AVeriTeC / src /prediction /evaluate_veracity.py
Chenxi Whitehouse
update src
a6e9308
raw
history blame
11 kB
import argparse
import json
import scipy
import numpy as np
import sklearn
import nltk
from nltk import word_tokenize
def pairwise_meteor(candidate, reference):
return nltk.translate.meteor_score.single_meteor_score(
word_tokenize(reference), word_tokenize(candidate)
)
def compute_all_pairwise_scores(src_data, tgt_data, metric):
scores = np.empty((len(src_data), len(tgt_data)))
for i, src in enumerate(src_data):
for j, tgt in enumerate(tgt_data):
scores[i][j] = metric(src, tgt)
return scores
def print_with_space(left, right, left_space=45):
print_spaces = " " * (left_space - len(left))
print(left + print_spaces + right)
class AVeriTeCEvaluator:
verdicts = [
"Supported",
"Refuted",
"Not Enough Evidence",
"Conflicting Evidence/Cherrypicking",
]
pairwise_metric = None
max_questions = 10
metric = None
averitec_reporting_levels = [0.1, 0.2, 0.25, 0.3, 0.4, 0.5]
def __init__(self, metric="meteor"):
self.metric = metric
if metric == "meteor":
self.pairwise_metric = pairwise_meteor
def evaluate_averitec_veracity_by_type(self, srcs, tgts, threshold=0.25):
types = {}
for src, tgt in zip(srcs, tgts):
score = self.compute_pairwise_evidence_score(src, tgt)
if score <= threshold:
score = 0
for t in tgt["claim_types"]:
if t not in types:
types[t] = []
types[t].append(score)
return {t: np.mean(v) for t, v in types.items()}
def evaluate_averitec_score(self, srcs, tgts):
scores = []
for src, tgt in zip(srcs, tgts):
score = self.compute_pairwise_evidence_score(src, tgt)
this_example_scores = [0.0 for _ in self.averitec_reporting_levels]
for i, level in enumerate(self.averitec_reporting_levels):
if score > level:
this_example_scores[i] = src["pred_label"] == tgt["label"]
scores.append(this_example_scores)
return np.mean(np.array(scores), axis=0)
def evaluate_veracity(self, src, tgt):
src_labels = [x["pred_label"] for x in src]
tgt_labels = [x["label"] for x in tgt]
acc = np.mean([s == t for s, t in zip(src_labels, tgt_labels)])
f1 = {
self.verdicts[i]: x
for i, x in enumerate(
sklearn.metrics.f1_score(
tgt_labels, src_labels, labels=self.verdicts, average=None
)
)
}
f1["macro"] = sklearn.metrics.f1_score(
tgt_labels, src_labels, labels=self.verdicts, average="macro"
)
f1["acc"] = acc
return f1
def evaluate_questions_only(self, srcs, tgts):
all_utils = []
for src, tgt in zip(srcs, tgts):
if "evidence" not in src:
# If there was no evidence, use the string evidence
src_questions = self.extract_full_comparison_strings(
src, is_target=False
)[: self.max_questions]
else:
src_questions = [
qa["question"] for qa in src["evidence"][: self.max_questions]
]
tgt_questions = [qa["question"] for qa in tgt["questions"]]
pairwise_scores = compute_all_pairwise_scores(
src_questions, tgt_questions, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_questions))
assignment_utility *= reweight_term
all_utils.append(assignment_utility)
return np.mean(all_utils)
def get_n_best_qau(self, srcs, tgts, n=3):
all_utils = []
for src, tgt in zip(srcs, tgts):
assignment_utility = self.compute_pairwise_evidence_score(src, tgt)
all_utils.append(assignment_utility)
idxs = np.argsort(all_utils)[::-1][:n]
examples = [
(
(
srcs[i]["questions"]
if "questions" in srcs[i]
else srcs[i]["string_evidence"]
),
tgts[i]["questions"],
all_utils[i],
)
for i in idxs
]
return examples
def compute_pairwise_evidence_score(self, src, tgt):
"""Different key is used for reference_data and prediction.
