chenoi's picture
Initial commit
097c701
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce3809ba60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce3809baf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce3809bb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce3809bc10>", "_build": "<function ActorCriticPolicy._build at 0x7fce3809bca0>", "forward": "<function ActorCriticPolicy.forward at 0x7fce3809bd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fce3809bdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce3809be50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce3809bee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce3809bf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd905e0040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd905e00d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fce3809e150>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681206723550833648, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2NoZW5vaTEvbWluaWNvbmRhMy9lbnZzL2R4dG9yY2gvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL2NoZW5vaTEvbWluaWNvbmRhMy9lbnZzL2R4dG9yY2gvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGHIFL+LOT4/Osu6vrSlJ7xmhQY/72PLPoliFb93Iui+sACbPwaEs77VUPG9QNK0PkohS7+q7cI+I2gxP0qWo76H6vW85S0YP4c5+j4bJa8/r7t8P++ZS7/lZRI/8pGrPq/Pkj9fJTQ/LzWSPoaRHD9485Q/MDp6PwHGYr+zkmk+n8HnP9YRfz8orGc/GmFzvxbjur9Sywq/QkNlP89Kpb/A50c/AIoWP4g4Qr+2q3c9cd48v3hnh78ARBs/uGsKPbHaGL8DW6W/UlJNP4BKM7+4Ml+/XyU0Py81kj6GkRw/sy7VPv2wZr8vO3c/OkYVwHXsRcD2H6m7LF6yv6wip7/2erA/zS4qvdiDTj8sLXa/SNSJPzCUDL7O9Ns/M2VmvGFcyD+AhHC/jmDbvrkdlT9ndJi9BgfOPznogb/3Vmy8r8+SP18lND+SHmDA5UnRv7uO8776UlW/B8J0P5flLr8vX1O+JwnMPh0WH74cKnW/o7NJPy1oGD/iC3Y+y7ljvmiNnz4LvX0+VIKSP/7qiT03MPk/W0uqva27Gz/cCcG704thP+7ua74PiIE/kodyPbgyX79fJTQ/LzWSPoaRHD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAZ/nW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEbG1PQAAAADiHQHAAAAAABEpuL0AAAAATYfdPwAAAABsz+I8AAAAALPe8T8AAAAAnNZ4PAAAAADZTu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgyIAtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHHhybsAAAAAs2j8vwAAAADQauC9AAAAABJB/z8AAAAAZBUOvgAAAAAjy+c/AAAAALwDqz0AAAAAX+/kvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjMTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBHAhS9AAAAAALS9b8AAAAA6EiqvQAAAAB+kPU/AAAAAON0BT0AAAAAocb9PwAAAABV1Am+AAAAALf52b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOojm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ/25PQAAAABdruu/AAAAACcqcT0AAAAAxsLrPwAAAACu5Ne9AAAAACJF5z8AAAAAwQGXvAAAAAAT7eq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJv6SmdiDumMAWyUTegDjAF0lEdAl6vVs1sLv3V9lChoBkdAl1jWEoOQQ2gHTegDaAhHQJez7jBEa2p1fZQoaAZHQJu7M+otL+RoB03oA2gIR0CXtASn+AEudX2UKGgGR0CatnEgntv5aAdN6ANoCEdAl7YNXko4MnV9lChoBkdAmOBV58jRlmgHTegDaAhHQJe4S9zwMH91fZQoaAZHQJnvaIxgy/NoB03oA2gIR0CXwGR+SbH7dX2UKGgGR0CZuAWSlnAZaAdN6ANoCEdAl8B74etCA3V9lChoBkdAm07oxk/bCmgHTegDaAhHQJfCfbL2YfJ1fZQoaAZHQJ1tKJYT0xxoB03oA2gIR0CXxLxOclPadX2UKGgGR0Cc6xlPacqfaAdN6ANoCEdAl8zX13+uNnV9lChoBkdAm7lXCKrJbWgHTegDaAhHQJfM7u/k/8l1fZQoaAZHQJHT6xnnMdNoB03oA2gIR0CXzvLA57w8dX2UKGgGR0CavPLn9vS/aAdN6ANoCEdAl9Exc3VConV9lChoBkdAnHzE+C9RJmgHTegDaAhHQJfZXdvbXYl1fZQoaAZHQJsL2tlqagFoB03oA2gIR0CX2XQsf7rLdX2UKGgGR0CcpsdwNsnBaAdN6ANoCEdAl9t36AOJ+HV9lChoBkdAnP1B7eEZi2gHTegDaAhHQJfdsbEP1+R1fZQoaAZHQJ6R4USIxg1oB03oA2gIR0CX5bfGdZq3dX2UKGgGR0CdKEcpsoDxaAdN6ANoCEdAl+XOuNgjQnV9lChoBkdAmUaa/7BO6GgHTegDaAhHQJfn1ECvHLl1fZQoaAZHQJeyB0wJw85oB03oA2gIR0CX6hSCOFQEdX2UKGgGR0CfRmS2Yv38aAdN6ANoCEdAl/IkH+qBE3V9lChoBkdAnXB7iqABk2gHTegDaAhHQJfyO9ytFKF1fZQoaAZHQJ4qBet0V8FoB03oA2gIR0CX9DpEx7AtdX2UKGgGR0CeZMWCEpRXaAdN6ANoCEdAl/Z6asp5NXV9lChoBkdAn0WYZQ53kmgHTegDaAhHQJf+lEF4cFR1fZQoaAZHQJ9es4uK4x1oB03oA2gIR0CX/qtihFmWdX2UKGgGR0CfpMC04R29aAdN6ANoCEdAmACofGMn7nV9lChoBkdAnwu4SUTtcGgHTegDaAhHQJgC5BqsU7F1fZQoaAZHQJ9kNZ1V5rxoB03oA2gIR0CYCvL4vexfdX2UKGgGR0CgYnNPP9k0aAdN6ANoCEdAmAsKkhzNlnV9lChoBkdAnnltGiHqNmgHTegDaAhHQJgNCKdhAnl1fZQoaAZHQJq4Ipx3mmtoB03oA2gIR0CYD0wD/2kBdX2UKGgGR0Cb7Br5IpYtaAdN6ANoCEdAmBdkXYUWVXV9lChoBkdAm7wRA0Kqn2gHTegDaAhHQJgXe2RaHKx1fZQoaAZHQJg4WyeI2wVoB03oA2gIR0CYGX+CbtqpdX2UKGgGR0CZlKrOJLuhaAdN6ANoCEdAmBu8ujASF3V9lChoBkdAmEWD0g8r7WgHTegDaAhHQJgj0iNbTtt1fZQoaAZHQJiNM078vVVoB03oA2gIR0CYI+pDeCTVdX2UKGgGR0CXxgksz2vjaAdN6ANoCEdAmCXoCZF5OnV9lChoBkdAmIBqynk1dmgHTegDaAhHQJgoKuEEkjZ1fZQoaAZHQJvgby9VWCFoB03oA2gIR0CYMDQI2OyWdX2UKGgGR0CbEMurZJ05aAdN6ANoCEdAmDBL6YVqOHV9lChoBkdAnaiv4Irvs2gHTegDaAhHQJgyS+23KCB1fZQoaAZHQJxlvHo5ggJoB03oA2gIR0CYNIXxvvSddX2UKGgGR0CaBbu5jH4oaAdN6ANoCEdAmDyceCCjDnV9lChoBkdAmRLrCSA6MmgHTegDaAhHQJg8s4KhL5B1fZQoaAZHQJv30W0qpcZoB03oA2gIR0CYPrR6F/QTdX2UKGgGR0CcE+CpWFN+aAdN6ANoCEdAmEDvhZQpF3V9lChoBkdAne0ogmqo62gHTegDaAhHQJhJBUCJXQt1fZQoaAZHQJvk2M5wOvtoB03oA2gIR0CYSRyn1nM/dX2UKGgGR0Cb7oKWLP2PaAdN6ANoCEdAmEslL39JjHV9lChoBkdAnDHmS6lLvmgHTegDaAhHQJhNY53kgfV1fZQoaAZHQJ3kg0zj3mFoB03oA2gIR0CYVXWpZOi4dX2UKGgGR0CawNhHskY5aAdN6ANoCEdAmFWNsSCe3HV9lChoBkdAnEghiTdLx2gHTegDaAhHQJhXk4YJmd11fZQoaAZHQJ7AICFK02NoB03oA2gIR0CYWcqhDgIhdX2UKGgGR0CeoGbedkJ8aAdN6ANoCEdAmGHUM9bHInV9lChoBkdAnYlMjVx0dWgHTegDaAhHQJhh6taIN3J1fZQoaAZHQJ5g8ZOzpotoB03oA2gIR0CYY+pSaVlgdX2UKGgGR0CgLJuzIFNdaAdN6ANoCEdAmGYjLbHp8nV9lChoBkdAnmzfHtF8X2gHTegDaAhHQJhuNTMqz7d1fZQoaAZHQKA55Nqxkd5oB03oA2gIR0CYbk05EMLGdX2UKGgGR0CeLvqUeMhpaAdN6ANoCEdAmHBOrQw9JXV9lChoBkdAoN+aItUXHmgHTegDaAhHQJhyj1J17pp1fZQoaAZHQJ93bbfxc3VoB03oA2gIR0CYep1s+FDfdX2UKGgGR0CgqmPGyX2NaAdN6ANoCEdAmHqz67/XG3V9lChoBkdAnnjH8O09hmgHTegDaAhHQJh8vEP1+RZ1fZQoaAZHQJ9ZGZRbbDdoB03oA2gIR0CYfvrRBu4xdX2UKGgGR0CceaLDQ7cPaAdN6ANoCEdAmIcL8Nx2jnV9lChoBkdAnHPqdc0Lt2gHTegDaAhHQJiHJbkfcN91fZQoaAZHQJEgrMY/FBJoB03oA2gIR0CYiSaQFLWadX2UKGgGR0CgNT/xc3VDaAdN6ANoCEdAmIti3PRiPXV9lChoBkdAnNFvRzBAOmgHTegDaAhHQJiTcX531SR1fZQoaAZHQJ5XACGN70FoB03oA2gIR0CYk4h8YyfudX2UKGgGR0Cb8ptVJcxCaAdN6ANoCEdAmJWFY2bXpXV9lChoBkdAnN5pobn5i2gHTegDaAhHQJiXwt6HCXR1fZQoaAZHQJ5cwt7KJVNoB03oA2gIR0CYn/ICEHt4dX2UKGgGR0CeCcX1anrIaAdN6ANoCEdAmKAJOvdM03V9lChoBkdAnYrpMg2ZRmgHTegDaAhHQJiiCPHT7VJ1fZQoaAZHQJryx8w5/9ZoB03oA2gIR0CYpEPmgam5dX2UKGgGR0Cehxwob4rSaAdN6ANoCEdAmKxaRyOrAHV9lChoBkdAml+HpKSPl2gHTegDaAhHQJiscVrRBu51fZQoaAZHQJ12fRlYlppoB03oA2gIR0CYrnA5Jbt7dX2UKGgGR0Ce9x3pwCKaaAdN6ANoCEdAmLCt5UtI1HV9lChoBkdAoIM04m1IAmgHTegDaAhHQJi4tZid8Rd1fZQoaAZHQJ8drXPJJXhoB03oA2gIR0CYuM32EkB0dX2UKGgGR0CeJFMLWqcWaAdN6ANoCEdAmLrNMfzSTnV9lChoBkdAoF7hBw++umgHTegDaAhHQJi9B4TsY2t1fZQoaAZHQJ7sxpsXSBtoB03oA2gIR0CYxRRmK64EdX2UKGgGR0CersgElme2aAdN6ANoCEdAmMUrns9jgHV9lChoBkdAoAnBaxHG0mgHTegDaAhHQJjHLXsgMc91fZQoaAZHQJ/LHN7jT8ZoB03oA2gIR0CYyWy/KyOadX2UKGgGR0CayB0mdAgQaAdN6ANoCEdAmNF8g+yJK3V9lChoBkdAnxccguAZsWgHTegDaAhHQJjRk6Oo5xR1fZQoaAZHQJ0rUR7JGONoB03oA2gIR0CY05Py08eTdX2UKGgGR0Cc4g8jiXIEaAdN6ANoCEdAmNXN+gDifnV9lChoBkdAmcxmh24d62gHTegDaAhHQJjd39KmKqJ1fZQoaAZHQJt4U32mHgxoB03oA2gIR0CY3faL4vexdX2UKGgGR0Ca3p19v0iAaAdN6ANoCEdAmN/2I9C/oXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.10 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.8.5", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}