|
{"current_steps": 10, "total_steps": 1686, "loss": 1.8528, "accuracy": 0.4437499940395355, "learning_rate": 4.9995745934141085e-06, "epoch": 0.017781729273171815, "percentage": 0.59, "elapsed_time": "0:01:36", "remaining_time": "4:30:50"} |
|
{"current_steps": 20, "total_steps": 1686, "loss": 2.0025, "accuracy": 0.40625, "learning_rate": 4.9982812903243405e-06, "epoch": 0.03556345854634363, "percentage": 1.19, "elapsed_time": "0:03:13", "remaining_time": "4:28:09"} |
|
{"current_steps": 30, "total_steps": 1686, "loss": 1.9359, "accuracy": 0.512499988079071, "learning_rate": 4.996120496405222e-06, "epoch": 0.05334518781951545, "percentage": 1.78, "elapsed_time": "0:04:49", "remaining_time": "4:26:04"} |
|
{"current_steps": 40, "total_steps": 1686, "loss": 2.0128, "accuracy": 0.4437499940395355, "learning_rate": 4.99309296196014e-06, "epoch": 0.07112691709268726, "percentage": 2.37, "elapsed_time": "0:06:23", "remaining_time": "4:23:07"} |
|
{"current_steps": 50, "total_steps": 1686, "loss": 1.9795, "accuracy": 0.46875, "learning_rate": 4.989199738255166e-06, "epoch": 0.08890864636585907, "percentage": 2.97, "elapsed_time": "0:08:00", "remaining_time": "4:22:01"} |
|
{"current_steps": 60, "total_steps": 1686, "loss": 2.0526, "accuracy": 0.4437499940395355, "learning_rate": 4.984442177154031e-06, "epoch": 0.1066903756390309, "percentage": 3.56, "elapsed_time": "0:09:40", "remaining_time": "4:22:07"} |
|
{"current_steps": 70, "total_steps": 1686, "loss": 2.0142, "accuracy": 0.44999998807907104, "learning_rate": 4.978821930648704e-06, "epoch": 0.12447210491220272, "percentage": 4.15, "elapsed_time": "0:11:19", "remaining_time": "4:21:30"} |
|
{"current_steps": 80, "total_steps": 1686, "loss": 1.9505, "accuracy": 0.5062500238418579, "learning_rate": 4.97234095028576e-06, "epoch": 0.14225383418537452, "percentage": 4.74, "elapsed_time": "0:13:00", "remaining_time": "4:21:07"} |
|
{"current_steps": 90, "total_steps": 1686, "loss": 1.8239, "accuracy": 0.44999998807907104, "learning_rate": 4.965001486488743e-06, "epoch": 0.16003556345854633, "percentage": 5.34, "elapsed_time": "0:14:38", "remaining_time": "4:19:31"} |
|
{"current_steps": 100, "total_steps": 1686, "loss": 1.8891, "accuracy": 0.5, "learning_rate": 4.956806087776732e-06, "epoch": 0.17781729273171815, "percentage": 5.93, "elapsed_time": "0:16:13", "remaining_time": "4:17:24"} |
|
{"current_steps": 110, "total_steps": 1686, "loss": 1.8394, "accuracy": 0.5249999761581421, "learning_rate": 4.947757599879411e-06, "epoch": 0.19559902200489, "percentage": 6.52, "elapsed_time": "0:17:45", "remaining_time": "4:14:20"} |
|
{"current_steps": 120, "total_steps": 1686, "loss": 1.7267, "accuracy": 0.4937500059604645, "learning_rate": 4.937859164748931e-06, "epoch": 0.2133807512780618, "percentage": 7.12, "elapsed_time": "0:19:16", "remaining_time": "4:11:34"} |
|
{"current_steps": 130, "total_steps": 1686, "loss": 1.7688, "accuracy": 0.4749999940395355, "learning_rate": 4.92711421946891e-06, "epoch": 0.23116248055123362, "percentage": 7.71, "elapsed_time": "0:20:59", "remaining_time": "4:11:18"} |
|
{"current_steps": 140, "total_steps": 1686, "loss": 1.7433, "accuracy": 0.53125, "learning_rate": 4.915526495060961e-06, "epoch": 0.24894420982440543, "percentage": 8.3, "elapsed_time": "0:22:40", "remaining_time": "4:10:23"} |
|
{"current_steps": 150, "total_steps": 1686, "loss": 1.7435, "accuracy": 0.44999998807907104, "learning_rate": 4.903100015189153e-06, "epoch": 0.26672593909757725, "percentage": 8.9, "elapsed_time": "0:24:18", "remaining_time": "4:08:58"} |
|
{"current_steps": 160, "total_steps": 1686, "loss": 1.7489, "accuracy": 0.46875, "learning_rate": 4.889839094762848e-06, "epoch": 0.28450766837074903, "percentage": 9.49, "elapsed_time": "0:25:53", "remaining_time": "4:06:54"} |
|
{"current_steps": 170, "total_steps": 1686, "loss": 1.7344, "accuracy": 0.44999998807907104, "learning_rate": 4.875748338438416e-06, "epoch": 0.3022893976439209, "percentage": 10.08, "elapsed_time": "0:27:28", "remaining_time": "4:04:56"} |
|
{"current_steps": 180, "total_steps": 1686, "loss": 1.6907, "accuracy": 0.5, "learning_rate": 4.8608326390203386e-06, "epoch": 0.32007112691709266, "percentage": 10.68, "elapsed_time": "0:29:06", "remaining_time": "4:03:28"} |
|