For the prediction, the format is
{"evidence": [
{
"question": "What does the increased federal medical assistance percentage mean for you?",
"answer": "Appendix A: Applicability of the Increased Federal Medical Assistance Percentage ",
"url": "https://www.medicaid.gov/federal-policy-guidance/downloads/smd21003.pdf"
}],
"pred_label": "Supported"}
And for the data with fold label:
{"questions": [
{
"question": "Where was the claim first published",
"answers": [
{
"answer": "It was first published on Sccopertino",
"answer_type": "Abstractive",
"source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/",
"source_medium": "Web text",
"cached_source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/"
}
]
}]
"label": "Refuted"}
"""
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
: self.max_questions
]
tgt_strings = self.extract_full_comparison_strings(tgt)
pairwise_scores = compute_all_pairwise_scores(
src_strings, tgt_strings, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_strings))
assignment_utility *= reweight_term
return assignment_utility
def evaluate_questions_and_answers(self, srcs, tgts):
all_utils = []
for src, tgt in zip(srcs, tgts):
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
: self.max_questions
]
tgt_strings = self.extract_full_comparison_strings(tgt)
pairwise_scores = compute_all_pairwise_scores(
src_strings, tgt_strings, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_strings))
assignment_utility *= reweight_term
all_utils.append(assignment_utility)
return np.mean(all_utils)
def extract_full_comparison_strings(self, example, is_target=True):
example_strings = []
if is_target:
if "questions" in example:
for evidence in example["questions"]:
# If the answers is not a list, make them a list:
if not isinstance(evidence["answers"], list):
evidence["answers"] = [evidence["answers"]]
for answer in evidence["answers"]:
example_strings.append(
evidence["question"] + " " + answer["answer"]
)
if (
"answer_type" in answer
and answer["answer_type"] == "Boolean"
):
example_strings[-1] += ". " + answer["boolean_explanation"]
if len(evidence["answers"]) == 0:
example_strings.append(
evidence["question"] + " No answer could be found."
)
else:
if "evidence" in example:
for evidence in example["evidence"]:
example_strings.append(
evidence["question"] + " " + evidence["answer"]
)
if "string_evidence" in example:
for full_string_evidence in example["string_evidence"]:
example_strings.append(full_string_evidence)
return example_strings
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate the veracity prediction.")
parser.add_argument(
"-i",
"--prediction_file",
default="data_store/dev_veracity.json",
help="Json file with claim, evidence, and veracity prediction.",
)
parser.add_argument(
"--label_file",
default="data/dev.json",
help="Json file with labels.",
)
args = parser.parse_args()
with open(args.prediction_file) as f:
predictions = json.load(f)
with open(args.label_file) as f:
references = json.load(f)
scorer = AVeriTeCEvaluator()
q_score = scorer.evaluate_questions_only(predictions, references)
print_with_space("Question-only score (HU-" + scorer.metric + "):", str(q_score))
p_score = scorer.evaluate_questions_and_answers(predictions, references)
print_with_space("Question-answer score (HU-" + scorer.metric + "):", str(p_score))
print("====================")
v_score = scorer.evaluate_veracity(predictions, references)
print("Veracity F1 scores:")
for k, v in v_score.items():
print_with_space(" * " + k + ":", str(v))
print("--------------------")
print("AVeriTeC scores:")
v_score = scorer.evaluate_averitec_score(predictions, references)
for i, level in enumerate(scorer.averitec_reporting_levels):
print_with_space(
" * Veracity scores (" + scorer.metric + " @ " + str(level) + "):",
str(v_score[i]),
)
print("--------------------")
print("AVeriTeC scores by type @ 0.25:")
type_scores = scorer.evaluate_averitec_veracity_by_type(
predictions, references, threshold=0.25
)
for t, v in type_scores.items():
print_with_space(" * Veracity scores (" + t + "):", str(v))