AVeriTeC / src /reranking /bm25_sentences.py
Chenxi Whitehouse
add src files
eaaaf3d
raw
history blame
3.95 kB
import argparse
import json
import os
import time
import numpy as np
import nltk
from rank_bm25 import BM25Okapi
def combine_all_sentences(knowledge_file):
sentences, urls = [], []
with open(knowledge_file, "r", encoding="utf-8") as json_file:
for i, line in enumerate(json_file):
data = json.loads(line)
sentences.extend(data["url2text"])
urls.extend([data["url"] for i in range(len(data["url2text"]))])
return sentences, urls, i + 1
def retrieve_top_k_sentences(query, document, urls, top_k):
tokenized_docs = [nltk.word_tokenize(doc) for doc in document]
bm25 = BM25Okapi(tokenized_docs)
scores = bm25.get_scores(nltk.word_tokenize(query))
top_k_idx = np.argsort(scores)[::-1][:top_k]
return [document[i] for i in top_k_idx], [urls[i] for i in top_k_idx]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Get top 100 sentences with BM25 in the knowledge store."
)
parser.add_argument(
"-k",
"--knowledge_store_dir",
type=str,
default="data_store/output_dev",
help="The path of the knowledge_store_dir containing json files with all the retrieved sentences.",
)
parser.add_argument(
"-c",
"--claim_file",
type=str,
default="data/dev.json",
help="The path of the file that stores the claim.",
)
parser.add_argument(
"-o",
"--json_output",
type=str,
default="data_store/dev_top_k.json",
help="The output dir for JSON files to save the top 100 sentences for each claim.",
)
parser.add_argument(
"--top_k",
default=100,
type=int,
help="How many documents should we pick out with BM25.",
)
parser.add_argument(
"-s",
"--start",
type=int,
default=0,
help="Staring index of the files to process.",
)
parser.add_argument(
"-e", "--end", type=int, default=-1, help="End index of the files to process."
)
args = parser.parse_args()
with open(args.claim_file, "r", encoding="utf-8") as json_file:
target_examples = json.load(json_file)
if args.end == -1:
args.end = len(os.listdir(args.knowledge_store_dir))
print(args.end)
files_to_process = list(range(args.start, args.end))
total = len(files_to_process)
with open(args.json_output, "w", encoding="utf-8") as output_json:
done = 0
for idx, example in enumerate(target_examples):
# Load the knowledge store for this example
if idx in files_to_process:
print(f"Processing claim {idx}... Progress: {done + 1} / {total}")
document_in_sentences, sentence_urls, num_urls_this_claim = (
combine_all_sentences(
os.path.join(args.knowledge_store_dir, f"{idx}.json")
)
)
print(
f"Obtained {len(document_in_sentences)} sentences from {num_urls_this_claim} urls."
)
# Retrieve top_k sentences with bm25
st = time.time()
top_k_sentences, top_k_urls = retrieve_top_k_sentences(
example["claim"], document_in_sentences, sentence_urls, args.top_k
)
print(f"Top {args.top_k} retrieved. Time elapsed: {time.time() - st}.")
json_data = {
"claim_id": idx,
"claim": example["claim"],
f"top_{args.top_k}": [
{"sentence": sent, "url": url}
for sent, url in zip(top_k_sentences, top_k_urls)
],
}
output_json.write(json.dumps(json_data, ensure_ascii=False) + "\n")
done += 1
output_file.flush()