{"current_steps": 190, "total_steps": 1686, "loss": 1.6892, "accuracy": 0.4437499940395355, "learning_rate": 4.845097175762251e-06, "epoch": 0.3378528561902645, "percentage": 11.27, "elapsed_time": "0:30:43", "remaining_time": "4:01:51"} |
|
{"current_steps": 200, "total_steps": 1686, "loss": 1.7433, "accuracy": 0.42500001192092896, "learning_rate": 4.8285474125685286e-06, "epoch": 0.3556345854634363, "percentage": 11.86, "elapsed_time": "0:32:18", "remaining_time": "4:00:01"} |
|
{"current_steps": 210, "total_steps": 1686, "loss": 1.7425, "accuracy": 0.48124998807907104, "learning_rate": 4.811189096097025e-06, "epoch": 0.37341631473660813, "percentage": 12.46, "elapsed_time": "0:34:03", "remaining_time": "3:59:23"} |
|
{"current_steps": 220, "total_steps": 1686, "loss": 1.6259, "accuracy": 0.46875, "learning_rate": 4.793028253763633e-06, "epoch": 0.39119804400978, "percentage": 13.05, "elapsed_time": "0:35:40", "remaining_time": "3:57:45"} |
|
{"current_steps": 230, "total_steps": 1686, "loss": 1.6084, "accuracy": 0.550000011920929, "learning_rate": 4.774071191649352e-06, "epoch": 0.40897977328295176, "percentage": 13.64, "elapsed_time": "0:37:21", "remaining_time": "3:56:30"} |
|
{"current_steps": 240, "total_steps": 1686, "loss": 1.7354, "accuracy": 0.4625000059604645, "learning_rate": 4.7543244923105975e-06, "epoch": 0.4267615025561236, "percentage": 14.23, "elapsed_time": "0:39:00", "remaining_time": "3:54:59"} |
|
{"current_steps": 250, "total_steps": 1686, "loss": 1.7326, "accuracy": 0.44999998807907104, "learning_rate": 4.733795012493506e-06, "epoch": 0.4445432318292954, "percentage": 14.83, "elapsed_time": "0:40:40", "remaining_time": "3:53:39"} |
|
{"current_steps": 260, "total_steps": 1686, "loss": 1.5619, "accuracy": 0.5062500238418579, "learning_rate": 4.712489880753035e-06, "epoch": 0.46232496110246724, "percentage": 15.42, "elapsed_time": "0:42:22", "remaining_time": "3:52:24"} |
|
{"current_steps": 270, "total_steps": 1686, "loss": 1.6496, "accuracy": 0.5249999761581421, "learning_rate": 4.690416494977673e-06, "epoch": 0.480106690375639, "percentage": 16.01, "elapsed_time": "0:44:02", "remaining_time": "3:50:58"} |
|
{"current_steps": 280, "total_steps": 1686, "loss": 1.6445, "accuracy": 0.5062500238418579, "learning_rate": 4.667582519820639e-06, "epoch": 0.49788841964881086, "percentage": 16.61, "elapsed_time": "0:45:47", "remaining_time": "3:49:57"} |
|
{"current_steps": 290, "total_steps": 1686, "loss": 1.6894, "accuracy": 0.5062500238418579, "learning_rate": 4.643995884038443e-06, "epoch": 0.5156701489219827, "percentage": 17.2, "elapsed_time": "0:47:26", "remaining_time": "3:48:22"} |
|
{"current_steps": 300, "total_steps": 1686, "loss": 1.6226, "accuracy": 0.4312500059604645, "learning_rate": 4.6196647777377475e-06, "epoch": 0.5334518781951545, "percentage": 17.79, "elapsed_time": "0:49:09", "remaining_time": "3:47:04"} |
|
{"current_steps": 310, "total_steps": 1686, "loss": 1.6988, "accuracy": 0.4625000059604645, "learning_rate": 4.59459764953147e-06, "epoch": 0.5512336074683263, "percentage": 18.39, "elapsed_time": "0:50:54", "remaining_time": "3:45:59"} |
|
{"current_steps": 320, "total_steps": 1686, "loss": 1.6966, "accuracy": 0.5, "learning_rate": 4.568803203605133e-06, "epoch": 0.5690153367414981, "percentage": 18.98, "elapsed_time": "0:52:34", "remaining_time": "3:44:25"} |
|
{"current_steps": 330, "total_steps": 1686, "loss": 1.5853, "accuracy": 0.45625001192092896, "learning_rate": 4.542290396694462e-06, "epoch": 0.58679706601467, "percentage": 19.57, "elapsed_time": "0:54:17", "remaining_time": "3:43:03"} |
|
{"current_steps": 340, "total_steps": 1686, "loss": 1.6155, "accuracy": 0.5, "learning_rate": 4.515068434975298e-06, "epoch": 0.6045787952878418, "percentage": 20.17, "elapsed_time": "0:55:55", "remaining_time": "3:41:23"} |
|
{"current_steps": 350, "total_steps": 1686, "loss": 1.6804, "accuracy": 0.40625, "learning_rate": 4.487146770866887e-06, "epoch": 0.6223605245610135, "percentage": 20.76, "elapsed_time": "0:57:37", "remaining_time": "3:39:56"} |
|
{"current_steps": 360, "total_steps": 1686, "loss": 1.6917, "accuracy": 0.4437499940395355, "learning_rate": 4.458535099749666e-06, "epoch": 0.6401422538341853, "percentage": 21.35, "elapsed_time": "0:59:13", "remaining_time": "3:38:07"} |
