|
""" |
|
processing_prismatic.py |
|
|
|
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration |
|
specifies `siglip-224px+7b`. |
|
""" |
|
|
|
from typing import Any, ClassVar, List, Optional, Tuple, Union |
|
|
|
import timm.data |
|
import torch |
|
import torchvision.transforms.functional as TVF |
|
from PIL import Image |
|
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor |
|
from transformers import PreTrainedTokenizerBase |
|
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType |
|
|
|
|
|
|
|
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image: |
|
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width.""" |
|
(w, h), max_wh = image.size, max(image.size) |
|
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2) |
|
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad) |
|
|
|
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant") |
|
|
|
|
|
class PrismaticImageProcessor(ImageProcessingMixin): |
|
model_input_names: ClassVar[List[str]] = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
use_fused_vision_backbone: bool = False, |
|
image_resize_strategy: str = "letterbox", |
|
input_sizes: Optional[List[Tuple[int, int, int]]] = None, |
|
interpolations: Optional[List[str]] = None, |
|
means: Optional[List[Tuple[float, float, float]]] = None, |
|
stds: Optional[List[Tuple[float, float, float]]] = None, |
|
**kwargs: str, |
|
) -> None: |
|
""" |
|
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be |
|
created by TIMM, and edited to follow our custom `image_resize_strategy` logic. |
|
|
|
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone |
|
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox > |
|
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height) |
|
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic") |
|
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`) |
|
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`) |
|
""" |
|
self.use_fused_vision_backbone = use_fused_vision_backbone |
|
self.image_resize_strategy = image_resize_strategy |
|
|
|
|
|
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes |
|
means = [(0.5, 0.5, 0.5)] if means is None else means |
|
stds = [(0.5, 0.5, 0.5)] if stds is None else stds |
|
|
|
|
|
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds |
|
|
|
|
|
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], [] |
|
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None |
|
|
|
for idx in range(len(input_sizes)): |
|
transform = timm.data.create_transform( |
|
input_size=self.input_sizes[idx], |
|
interpolation=self.interpolations[idx], |
|
mean=self.means[idx], |
|
std=self.stds[idx], |
|
crop_pct=1.0, |
|
crop_mode="center", |
|
is_training=False, |
|
) |
|
|
|
|
|
if not ( |
|
isinstance(transform, Compose) |
|
and (len(transform.transforms) == 4) |
|
and isinstance(transform.transforms[0], Resize) |
|
and isinstance(transform.transforms[1], CenterCrop) |
|
and isinstance(transform.transforms[2], ToTensor) |
|
and isinstance(transform.transforms[3], Normalize) |
|
and (transform.transforms[0].size == self.input_sizes[idx][-1]) |
|
and (transform.transforms[1].size == self.input_sizes[idx][-2:]) |
|
): |
|
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`") |
|
|
|
|
|
|
|
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3] |
|
self.tvf_resize_params.append( |
|
{ |
|
"size": resize_t.size, |
|
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation], |
|
"max_size": None, |
|
"antialias": True, |
|
} |
|
) |
|
self.tvf_crop_params.append({"output_size": crop_t.size}) |
|
self.tvf_normalize_params.append( |
|
{ |
|
"mean": norm_t.mean.float().numpy().tolist(), |
|
"std": norm_t.std.float().numpy().tolist(), |
|
"inplace": False, |
|
} |
|
) |
|
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None |
|
|
|
|
|
if self.image_resize_strategy == "resize-naive": |
|
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size) |
|
elif self.image_resize_strategy == "letterbox": |
|
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]]) |
|
elif self.image_resize_strategy == "resize-crop": |
|
pass |
|
else: |
|
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!") |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
def apply_transform(self, img: Image.Image) -> torch.Tensor: |
|
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])""" |
|
if self.tvf_do_letterbox: |
|
img = letterbox_pad_transform(img, self.tvf_letterbox_fill) |
|
|
|
|
|
imgs_t = [] |
|
for idx in range(len(self.input_sizes)): |
|
img_idx = TVF.resize(img, **self.tvf_resize_params[idx]) |
|
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx]) |
|
img_idx_t = TVF.to_tensor(img_idx) |
|
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx]) |
|
imgs_t.append(img_idx_t) |
|
|
|
|
|
img_t = torch.vstack(imgs_t) |
|
|
|
return img_t |
|
|
|
def preprocess( |
|
self, |
|
images: Union[Image.Image, List[Image.Image]], |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**_: str, |
|
) -> BatchFeature: |
|
""" |
|
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we |
|
explicitly only handle PIL.Image.Image instances for simplicity. |
|
|
|
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess. |
|
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray |
|
|
|
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values" |
|
""" |
|
if not isinstance(images, list): |
|
images = [images] |
|
|
|
|
|
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images]) |
|
|
|
|
|
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors) |
|
|
|
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature: |
|
return self.preprocess(images, **kwargs) |
|
|
|
|
|
|
|
|
|
class PrismaticProcessor(ProcessorMixin): |
|
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"] |
|
image_processor_class: str = "AutoImageProcessor" |
|
tokenizer_class: str = "AutoTokenizer" |
|
|
|
def __init__( |
|
self, |
|
image_processor: Optional[ImageProcessingMixin] = None, |
|
tokenizer: Optional[PreTrainedTokenizerBase] = None, |
|
) -> None: |
|
super().__init__(image_processor, tokenizer) |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], |
|
images: Union[Image.Image, List[Image.Image]], |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Optional[Union[bool, str, TruncationStrategy]] = None, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> BatchFeature: |
|
""" |
|
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer, |
|
forwards images to PrismaticImageProcessor. |
|
|
|
@param text: The (batch) of text to encode; must be a string or list of strings. |
|
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess. |
|
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False > |
|
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified |
|
@param max_length: Maximum length (in tokens) to truncate |
|
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH) |
|
|
|
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`. |
|
""" |
|
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] |
|
text_inputs = self.tokenizer( |
|
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length |
|
) |
|
|
|
|
|
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]: |
|
raise ValueError("Batch is malformed; expected same number of images and text inputs!") |
|
|
|
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) |
|
|
|
|
|
def batch_decode( |
|
self, |
|
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: Optional[bool] = None, |
|
**kwargs: str, |
|
) -> List[str]: |
|
return self.tokenizer.batch_decode( |
|
sequences=sequences, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[int, List[int], torch.Tensor, Any], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: Optional[bool] = None, |
|
**kwargs: str, |
|
) -> str: |
|
return self.tokenizer.decode( |
|
token_ids=token_ids, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def model_input_names(self) -> List[str]: |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|