Chenchen Liu commited on
Commit
e7c64a9
·
1 Parent(s): b5c2086

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaPickAndPlace-v3
17
  metrics:
18
  - type: mean_reward
19
- value: -6.30 +/- 2.10
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaPickAndPlace-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: -5.50 +/- 1.28
20
  name: mean_reward
21
  verified: false
22
  ---
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8495d33c87ec2a2c4b616a8132f00ac68e14cf19729618fdaba0a7b1c17642a
3
- size 1032629
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8d717f47f8ceecf2c9d6fdb38247f34410aa96b765fc5c148217422efa84ff6
3
+ size 1048872
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -6.3, "std_reward": 2.1, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-05T14:40:49.477347"}
 
1
+ {"mean_reward": -5.5, "std_reward": 1.284523257866513, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-05T15:03:34.410948"}
tqc-PandaPickAndPlace-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3fe1ddf3620e20ff1fd502f9659c9b30fd4e4640f2d9f3b5cad098b36407e16c
3
  size 24281849
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f38984df4bc8e62068eee3686adb0348069df1a807687f1750ec81351aaa65
3
  size 24281849
tqc-PandaPickAndPlace-v3/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function MultiInputPolicy.__init__ at 0x7f249d1cf880>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f249d1e9980>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -91,19 +91,19 @@
91
  ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
92
  "__module__": "stable_baselines3.her.her_replay_buffer",
93
  "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
94
- "__init__": "<function HerReplayBuffer.__init__ at 0x7f249d741fc0>",
95
- "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7f249d742050>",
96
- "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7f249d7420e0>",
97
- "set_env": "<function HerReplayBuffer.set_env at 0x7f249d742170>",
98
- "add": "<function HerReplayBuffer.add at 0x7f249d742200>",
99
- "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7f249d742290>",
100
- "sample": "<function HerReplayBuffer.sample at 0x7f249d742320>",
101
- "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7f249d7423b0>",
102
- "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7f249d742440>",
103
- "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7f249d7424d0>",
104
- "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7f249d742560>",
105
  "__abstractmethods__": "frozenset()",
106
- "_abc_impl": "<_abc._abc_data object at 0x7f249d747fc0>"
107
  },
108
  "replay_buffer_kwargs": {
109
  "goal_selection_strategy": "future",
 
4
  ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7f82cf477880>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f82cf490b00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
91
  ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
92
  "__module__": "stable_baselines3.her.her_replay_buffer",
93
  "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
94
+ "__init__": "<function HerReplayBuffer.__init__ at 0x7f82cf7f5fc0>",
95
+ "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7f82cf7f6050>",
96
+ "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7f82cf7f60e0>",
97
+ "set_env": "<function HerReplayBuffer.set_env at 0x7f82cf7f6170>",
98
+ "add": "<function HerReplayBuffer.add at 0x7f82cf7f6200>",
99
+ "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7f82cf7f6290>",
100
+ "sample": "<function HerReplayBuffer.sample at 0x7f82cf7f6320>",
101
+ "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7f82cf7f63b0>",
102
+ "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7f82cf7f6440>",
103
+ "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7f82cf7f64d0>",
104
+ "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7f82cf7f6560>",
105
  "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc._abc_data object at 0x7f82cf7faa00>"
107
  },
108
  "replay_buffer_kwargs": {
109
  "goal_selection_strategy": "future",