|
{"current_steps": 370, "total_steps": 1686, "loss": 1.5568, "accuracy": 0.4937500059604645, "learning_rate": 4.429243356598694e-06, "epoch": 0.6579239831073572, "percentage": 21.95, "elapsed_time": "1:00:50", "remaining_time": "3:36:24"} |
|
{"current_steps": 380, "total_steps": 1686, "loss": 1.5745, "accuracy": 0.4625000059604645, "learning_rate": 4.399281712533875e-06, "epoch": 0.675705712380529, "percentage": 22.54, "elapsed_time": "1:02:23", "remaining_time": "3:34:24"} |
|
{"current_steps": 390, "total_steps": 1686, "loss": 1.6311, "accuracy": 0.46875, "learning_rate": 4.368660571288192e-06, "epoch": 0.6934874416537008, "percentage": 23.13, "elapsed_time": "1:04:06", "remaining_time": "3:33:01"} |
|
{"current_steps": 400, "total_steps": 1686, "loss": 1.6304, "accuracy": 0.46875, "learning_rate": 4.337390565595163e-06, "epoch": 0.7112691709268726, "percentage": 23.72, "elapsed_time": "1:05:44", "remaining_time": "3:31:21"} |
|
{"current_steps": 410, "total_steps": 1686, "loss": 1.6033, "accuracy": 0.543749988079071, "learning_rate": 4.305482553496786e-06, "epoch": 0.7290509002000445, "percentage": 24.32, "elapsed_time": "1:07:19", "remaining_time": "3:29:30"} |
|
{"current_steps": 420, "total_steps": 1686, "loss": 1.7183, "accuracy": 0.4937500059604645, "learning_rate": 4.272947614573244e-06, "epoch": 0.7468326294732163, "percentage": 24.91, "elapsed_time": "1:08:54", "remaining_time": "3:27:43"} |
|
{"current_steps": 430, "total_steps": 1686, "loss": 1.5868, "accuracy": 0.518750011920929, "learning_rate": 4.23979704609569e-06, "epoch": 0.7646143587463881, "percentage": 25.5, "elapsed_time": "1:10:33", "remaining_time": "3:26:07"} |
|
{"current_steps": 440, "total_steps": 1686, "loss": 1.6799, "accuracy": 0.512499988079071, "learning_rate": 4.206042359103435e-06, "epoch": 0.78239608801956, "percentage": 26.1, "elapsed_time": "1:12:12", "remaining_time": "3:24:29"} |
|
{"current_steps": 450, "total_steps": 1686, "loss": 1.6973, "accuracy": 0.42500001192092896, "learning_rate": 4.17169527440691e-06, "epoch": 0.8001778172927317, "percentage": 26.69, "elapsed_time": "1:13:47", "remaining_time": "3:22:40"} |
|
{"current_steps": 460, "total_steps": 1686, "loss": 1.4918, "accuracy": 0.5562499761581421, "learning_rate": 4.136767718517797e-06, "epoch": 0.8179595465659035, "percentage": 27.28, "elapsed_time": "1:15:25", "remaining_time": "3:21:02"} |
|
{"current_steps": 470, "total_steps": 1686, "loss": 1.6365, "accuracy": 0.40625, "learning_rate": 4.1012718195077196e-06, "epoch": 0.8357412758390753, "percentage": 27.88, "elapsed_time": "1:17:04", "remaining_time": "3:19:25"} |
|
{"current_steps": 480, "total_steps": 1686, "loss": 1.6152, "accuracy": 0.48750001192092896, "learning_rate": 4.065219902796953e-06, "epoch": 0.8535230051122472, "percentage": 28.47, "elapsed_time": "1:18:40", "remaining_time": "3:17:39"} |
|
{"current_steps": 490, "total_steps": 1686, "loss": 1.5343, "accuracy": 0.512499988079071, "learning_rate": 4.028624486874608e-06, "epoch": 0.871304734385419, "percentage": 29.06, "elapsed_time": "1:20:19", "remaining_time": "3:16:03"} |
|
{"current_steps": 500, "total_steps": 1686, "loss": 1.6309, "accuracy": 0.4937500059604645, "learning_rate": 3.99149827895177e-06, "epoch": 0.8890864636585908, "percentage": 29.66, "elapsed_time": "1:22:01", "remaining_time": "3:14:33"} |
|
{"current_steps": 500, "total_steps": 1686, "eval_loss": 1.5815595388412476, "epoch": 0.8890864636585908, "percentage": 29.66, "elapsed_time": "1:25:25", "remaining_time": "3:22:36"} |
|
{"current_steps": 510, "total_steps": 1686, "loss": 1.6424, "accuracy": 0.550000011920929, "learning_rate": 3.953854170549114e-06, "epoch": 0.9068681929317626, "percentage": 30.25, "elapsed_time": "1:27:07", "remaining_time": "3:20:53"} |
|
{"current_steps": 520, "total_steps": 1686, "loss": 1.4923, "accuracy": 0.5249999761581421, "learning_rate": 3.91570523302051e-06, "epoch": 0.9246499222049345, "percentage": 30.84, "elapsed_time": "1:28:41", "remaining_time": "3:18:53"} |
|
{"current_steps": 530, "total_steps": 1686, "loss": 1.5466, "accuracy": 0.4625000059604645, "learning_rate": 3.8770647130141996e-06, "epoch": 0.9424316514781063, "percentage": 31.44, "elapsed_time": "1:30:23", "remaining_time": "3:17:08"} |
|
