_store/dev_top_3_rerank_qa.json",
help="Json file with claim and top question-answer pairs as evidence.",
)
parser.add_argument(
"-o",
"--output_file",
default="data_store/dev_veracity.json",
help="Json file with the veracity predictions.",
)
parser.add_argument(
"-ckpt",
"--best_checkpoint",
type=str,
default="pretrained_models/bert_veracity.ckpt",
)
args = parser.parse_args()
examples = []
with open(args.claim_with_evidence_file) as f:
for line in f:
examples.append(json.loads(line))
bert_model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(bert_model_name)
bert_model = BertForSequenceClassification.from_pretrained(
bert_model_name, num_labels=4, problem_type="single_label_classification"
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
trained_model = SequenceClassificationModule.load_from_checkpoint(
args.best_checkpoint, tokenizer=tokenizer, model=bert_model
).to(device)
dataLoader = SequenceClassificationDataLoader(
tokenizer=tokenizer,
data_file="this_is_discontinued",
batch_size=32,
add_extra_nee=False,
)
predictions = []
for example in tqdm.tqdm(examples):
example_strings = []
for evidence in example["evidence"]:
example_strings.append(
dataLoader.quadruple_to_string(
example["claim"], evidence["question"], evidence["answer"], ""
)
)
if (
len(example_strings) == 0
): # If we found no evidence e.g. because google returned 0 pages, just output NEI.
example["label"] = "Not Enough Evidence"
continue
tokenized_strings, attention_mask = dataLoader.tokenize_strings(example_strings)
example_support = torch.argmax(
trained_model(
tokenized_strings.to(device), attention_mask=attention_mask.to(device)
).logits,
axis=1,
)
has_unanswerable = False
has_true = False
has_false = False
for v in example_support:
if v == 0:
has_true = True
if v == 1:
has_false = True
if v in (
2,
3,
): # TODO another hack -- we cant have different labels for train and test so we do this
has_unanswerable = True
if has_unanswerable:
answer = 2
elif has_true and not has_false:
answer = 0
elif not has_true and has_false:
answer = 1
else:
answer = 3
json_data = {
"claim_id": example["claim_id"],
"claim": example["claim"],
"evidence": example["evidence"],
"pred_label": LABEL[answer],
}
predictions.append(json_data)
with open(args.output_file, "w", encoding="utf-8") as output_file:
json.dump(predictions, output_file, ensure_ascii=False, indent=4)