chenmertens
commited on
Commit
•
fdb918b
1
Parent(s):
b5b2270
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.70 +/- 0.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:327a8850e8df83a0e1a48a5e8e2fe7ae9c0fb7837c9e9a1a2a3145b712692bc4
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f81073945e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f810738dba0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674620866589170358,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+/TOPl2AkbxbKBI/+/TOPl2AkbxbKBI/+/TOPl2AkbxbKBI/+/TOPl2AkbxbKBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE5B2v8XTZz+3naa/tE6Xv6YXqD8ztzy/3eAFv7kcXL61ohU/MN6Cv1ICkL46j+W+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDz79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDz79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDz79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.4042128 -0.0177614 0.5709283]\n [ 0.4042128 -0.0177614 0.5709283]\n [ 0.4042128 -0.0177614 0.5709283]\n [ 0.4042128 -0.0177614 0.5709283]]",
|
60 |
+
"desired_goal": "[[-0.9631359 0.9055751 -1.3016881 ]\n [-1.1820893 1.3132217 -0.7371704 ]\n [-0.5229624 -0.21495332 0.58451396]\n [-1.0224056 -0.2812677 -0.44835836]]",
|
61 |
+
"observation": "[[ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]\n [ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]\n [ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]\n [ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQzMQvoaMO7uTY+w9smt8vfqGsDxqufM9gNX9vfbCFz5wAkc+OlRdPYik/z3hoW8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.14082055 -0.00286177 0.1154243 ]\n [-0.06162614 0.02154874 0.11900599]\n [-0.12394238 0.14820465 0.19434524]\n [ 0.0540354 0.12482554 0.23401596]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI16NwPQqX/7+UhpRSlIwBbJRLMowBdJRHQKQJYOZssQN1fZQoaAZoCWgPQwhyGqIKf4bnv5SGlFKUaBVLMmgWR0CkCSNI9TxYdX2UKGgGaAloD0MIKo4Dr5a76L+UhpRSlGgVSzJoFkdApAjmeg+Ql3V9lChoBmgJaA9DCIielEkN7ei/lIaUUpRoFUsyaBZHQKQIq1ivxH51fZQoaAZoCWgPQwhs0QK0rebhv5SGlFKUaBVLMmgWR0CkCoCFTNt7dX2UKGgGaAloD0MIeuBjsOLU5r+UhpRSlGgVSzJoFkdApApDBwdbPnV9lChoBmgJaA9DCMMtH0lJD92/lIaUUpRoFUsyaBZHQKQKBkIX0oV1fZQoaAZoCWgPQwgAj6hQ3Vzsv5SGlFKUaBVLMmgWR0CkCcskY4yXdX2UKGgGaAloD0MIoP1IERlW6r+UhpRSlGgVSzJoFkdApAuLAzpHJHV9lChoBmgJaA9DCCvZsRGI1+2/lIaUUpRoFUsyaBZHQKQLTYEnssx1fZQoaAZoCWgPQwgxXYjVH2Hiv5SGlFKUaBVLMmgWR0CkCxC04R29dX2UKGgGaAloD0MIpwTEJFzI4r+UhpRSlGgVSzJoFkdApArVi4J/onV9lChoBmgJaA9DCLiTiPAvwvC/lIaUUpRoFUsyaBZHQKQMmOf/WDp1fZQoaAZoCWgPQwjZXgt6b4zpv5SGlFKUaBVLMmgWR0CkDFt2s7uEdX2UKGgGaAloD0MIPrMkQE2t5r+UhpRSlGgVSzJoFkdApAweqkuYhXV9lChoBmgJaA9DCAmkxK7t7e6/lIaUUpRoFUsyaBZHQKQL45Fw1ix1fZQoaAZoCWgPQwisArUYPMzuv5SGlFKUaBVLMmgWR0CkDZq/VRUFdX2UKGgGaAloD0MIdTklICbh2L+UhpRSlGgVSzJoFkdApA1dQdjoZHV9lChoBmgJaA9DCJ2+nq9Z7vG/lIaUUpRoFUsyaBZHQKQNIHfuTid1fZQoaAZoCWgPQwi/gcmNIuviv5SGlFKUaBVLMmgWR0CkDOVIiC8OdX2UKGgGaAloD0MIDat4I/PI3b+UhpRSlGgVSzJoFkdApA6w+QlrunV9lChoBmgJaA9DCF9egH106tW/lIaUUpRoFUsyaBZHQKQOc31jAi51fZQoaAZoCWgPQwiQoWMHlbjXv5SGlFKUaBVLMmgWR0CkDja2WpqAdX2UKGgGaAloD0MI4BRWKqgo5L+UhpRSlGgVSzJoFkdApA37kn1FpnV9lChoBmgJaA9DCOKt82+X/eG/lIaUUpRoFUsyaBZHQKQPuZb6guh1fZQoaAZoCWgPQwgDBd7Jp0fov5SGlFKUaBVLMmgWR0CkD3whOgxrdX2UKGgGaAloD0MIH0dzZOWX1r+UhpRSlGgVSzJoFkdApA8/XEqDsnV9lChoBmgJaA9DCDF5A8x8h+i/lIaUUpRoFUsyaBZHQKQPBDwYtQN1fZQoaAZoCWgPQwhmEB/Y8V/Wv5SGlFKUaBVLMmgWR0CkELleOXE7dX2UKGgGaAloD0MI+IkD6Pf97b+UhpRSlGgVSzJoFkdApBB78HfMwHV9lChoBmgJaA9DCASRRZp4B+S/lIaUUpRoFUsyaBZHQKQQPyZKFqV1fZQoaAZoCWgPQwj1Zz9SREb0v5SGlFKUaBVLMmgWR0CkEAPKMefadX2UKGgGaAloD0MIRwA3ixeL+b+UhpRSlGgVSzJoFkdApBGcth/iHnV9lChoBmgJaA9DCIB/SpUoe/i/lIaUUpRoFUsyaBZHQKQRXv5P/Jh1fZQoaAZoCWgPQwghQIaOHRT8v5SGlFKUaBVLMmgWR0CkESIKtxMndX2UKGgGaAloD0MINdQoJJnV+b+UhpRSlGgVSzJoFkdApBDmnKnvUnV9lChoBmgJaA9DCBnlmZfDTgDAlIaUUpRoFUsyaBZHQKQSnanJkoZ1fZQoaAZoCWgPQwhS1m8mpov1v5SGlFKUaBVLMmgWR0CkEmAeA/cGdX2UKGgGaAloD0MI/WfNj7804L+UhpRSlGgVSzJoFkdApBIjFKkEcXV9lChoBmgJaA9DCDepaKz9neq/lIaUUpRoFUsyaBZHQKQR5/yXlbN1fZQoaAZoCWgPQwiqJ/OPvsn4v5SGlFKUaBVLMmgWR0CkE5FGXokidX2UKGgGaAloD0MINGlTdY+s/r+UhpRSlGgVSzJoFkdApBNTmjj7ynV9lChoBmgJaA9DCFlQGJRptOK/lIaUUpRoFUsyaBZHQKQTFsTFl051fZQoaAZoCWgPQwi95H/yd2/sv5SGlFKUaBVLMmgWR0CkEtuavzOHdX2UKGgGaAloD0MIWcSww5i0+r+UhpRSlGgVSzJoFkdApBSJ6po9LnV9lChoBmgJaA9DCMO68e7I2Pu/lIaUUpRoFUsyaBZHQKQUTEbYK6Z1fZQoaAZoCWgPQwgZVvFG5lH2v5SGlFKUaBVLMmgWR0CkFA845tFbdX2UKGgGaAloD0MIlG3gDtRp8r+UhpRSlGgVSzJoFkdApBPT4vexfXV9lChoBmgJaA9DCKqZtRSQ9u+/lIaUUpRoFUsyaBZHQKQVhYtg8bJ1fZQoaAZoCWgPQwg2eF+VCxXlv5SGlFKUaBVLMmgWR0CkFUgHE/B4dX2UKGgGaAloD0MIdAgcCTRY4r+UhpRSlGgVSzJoFkdApBULRa5f+nV9lChoBmgJaA9DCKeVQiCX+Pa/lIaUUpRoFUsyaBZHQKQUz9deIEd1fZQoaAZoCWgPQwiT/8nfvWP1v5SGlFKUaBVLMmgWR0CkFnujh1kldX2UKGgGaAloD0MI9gt2w7aF9b+UhpRSlGgVSzJoFkdApBY+CbtqpXV9lChoBmgJaA9DCOMXXknyXN2/lIaUUpRoFUsyaBZHQKQWARwIdEN1fZQoaAZoCWgPQwga3NYWntf4v5SGlFKUaBVLMmgWR0CkFcWl/H5rdX2UKGgGaAloD0MIs0P8w5be/r+UhpRSlGgVSzJoFkdApBdoFiay8nV9lChoBmgJaA9DCMi2DDhLCfW/lIaUUpRoFUsyaBZHQKQXKmNzbN91fZQoaAZoCWgPQwjEmPT3Urj5v5SGlFKUaBVLMmgWR0CkFu1YQrc1dX2UKGgGaAloD0MIUigLX1/r9b+UhpRSlGgVSzJoFkdApBax/CqIanV9lChoBmgJaA9DCGBWKNL93PO/lIaUUpRoFUsyaBZHQKQYdtMPBi11fZQoaAZoCWgPQwibjgBuFq/4v5SGlFKUaBVLMmgWR0CkGDkUsWfsdX2UKGgGaAloD0MIR68GKA217r+UhpRSlGgVSzJoFkdApBf8RradtnV9lChoBmgJaA9DCMqoMoy7Qeu/lIaUUpRoFUsyaBZHQKQXwR7JGON1fZQoaAZoCWgPQwjnAMEcPX7nv5SGlFKUaBVLMmgWR0CkGWuV5a/zdX2UKGgGaAloD0MIzas6qwX2+7+UhpRSlGgVSzJoFkdApBkuD+R5knV9lChoBmgJaA9DCBCtFW2Oc/e/lIaUUpRoFUsyaBZHQKQY8R15jYt1fZQoaAZoCWgPQwhLyAc9mxX1v5SGlFKUaBVLMmgWR0CkGLW6kIomdX2UKGgGaAloD0MIyNEcWfnl/L+UhpRSlGgVSzJoFkdApBpYnv2GqXV9lChoBmgJaA9DCJnTZTGxOfu/lIaUUpRoFUsyaBZHQKQaG+UQkHF1fZQoaAZoCWgPQwgP1ZRkHa4AwJSGlFKUaBVLMmgWR0CkGd/zBhx6dX2UKGgGaAloD0MIgxWnWgvz+7+UhpRSlGgVSzJoFkdApBmlAs052nV9lChoBmgJaA9DCMeA7PXuD/a/lIaUUpRoFUsyaBZHQKQbQ3XqZ+h1fZQoaAZoCWgPQwizs+idChgAwJSGlFKUaBVLMmgWR0CkGwXqqwQldX2UKGgGaAloD0MIkdJsHoeB9r+UhpRSlGgVSzJoFkdApBrI11nuiXV9lChoBmgJaA9DCMV1jCsujvi/lIaUUpRoFUsyaBZHQKQajYQJ5Vx1fZQoaAZoCWgPQwi45o7+l+v8v5SGlFKUaBVLMmgWR0CkHDgvlEJCdX2UKGgGaAloD0MI/wOsVbvm+7+UhpRSlGgVSzJoFkdApBv6w8nuzHV9lChoBmgJaA9DCJxvRPesa/a/lIaUUpRoFUsyaBZHQKQbvgAp8Wt1fZQoaAZoCWgPQwg5C3va4S/qv5SGlFKUaBVLMmgWR0CkG4LjPv8ZdX2UKGgGaAloD0MIUOPe/IaJ9b+UhpRSlGgVSzJoFkdApB0vhCMP0HV9lChoBmgJaA9DCMeA7PXuj/e/lIaUUpRoFUsyaBZHQKQc8drftQd1fZQoaAZoCWgPQwhiEcMOY1L+v5SGlFKUaBVLMmgWR0CkHLTT4L1FdX2UKGgGaAloD0MI3PXSFAGO9L+UhpRSlGgVSzJoFkdApBx5drwfAHV9lChoBmgJaA9DCDVfJR+7C