{"current_steps": 540, "total_steps": 1686, "loss": 1.661, "accuracy": 0.53125, "learning_rate": 3.837946027873086e-06, "epoch": 0.960213380751278, "percentage": 32.03, "elapsed_time": "1:32:00", "remaining_time": "3:15:14"} |
|
{"current_steps": 550, "total_steps": 1686, "loss": 1.6249, "accuracy": 0.4312500059604645, "learning_rate": 3.7983627609757713e-06, "epoch": 0.9779951100244498, "percentage": 32.62, "elapsed_time": "1:33:41", "remaining_time": "3:13:31"} |
|
{"current_steps": 560, "total_steps": 1686, "loss": 1.5469, "accuracy": 0.5062500238418579, "learning_rate": 3.758328657019924e-06, "epoch": 0.9957768392976217, "percentage": 33.21, "elapsed_time": "1:35:22", "remaining_time": "3:11:45"} |
|
{"current_steps": 570, "total_steps": 1686, "loss": 1.6007, "accuracy": 0.48124998807907104, "learning_rate": 3.717857617249642e-06, "epoch": 1.0135585685707935, "percentage": 33.81, "elapsed_time": "1:37:01", "remaining_time": "3:09:57"} |
|
{"current_steps": 580, "total_steps": 1686, "loss": 1.4702, "accuracy": 0.48750001192092896, "learning_rate": 3.6769636946284543e-06, "epoch": 1.0313402978439654, "percentage": 34.4, "elapsed_time": "1:38:38", "remaining_time": "3:08:05"} |
|
{"current_steps": 590, "total_steps": 1686, "loss": 1.6438, "accuracy": 0.4625000059604645, "learning_rate": 3.6356610889596355e-06, "epoch": 1.049122027117137, "percentage": 34.99, "elapsed_time": "1:40:19", "remaining_time": "3:06:22"} |
|
{"current_steps": 600, "total_steps": 1686, "loss": 1.5708, "accuracy": 0.5, "learning_rate": 3.593964141955541e-06, "epoch": 1.066903756390309, "percentage": 35.59, "elapsed_time": "1:41:53", "remaining_time": "3:04:25"} |
|
{"current_steps": 610, "total_steps": 1686, "loss": 1.6005, "accuracy": 0.5062500238418579, "learning_rate": 3.5518873322576573e-06, "epoch": 1.0846854856634809, "percentage": 36.18, "elapsed_time": "1:43:30", "remaining_time": "3:02:34"} |
|
{"current_steps": 620, "total_steps": 1686, "loss": 1.5353, "accuracy": 0.4749999940395355, "learning_rate": 3.5094452704091143e-06, "epoch": 1.1024672149366526, "percentage": 36.77, "elapsed_time": "1:45:12", "remaining_time": "3:00:54"} |
|
{"current_steps": 630, "total_steps": 1686, "loss": 1.6576, "accuracy": 0.4312500059604645, "learning_rate": 3.46665269378139e-06, "epoch": 1.1202489442098245, "percentage": 37.37, "elapsed_time": "1:46:54", "remaining_time": "2:59:12"} |
|
{"current_steps": 640, "total_steps": 1686, "loss": 1.6419, "accuracy": 0.512499988079071, "learning_rate": 3.4235244614569794e-06, "epoch": 1.1380306734829961, "percentage": 37.96, "elapsed_time": "1:49:09", "remaining_time": "2:58:23"} |
|
{"current_steps": 650, "total_steps": 1686, "loss": 1.4832, "accuracy": 0.550000011920929, "learning_rate": 3.3800755490698008e-06, "epoch": 1.155812402756168, "percentage": 38.55, "elapsed_time": "1:50:43", "remaining_time": "2:56:29"} |
|
{"current_steps": 660, "total_steps": 1686, "loss": 1.6292, "accuracy": 0.5062500238418579, "learning_rate": 3.3363210436051287e-06, "epoch": 1.17359413202934, "percentage": 39.15, "elapsed_time": "1:52:59", "remaining_time": "2:55:39"} |
|
{"current_steps": 670, "total_steps": 1686, "loss": 1.5589, "accuracy": 0.41874998807907104, "learning_rate": 3.292276138160867e-06, "epoch": 1.1913758613025116, "percentage": 39.74, "elapsed_time": "1:54:35", "remaining_time": "2:53:46"} |
|
{"current_steps": 680, "total_steps": 1686, "loss": 1.6131, "accuracy": 0.4937500059604645, "learning_rate": 3.2479561266719694e-06, "epoch": 1.2091575905756835, "percentage": 40.33, "elapsed_time": "1:56:14", "remaining_time": "2:51:57"} |
|
{"current_steps": 690, "total_steps": 1686, "loss": 1.5038, "accuracy": 0.543749988079071, "learning_rate": 3.2033763985998533e-06, "epoch": 1.2269393198488552, "percentage": 40.93, "elapsed_time": "1:57:52", "remaining_time": "2:50:08"} |
|
{"current_steps": 700, "total_steps": 1686, "loss": 1.4937, "accuracy": 0.512499988079071, "learning_rate": 3.1585524335886335e-06, "epoch": 1.244721049122027, "percentage": 41.52, "elapsed_time": "1:59:28", "remaining_time": "2:48:17"} |
|
{"current_steps": 710, "total_steps": 1686, "loss": 1.4906, "accuracy": 0.512499988079071, "learning_rate": 3.1134997960900536e-06, "epoch": 1.262502778395199, "percentage": 42.11, "elapsed_time": "2:01:03", "remaining_time": "2:46:24"} |
|
{"current_steps": 720, "total_steps": 1686, "loss": 1.5498, "accuracy": 0.4000000059604645, "learning_rate": 3.0682341299589583e-06, "epoch": 1.2802845076683709, "percentage": 42.7, "elapsed_time": "2:02:46", "remaining_time": "2:44:43"} |
|
{"current_steps": 730, "total_steps": 1686, "loss": 1.5509, "accuracy": 0.543749988079071, "learning_rate": 3.022771153021201e-06, "epoch": 1.2980662369415426, "percentage": 43.3, "elapsed_time": "2:04:23", "remaining_time": "2:42:53"} |
|
{"current_steps": 740, "total_steps": 1686, "loss": 1.5376, "accuracy": 0.48750001192092896, "learning_rate": 2.9771266516158625e-06, "epoch": 1.3158479662147144, "percentage": 43.89, "elapsed_time": "2:06:00", "remaining_time": "2:41:04"} |
|
{"current_steps": 750, "total_steps": 1686, "loss": 1.5505, "accuracy": 0.4937500059604645, "learning_rate": 2.9313164751136802e-06, "epoch": 1.3336296954878861, "percentage": 44.48, "elapsed_time": "2:07:36", "remaining_time": "2:39:15"} |
|
{"current_steps": 760, "total_steps": 1686, "loss": 1.5409, "accuracy": 0.4375, "learning_rate": 2.8853565304135956e-06, "epoch": 1.351411424761058, "percentage": 45.08, "elapsed_time": "2:09:12", "remaining_time": "2:37:26"} |
|
{"current_steps": 770, "total_steps": 1686, "loss": 1.5416, "accuracy": 0.5249999761581421, "learning_rate": 2.839262776419313e-06, "epoch": 1.36919315403423, "percentage": 45.67, "elapsed_time": "2:11:12", "remaining_time": "2:36:04"} |
|
{"current_steps": 780, "total_steps": 1686, "loss": 1.5454, "accuracy": 0.42500001192092896, "learning_rate": 2.793051218497817e-06, "epoch": 1.3869748833074016, "percentage": 46.26, "elapsed_time": "2:12:51", "remaining_time": "2:34:19"} |
|
{"current_steps": 790, "total_steps": 1686, "loss": 1.517, "accuracy": 0.53125, "learning_rate": 2.7467379029217437e-06, "epoch": 1.4047566125805735, "percentage": 46.86, "elapsed_time": "2:14:31", "remaining_time": "2:32:34"} |
|
{"current_steps": 800, "total_steps": 1686, "loss": 1.6221, "accuracy": 0.45625001192092896, "learning_rate": 2.7003389112975546e-06, "epoch": 1.4225383418537452, "percentage": 47.45, "elapsed_time": "2:16:34", "remaining_time": "2:31:15"} |
|
{"current_steps": 810, "total_steps": 1686, "loss": 1.4137, "accuracy": 0.5062500238418579, "learning_rate": 2.653870354981437e-06, "epoch": 1.440320071126917, "percentage": 48.04, "elapsed_time": "2:18:08", "remaining_time": "2:29:23"} |
|
{"current_steps": 820, "total_steps": 1686, "loss": 1.5337, "accuracy": 0.518750011920929, "learning_rate": 2.6073483694848777e-06, "epoch": 1.458101800400089, "percentage": 48.64, "elapsed_time": "2:19:51", "remaining_time": "2:27:42"} |
|
{"current_steps": 830, "total_steps": 1686, "loss": 1.5064, "accuracy": 0.4937500059604645, "learning_rate": 2.560789108871847e-06, "epoch": 1.4758835296732609, "percentage": 49.23, "elapsed_time": "2:21:43", "remaining_time": "2:26:09"} |
|
{"current_steps": 840, "total_steps": 1686, "loss": 1.5523, "accuracy": 0.5062500238418579, "learning_rate": 2.514208740149544e-06, "epoch": 1.4936652589464325, "percentage": 49.82, "elapsed_time": "2:23:24", "remaining_time": "2:24:26"} |
|
{"current_steps": 850, "total_steps": 1686, "loss": 1.5463, "accuracy": 0.53125, "learning_rate": 2.46762343765464e-06, "epoch": 1.5114469882196042, "percentage": 50.42, "elapsed_time": "2:25:11", "remaining_time": "2:22:48"} |
|
{"current_steps": 860, "total_steps": 1686, "loss": 1.6351, "accuracy": 0.4625000059604645, "learning_rate": 2.4210493774369903e-06, "epoch": 1.5292287174927761, "percentage": 51.01, "elapsed_time": "2:26:49", "remaining_time": "2:21:01"} |
|
{"current_steps": 870, "total_steps": 1686, "loss": 1.5247, "accuracy": 0.5, "learning_rate": 2.374502731642732e-06, "epoch": 1.547010446765948, "percentage": 51.6, "elapsed_time": "2:28:27", "remaining_time": "2:19:14"} |
|
{"current_steps": 880, "total_steps": 1686, "loss": 1.5356, "accuracy": 0.5249999761581421, "learning_rate": 2.3279996628987556e-06, "epoch": 1.56479217603912, "percentage": 52.19, "elapsed_time": "2:30:00", "remaining_time": "2:17:23"} |
|
{"current_steps": 890, "total_steps": 1686, "loss": 1.5144, "accuracy": 0.4375, "learning_rate": 2.281556318700474e-06, "epoch": 1.5825739053122916, "percentage": 52.79, "elapsed_time": "2:32:00", "remaining_time": "2:15:57"} |