/G/lIaUUpRoFUsyaBZHQKQeHF9a2Wp1fZQoaAZoCWgPQwg164zvi8v3v5SGlFKUaBVLMmgWR0CkHd7bUPQOdX2UKGgGaAloD0MIkSkfgqoR97+UhpRSlGgVSzJoFkdApB2h+H8CP3V9lChoBmgJaA9DCEn3cwrys/y/lIaUUpRoFUsyaBZHQKQdZnzQNTd1fZQoaAZoCWgPQwibdFsiFxzuv5SGlFKUaBVLMmgWR0CkHx5tWMjvdX2UKGgGaAloD0MIfbPNjemJ/L+UhpRSlGgVSzJoFkdApB7g7zTWoXV9lChoBmgJaA9DCMJR8uocg+G/lIaUUpRoFUsyaBZHQKQepCKrJbN1fZQoaAZoCWgPQwgyObUzTC32v5SGlFKUaBVLMmgWR0CkHmkCFK02dX2UKGgGaAloD0MIVBnG3SDa+b+UhpRSlGgVSzJoFkdApCAJzPrv9nV9lChoBmgJaA9DCKA3FakwtvW/lIaUUpRoFUsyaBZHQKQfzHtnf2t1fZQoaAZoCWgPQwgWokPgSGD9v5SGlFKUaBVLMmgWR0CkH4/YBeXzdX2UKGgGaAloD0MI8tO4N7/h+7+UhpRSlGgVSzJoFkdApB9VOdoWYXV9lChoBmgJaA9DCOntz0VDBvm/lIaUUpRoFUsyaBZHQKQhGAFxGUh1fZQoaAZoCWgPQwjAeXHiqx31v5SGlFKUaBVLMmgWR0CkINqgyuZDdX2UKGgGaAloD0MIqS7gZYYN+L+UhpRSlGgVSzJoFkdApCCdxp+MInV9lChoBmgJaA9DCKqdYWpLne2/lIaUUpRoFUsyaBZHQKQgYpSaVlh1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8f87afcb5bdf18b4e4cbb3b07e5e90a017a9c5cf9ef3ffd0cc2a60fe5c684fc
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a102504118f2ecbe5759a8fc8e4049fa659df351e8737383e51eec46939a648
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f81073945e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f810738dba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674620866589170358, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+/TOPl2AkbxbKBI/+/TOPl2AkbxbKBI/+/TOPl2AkbxbKBI/+/TOPl2AkbxbKBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE5B2v8XTZz+3naa/tE6Xv6YXqD8ztzy/3eAFv7kcXL61ohU/MN6Cv1ICkL46j+W+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDz79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDz79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDz79M4+XYCRvFsoEj/Y7CU8Xe4Su/+aNDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4042128 -0.0177614 0.5709283]\n [ 0.4042128 -0.0177614 0.5709283]\n [ 0.4042128 -0.0177614 0.5709283]\n [ 0.4042128 -0.0177614 0.5709283]]", "desired_goal": "[[-0.9631359 0.9055751 -1.3016881 ]\n [-1.1820893 1.3132217 -0.7371704 ]\n [-0.5229624 -0.21495332 0.58451396]\n [-1.0224056 -0.2812677 -0.44835836]]", "observation": "[[ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]\n [ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]\n [ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]\n [ 0.4042128 -0.0177614 0.5709283 0.01012727 -0.00224199 0.01102328]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQzMQvoaMO7uTY+w9smt8vfqGsDxqufM9gNX9vfbCFz5wAkc+OlRdPYik/z3hoW8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14082055 -0.00286177 0.1154243 ]\n [-0.06162614 0.02154874 0.11900599]\n [-0.12394238 0.14820465 0.19434524]\n [ 0.0540354 0.12482554 0.23401596]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI16NwPQqX/7+UhpRSlIwBbJRLMowBdJRHQKQJYOZssQN1fZQoaAZoCWgPQwhyGqIKf4bnv5SGlFKUaBVLMmgWR0CkCSNI9TxYdX2UKGgGaAloD0MIKo4Dr5a76L+UhpRSlGgVSzJoFkdApAjmeg+Ql3V9lChoBmgJaA9DCIielEkN7ei/lIaUUpRoFUsyaBZHQKQIq1ivxH51fZQoaAZoCWgPQwhs0QK0rebhv5SGlFKUaBVLMmgWR0CkCoCFTNt7dX2UKGgGaAloD0MIeuBjsOLU5r+UhpRSlGgVSzJoFkdApApDBwdbPnV9lChoBmgJaA9DCMMtH0lJD92/lIaUUpRoFUsyaBZHQKQKBkIX0oV1fZQoaAZoCWgPQwgAj6hQ3Vzsv5SGlFKUaBVLMmgWR0CkCcskY4yXdX2UKGgGaAloD0MIoP1IERlW6r+UhpRSlGgVSzJoFkdApAuLAzpHJHV9lChoBmgJaA9DCCvZsRGI1+2/lIaUUpRoFUsyaBZHQKQLTYEnssx1fZQoaAZoCWgPQwgxXYjVH2Hiv5SGlFKUaBVLMmgWR0CkCxC04R29dX2UKGgGaAloD0MIpwTEJFzI4r+UhpRSlGgVSzJoFkdApArVi4J/onV9lChoBmgJaA9DCLiTiPAvwvC/lIaUUpRoFUsyaBZHQKQMmOf/WDp1fZQoaAZoCWgPQwjZXgt6b4zpv5SGlFKUaBVLMmgWR0CkDFt2s7uEdX2UKGgGaAloD0MIPrMkQE2t5r+UhpRSlGgVSzJoFkdApAweqkuYhXV9lChoBmgJaA9DCAmkxK7t7e6/lIaUUpRoFUsyaBZHQKQL45Fw1ix1fZQoaAZoCWgPQwisArUYPMzuv5SGlFKUaBVLMmgWR0CkDZq/VRUFdX2UKGgGaAloD0MIdTklICbh2L+UhpRSlGgVSzJoFkdApA1dQdjoZHV9lChoBmgJaA9DCJ2+nq9Z7vG/lIaUUpRoFUsyaBZHQKQNIHfuTid1fZQoaAZoCWgPQwi/gcmNIuviv5SGlFKUaBVLMmgWR0CkDOVIiC8OdX2UKGgGaAloD0MIDat4I/PI3b+UhpRSlGgVSzJoFkdApA6w+QlrunV9lChoBmgJaA9DCF9egH106tW/lIaUUpRoFUsyaBZHQKQOc31jAi51fZQoaAZoCWgPQwiQoWMHlbjXv5SGlFKUaBVLMmgWR0CkDja2WpqAdX2UKGgGaAloD0MI4BRWKqgo5L+UhpRSlGgVSzJoFkdApA37kn1FpnV9lChoBmgJaA9DCOKt82+X/eG/lIaUUpRoFUsyaBZHQKQPuZb6guh1fZQoaAZoCWgPQwgDBd7Jp0fov5SGlFKUaBVLMmgWR0CkD3whOgxrdX2UKGgGaAloD0MIH0dzZOWX1r+UhpRSlGgVSzJoFkdApA8/XEqDsnV9lChoBmgJaA9DCDF5A8x8h+i/lIaUUpRoFUsyaBZHQKQPBDwYtQN1fZQoaAZoCWgPQwhmEB/Y