|
{"current_steps": 900, "total_steps": 1686, "loss": 1.5647, "accuracy": 0.518750011920929, "learning_rate": 2.2351888258048408e-06, "epoch": 1.6003556345854635, "percentage": 53.38, "elapsed_time": "2:35:01", "remaining_time": "2:15:23"} |
|
{"current_steps": 910, "total_steps": 1686, "loss": 1.6264, "accuracy": 0.4749999940395355, "learning_rate": 2.188913284630584e-06, "epoch": 1.6181373638586352, "percentage": 53.97, "elapsed_time": "2:38:10", "remaining_time": "2:14:53"} |
|
{"current_steps": 920, "total_steps": 1686, "loss": 1.609, "accuracy": 0.45625001192092896, "learning_rate": 2.1427457636675652e-06, "epoch": 1.635919093131807, "percentage": 54.57, "elapsed_time": "2:41:07", "remaining_time": "2:14:09"} |
|
{"current_steps": 930, "total_steps": 1686, "loss": 1.4753, "accuracy": 0.5375000238418579, "learning_rate": 2.096702293897247e-06, "epoch": 1.653700822404979, "percentage": 55.16, "elapsed_time": "2:44:11", "remaining_time": "2:13:28"} |
|
{"current_steps": 940, "total_steps": 1686, "loss": 1.5523, "accuracy": 0.5, "learning_rate": 2.0507988632261672e-06, "epoch": 1.6714825516781509, "percentage": 55.75, "elapsed_time": "2:47:30", "remaining_time": "2:12:56"} |
|
{"current_steps": 950, "total_steps": 1686, "loss": 1.6259, "accuracy": 0.48750001192092896, "learning_rate": 2.005051410934382e-06, "epoch": 1.6892642809513225, "percentage": 56.35, "elapsed_time": "2:50:35", "remaining_time": "2:12:09"} |
|
{"current_steps": 960, "total_steps": 1686, "loss": 1.453, "accuracy": 0.5687500238418579, "learning_rate": 1.9594758221407843e-06, "epoch": 1.7070460102244942, "percentage": 56.94, "elapsed_time": "2:53:43", "remaining_time": "2:11:22"} |
|
{"current_steps": 970, "total_steps": 1686, "loss": 1.4772, "accuracy": 0.48750001192092896, "learning_rate": 1.9140879222872408e-06, "epoch": 1.724827739497666, "percentage": 57.53, "elapsed_time": "2:56:53", "remaining_time": "2:10:34"} |
|
{"current_steps": 980, "total_steps": 1686, "loss": 1.5681, "accuracy": 0.45625001192092896, "learning_rate": 1.8689034716434346e-06, "epoch": 1.742609468770838, "percentage": 58.13, "elapsed_time": "2:59:55", "remaining_time": "2:09:37"} |
|
{"current_steps": 990, "total_steps": 1686, "loss": 1.4872, "accuracy": 0.44999998807907104, "learning_rate": 1.8239381598343576e-06, "epoch": 1.76039119804401, "percentage": 58.72, "elapsed_time": "3:02:59", "remaining_time": "2:08:39"} |
|
{"current_steps": 1000, "total_steps": 1686, "loss": 1.5401, "accuracy": 0.4749999940395355, "learning_rate": 1.779207600392312e-06, "epoch": 1.7781729273171816, "percentage": 59.31, "elapsed_time": "3:06:18", "remaining_time": "2:07:48"} |
|
{"current_steps": 1000, "total_steps": 1686, "eval_loss": 1.5269325971603394, "epoch": 1.7781729273171816, "percentage": 59.31, "elapsed_time": "3:13:06", "remaining_time": "2:12:28"} |
|
{"current_steps": 1010, "total_steps": 1686, "loss": 1.5549, "accuracy": 0.45625001192092896, "learning_rate": 1.7347273253353552e-06, "epoch": 1.7959546565903532, "percentage": 59.91, "elapsed_time": "3:16:16", "remaining_time": "2:11:21"} |
|
{"current_steps": 1020, "total_steps": 1686, "loss": 1.5345, "accuracy": 0.46875, "learning_rate": 1.690512779774029e-06, "epoch": 1.8137363858635251, "percentage": 60.5, "elapsed_time": "3:19:31", "remaining_time": "2:10:16"} |
|
{"current_steps": 1030, "total_steps": 1686, "loss": 1.4553, "accuracy": 0.518750011920929, "learning_rate": 1.6465793165482838e-06, "epoch": 1.831518115136697, "percentage": 61.09, "elapsed_time": "3:22:46", "remaining_time": "2:09:08"} |
|
{"current_steps": 1040, "total_steps": 1686, "loss": 1.5112, "accuracy": 0.5687500238418579, "learning_rate": 1.6029421908964305e-06, "epoch": 1.849299844409869, "percentage": 61.68, "elapsed_time": "3:25:43", "remaining_time": "2:07:47"} |
|
{"current_steps": 1050, "total_steps": 1686, "loss": 1.529, "accuracy": 0.4937500059604645, "learning_rate": 1.559616555157985e-06, "epoch": 1.8670815736830408, "percentage": 62.28, "elapsed_time": "3:28:58", "remaining_time": "2:06:34"} |
|
{"current_steps": 1060, "total_steps": 1686, "loss": 1.5985, "accuracy": 0.46875, "learning_rate": 1.516617453512252e-06, "epoch": 1.8848633029562125, "percentage": 62.87, "elapsed_time": "3:32:10", "remaining_time": "2:05:18"} |
|
{"current_steps": 1070, "total_steps": 1686, "loss": 1.4506, "accuracy": 0.5062500238418579, "learning_rate": 1.473959816754449e-06, "epoch": 1.9026450322293842, "percentage": 63.46, "elapsed_time": "3:35:14", "remaining_time": "2:03:54"} |
|
{"current_steps": 1080, "total_steps": 1686, "loss": 1.5255, "accuracy": 0.44999998807907104, "learning_rate": 1.4316584571112213e-06, "epoch": 1.920426761502556, "percentage": 64.06, "elapsed_time": "3:38:25", "remaining_time": "2:02:33"} |
|
{"current_steps": 1090, "total_steps": 1686, "loss": 1.5134, "accuracy": 0.48750001192092896, "learning_rate": 1.389728063097306e-06, "epoch": 1.938208490775728, "percentage": 64.65, "elapsed_time": "3:41:41", "remaining_time": "2:01:13"} |
|
{"current_steps": 1100, "total_steps": 1686, "loss": 1.4884, "accuracy": 0.5249999761581421, "learning_rate": 1.348183194415179e-06, "epoch": 1.9559902200488999, "percentage": 65.24, "elapsed_time": "3:44:38", "remaining_time": "1:59:40"} |
|
{"current_steps": 1110, "total_steps": 1686, "loss": 1.5057, "accuracy": 0.512499988079071, "learning_rate": 1.3070382768994015e-06, "epoch": 1.9737719493220716, "percentage": 65.84, "elapsed_time": "3:47:54", "remaining_time": "1:58:15"} |
|
{"current_steps": 1120, "total_steps": 1686, "loss": 1.5613, "accuracy": 0.4937500059604645, "learning_rate": 1.2663075975074746e-06, "epoch": 1.9915536785952432, "percentage": 66.43, "elapsed_time": "3:51:11", "remaining_time": "1:56:50"} |
|
{"current_steps": 1130, "total_steps": 1686, "loss": 1.615, "accuracy": 0.4625000059604645, "learning_rate": 1.2260052993589034e-06, "epoch": 2.009335407868415, "percentage": 67.02, "elapsed_time": "3:54:24", "remaining_time": "1:55:20"} |
|
{"current_steps": 1140, "total_steps": 1686, "loss": 1.5179, "accuracy": 0.5375000238418579, "learning_rate": 1.1861453768242099e-06, "epoch": 2.027117137141587, "percentage": 67.62, "elapsed_time": "3:57:33", "remaining_time": "1:53:46"} |
|
{"current_steps": 1150, "total_steps": 1686, "loss": 1.6125, "accuracy": 0.4937500059604645, "learning_rate": 1.1467416706655982e-06, "epoch": 2.044898866414759, "percentage": 68.21, "elapsed_time": "4:00:54", "remaining_time": "1:52:17"} |
|
{"current_steps": 1160, "total_steps": 1686, "loss": 1.5053, "accuracy": 0.550000011920929, "learning_rate": 1.1078078632309559e-06, "epoch": 2.062680595687931, "percentage": 68.8, "elapsed_time": "4:04:00", "remaining_time": "1:50:38"} |
|
{"current_steps": 1170, "total_steps": 1686, "loss": 1.5773, "accuracy": 0.48124998807907104, "learning_rate": 1.0693574737028627e-06, "epoch": 2.0804623249611023, "percentage": 69.4, "elapsed_time": "4:07:14", "remaining_time": "1:49:02"} |
|
{"current_steps": 1180, "total_steps": 1686, "loss": 1.4589, "accuracy": 0.4749999940395355, "learning_rate": 1.0314038534042586e-06, "epoch": 2.098244054234274, "percentage": 69.99, "elapsed_time": "4:10:30", "remaining_time": "1:47:25"} |
|
{"current_steps": 1190, "total_steps": 1686, "loss": 1.4943, "accuracy": 0.4937500059604645, "learning_rate": 9.939601811623946e-07, "epoch": 2.116025783507446, "percentage": 70.58, "elapsed_time": "4:13:33", "remaining_time": "1:45:41"} |
|
{"current_steps": 1200, "total_steps": 1686, "loss": 1.4962, "accuracy": 0.543749988079071, "learning_rate": 9.570394587326825e-07, "epoch": 2.133807512780618, "percentage": 71.17, "elapsed_time": "4:16:43", "remaining_time": "1:43:58"} |
|
{"current_steps": 1210, "total_steps": 1686, "loss": 1.5204, "accuracy": 0.5625, "learning_rate": 9.206545062840302e-07, "epoch": 2.15158924205379, "percentage": 71.77, "elapsed_time": "4:19:51", "remaining_time": "1:42:13"} |
|
{"current_steps": 1220, "total_steps": 1686, "loss": 1.4132, "accuracy": 0.48750001192092896, "learning_rate": 8.848179579472285e-07, "epoch": 2.1693709713269618, "percentage": 72.36, "elapsed_time": "4:23:04", "remaining_time": "1:40:29"} |
|
{"current_steps": 1230, "total_steps": 1686, "loss": 1.4426, "accuracy": 0.581250011920929, "learning_rate": 8.495422574279403e-07, "epoch": 2.1871527006001332, "percentage": 72.95, "elapsed_time": "4:26:06", "remaining_time": "1:38:39"} |
|
{"current_steps": 1240, "total_steps": 1686, "loss": 1.578, "accuracy": 0.5375000238418579, "learning_rate": 8.148396536858063e-07, "epoch": 2.204934429873305, "percentage": 73.55, "elapsed_time": "4:29:18", "remaining_time": "1:36:52"} |