8V/Wv5SGlFKUaBVLMmgWR0CkELleOXE7dX2UKGgGaAloD0MI+IkD6Pf97b+UhpRSlGgVSzJoFkdApBB78HfMwHV9lChoBmgJaA9DCASRRZp4B+S/lIaUUpRoFUsyaBZHQKQQPyZKFqV1fZQoaAZoCWgPQwj1Zz9SREb0v5SGlFKUaBVLMmgWR0CkEAPKMefadX2UKGgGaAloD0MIRwA3ixeL+b+UhpRSlGgVSzJoFkdApBGcth/iHnV9lChoBmgJaA9DCIB/SpUoe/i/lIaUUpRoFUsyaBZHQKQRXv5P/Jh1fZQoaAZoCWgPQwghQIaOHRT8v5SGlFKUaBVLMmgWR0CkESIKtxMndX2UKGgGaAloD0MINdQoJJnV+b+UhpRSlGgVSzJoFkdApBDmnKnvUnV9lChoBmgJaA9DCBnlmZfDTgDAlIaUUpRoFUsyaBZHQKQSnanJkoZ1fZQoaAZoCWgPQwhS1m8mpov1v5SGlFKUaBVLMmgWR0CkEmAeA/cGdX2UKGgGaAloD0MI/WfNj7804L+UhpRSlGgVSzJoFkdApBIjFKkEcXV9lChoBmgJaA9DCDepaKz9neq/lIaUUpRoFUsyaBZHQKQR5/yXlbN1fZQoaAZoCWgPQwiqJ/OPvsn4v5SGlFKUaBVLMmgWR0CkE5FGXokidX2UKGgGaAloD0MINGlTdY+s/r+UhpRSlGgVSzJoFkdApBNTmjj7ynV9lChoBmgJaA9DCFlQGJRptOK/lIaUUpRoFUsyaBZHQKQTFsTFl051fZQoaAZoCWgPQwi95H/yd2/sv5SGlFKUaBVLMmgWR0CkEtuavzOHdX2UKGgGaAloD0MIWcSww5i0+r+UhpRSlGgVSzJoFkdApBSJ6po9LnV9lChoBmgJaA9DCMO68e7I2Pu/lIaUUpRoFUsyaBZHQKQUTEbYK6Z1fZQoaAZoCWgPQwgZVvFG5lH2v5SGlFKUaBVLMmgWR0CkFA845tFbdX2UKGgGaAloD0MIlG3gDtRp8r+UhpRSlGgVSzJoFkdApBPT4vexfXV9lChoBmgJaA9DCKqZtRSQ9u+/lIaUUpRoFUsyaBZHQKQVhYtg8bJ1fZQoaAZoCWgPQwg2eF+VCxXlv5SGlFKUaBVLMmgWR0CkFUgHE/B4dX2UKGgGaAloD0MIdAgcCTRY4r+UhpRSlGgVSzJoFkdApBULRa5f+nV9lChoBmgJaA9DCKeVQiCX+Pa/lIaUUpRoFUsyaBZHQKQUz9deIEd1fZQoaAZoCWgPQwiT/8nfvWP1v5SGlFKUaBVLMmgWR0CkFnujh1kldX2UKGgGaAloD0MI9gt2w7aF9b+UhpRSlGgVSzJoFkdApBY+CbtqpXV9lChoBmgJaA9DCOMXXknyXN2/lIaUUpRoFUsyaBZHQKQWARwIdEN1fZQoaAZoCWgPQwga3NYWntf4v5SGlFKUaBVLMmgWR0CkFcWl/H5rdX2UKGgGaAloD0MIs0P8w5be/r+UhpRSlGgVSzJoFkdApBdoFiay8nV9lChoBmgJaA9DCMi2DDhLCfW/lIaUUpRoFUsyaBZHQKQXKmNzbN91fZQoaAZoCWgPQwjEmPT3Urj5v5SGlFKUaBVLMmgWR0CkFu1YQrc1dX2UKGgGaAloD0MIUigLX1/r9b+UhpRSlGgVSzJoFkdApBax/CqIanV9lChoBmgJaA9DCGBWKNL93PO/lIaUUpRoFUsyaBZHQKQYdtMPBi11fZQoaAZoCWgPQwibjgBuFq/4v5SGlFKUaBVLMmgWR0CkGDkUsWfsdX2UKGgGaAloD0MIR68GKA217r+UhpRSlGgVSzJoFkdApBf8RradtnV9lChoBmgJaA9DCMqoMoy7Qeu/lIaUUpRoFUsyaBZHQKQXwR7JGON1fZQoaAZoCWgPQwjnAMEcPX7nv5SGlFKUaBVLMmgWR0CkGWuV5a/zdX2UKGgGaAloD0MIzas6qwX2+7+UhpRSlGgVSzJoFkdApBkuD+R5knV9lChoBmgJaA9DCBCtFW2Oc/e/lIaUUpRoFUsyaBZHQKQY8R15jYt1fZQoaAZoCWgPQwhLyAc9mxX1v5SGlFKUaBVLMmgWR0CkGLW6kIomdX2UKGgGaAloD0MIyNEcWfnl/L+UhpRSlGgVSzJoFkdApBpYnv2GqXV9lChoBmgJaA9DCJnTZTGxOfu/lIaUUpRoFUsyaBZHQKQaG+UQkHF1fZQoaAZoCWgPQwgP1ZRkHa4AwJSGlFKUaBVLMmgWR0CkGd/zBhx6dX2UKGgGaAloD0MIgxWnWgvz+7+UhpRSlGgVSzJoFkdApBmlAs052nV9lChoBmgJaA9DCMeA7PXuD/a/lIaUUpRoFUsyaBZHQKQbQ3XqZ+h1fZQoaAZoCWgPQwizs+idChgAwJSGlFKUaBVLMmgWR0CkGwXqqwQldX2UKGgGaAloD0MIkdJsHoeB9r+UhpRSlGgVSzJoFkdApBrI11nuiXV9lChoBmgJaA9DCMV1jCsujvi/lIaUUpRoFUsyaBZHQKQajYQJ5Vx1fZQoaAZoCWgPQwi45o7+l+v8v5SGlFKUaBVLMmgWR0CkHDgvlEJCdX2UKGgGaAloD0MI/wOsVbvm+7+UhpRSlGgVSzJoFkdApBv6w8nuzHV9lChoBmgJaA9DCJxvRPesa/a/lIaUUpRoFUsyaBZHQKQbvgAp8Wt1fZQoaAZoCWgPQwg5C3va4S/qv5SGlFKUaBVLMmgWR0CkG4LjPv8ZdX2UKGgGaAloD0MIUOPe/IaJ9b+UhpRSlGgVSzJoFkdApB0vhCMP0HV9lChoBmgJaA9DCMeA7PXuj/e/lIaUUpRoFUsyaBZHQKQc8drftQd1fZQoaAZoCWgPQwhiEcMOY1L+v5SGlFKUaBVLMmgWR0CkHLTT4L1FdX2UKGgGaAloD0MI3PXSFAGO9L+UhpRSlGgVSzJoFkdApBx5drwfAHV9lChoBmgJaA9DCDVfJR+7C/G/lIaUUpRoFUsyaBZHQKQeHF9a2Wp1fZQoaAZoCWgPQwg164zvi8v3v5SGlFKUaBVLMmgWR0CkHd7bUPQOdX2UKGgGaAloD0MIkSkfgqoR97+UhpRSlGgVSzJoFkdApB2h+H8CP3V9lChoBmgJaA9DCEn3cwrys/y/lIaUUpRoFUsyaBZHQKQdZnzQNTd1fZQoaAZoCWgPQwibdFsiFxzuv5SGlFKUaBVLMmgWR0CkHx5tWMjvdX2UKGgGaAloD0MIfbPNjemJ/L+UhpRSlGgVSzJoFkdApB7g7zTWoXV9lChoBmgJaA9DCMJR8uocg+G/lIaUUpRoFUsyaBZHQKQepCKrJbN1fZQoaAZoCWgPQwgyObUzTC32v5SGlFKUaBVLMmgWR0CkHmkCFK02dX2UKGgGaAloD0MIVBnG3SDa+b+UhpRSlGgVSzJoFkdApCAJzPrv9nV9lChoBmgJaA9DCKA3FakwtvW/lIaUUpRoFUsyaBZHQKQfzHtnf2t1fZQoaAZoCWgPQwgWokPgSGD9v5SGlFKUaBVLMmgWR0CkH4/YBeXzdX2UKGgGaAloD0MI8tO4N7/h+7+UhpRSlGgVSzJoFkdApB9VOdoWYXV9lChoBmgJaA9DCOntz0VDBvm/lIaUUpRoFUsyaBZHQKQhGAFxGUh1fZQoaAZoCWgPQwjAeXHiqx31v5SGlFKUaBVLMmgWR0CkINqgyuZDdX2UKGgGaAloD0MIqS7gZYYN+L+UhpRSlGgVSzJoFkdApCCdxp+MInV9lChoBmgJaA9DCKqdYWpLne2/lIaUUpRoFUsyaBZHQKQgYpSaVlh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (727 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.7044726016465575, "std_reward": 0.44595002642202203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T05:25:44.962918"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb1e555d3b40206d29414992e70f394dd0ae11e7739946b2cd1946e7b8789138
|
3 |
+
size 3056
|