|
{"current_steps": 1250, "total_steps": 1686, "loss": 1.4695, "accuracy": 0.48124998807907104, "learning_rate": 7.807221966811815e-07, "epoch": 2.222716159146477, "percentage": 74.14, "elapsed_time": "4:32:36", "remaining_time": "1:35:04"} |
|
{"current_steps": 1260, "total_steps": 1686, "loss": 1.5047, "accuracy": 0.48124998807907104, "learning_rate": 7.47201733190962e-07, "epoch": 2.240497888419649, "percentage": 74.73, "elapsed_time": "4:35:51", "remaining_time": "1:33:16"} |
|
{"current_steps": 1270, "total_steps": 1686, "loss": 1.4755, "accuracy": 0.53125, "learning_rate": 7.142899026949721e-07, "epoch": 2.258279617692821, "percentage": 75.33, "elapsed_time": "4:39:05", "remaining_time": "1:31:24"} |
|
{"current_steps": 1280, "total_steps": 1686, "loss": 1.4613, "accuracy": 0.5249999761581421, "learning_rate": 6.819981333343273e-07, "epoch": 2.2760613469659923, "percentage": 75.92, "elapsed_time": "4:42:08", "remaining_time": "1:29:29"} |
|
{"current_steps": 1290, "total_steps": 1686, "loss": 1.6191, "accuracy": 0.41874998807907104, "learning_rate": 6.503376379431839e-07, "epoch": 2.293843076239164, "percentage": 76.51, "elapsed_time": "4:45:22", "remaining_time": "1:27:36"} |
|
{"current_steps": 1300, "total_steps": 1686, "loss": 1.5413, "accuracy": 0.5062500238418579, "learning_rate": 6.193194101552502e-07, "epoch": 2.311624805512336, "percentage": 77.11, "elapsed_time": "4:48:40", "remaining_time": "1:25:42"} |
|
{"current_steps": 1310, "total_steps": 1686, "loss": 1.5893, "accuracy": 0.48750001192092896, "learning_rate": 5.889542205864083e-07, "epoch": 2.329406534785508, "percentage": 77.7, "elapsed_time": "4:51:39", "remaining_time": "1:23:42"} |
|
{"current_steps": 1320, "total_steps": 1686, "loss": 1.5284, "accuracy": 0.4000000059604645, "learning_rate": 5.592526130947862e-07, "epoch": 2.34718826405868, "percentage": 78.29, "elapsed_time": "4:54:56", "remaining_time": "1:21:46"} |
|
{"current_steps": 1330, "total_steps": 1686, "loss": 1.4519, "accuracy": 0.48750001192092896, "learning_rate": 5.302249011195507e-07, "epoch": 2.3649699933318518, "percentage": 78.88, "elapsed_time": "4:57:50", "remaining_time": "1:19:43"} |
|
{"current_steps": 1340, "total_steps": 1686, "loss": 1.5372, "accuracy": 0.59375, "learning_rate": 5.018811640997307e-07, "epoch": 2.382751722605023, "percentage": 79.48, "elapsed_time": "5:01:11", "remaining_time": "1:17:46"} |
|
{"current_steps": 1350, "total_steps": 1686, "loss": 1.5422, "accuracy": 0.48750001192092896, "learning_rate": 4.7423124397427105e-07, "epoch": 2.400533451878195, "percentage": 80.07, "elapsed_time": "5:04:03", "remaining_time": "1:15:40"} |
|
{"current_steps": 1360, "total_steps": 1686, "loss": 1.4623, "accuracy": 0.53125, "learning_rate": 4.472847417645787e-07, "epoch": 2.418315181151367, "percentage": 80.66, "elapsed_time": "5:07:07", "remaining_time": "1:13:37"} |
|
{"current_steps": 1370, "total_steps": 1686, "loss": 1.5411, "accuracy": 0.4749999940395355, "learning_rate": 4.210510142406993e-07, "epoch": 2.436096910424539, "percentage": 81.26, "elapsed_time": "5:10:10", "remaining_time": "1:11:32"} |
|
{"current_steps": 1380, "total_steps": 1686, "loss": 1.5265, "accuracy": 0.46875, "learning_rate": 3.9553917067232966e-07, "epoch": 2.4538786396977104, "percentage": 81.85, "elapsed_time": "5:13:19", "remaining_time": "1:09:28"} |
|
{"current_steps": 1390, "total_steps": 1686, "loss": 1.5, "accuracy": 0.4625000059604645, "learning_rate": 3.707580696657509e-07, "epoch": 2.4716603689708823, "percentage": 82.44, "elapsed_time": "5:16:21", "remaining_time": "1:07:22"} |
|
{"current_steps": 1400, "total_steps": 1686, "loss": 1.5593, "accuracy": 0.42500001192092896, "learning_rate": 3.4671631608781815e-07, "epoch": 2.489442098244054, "percentage": 83.04, "elapsed_time": "5:19:19", "remaining_time": "1:05:14"} |
|
{"current_steps": 1410, "total_steps": 1686, "loss": 1.4962, "accuracy": 0.4312500059604645, "learning_rate": 3.234222580780405e-07, "epoch": 2.507223827517226, "percentage": 83.63, "elapsed_time": "5:22:17", "remaining_time": "1:03:05"} |
|
{"current_steps": 1420, "total_steps": 1686, "loss": 1.6331, "accuracy": 0.5, "learning_rate": 3.0088398414982375e-07, "epoch": 2.525005556790398, "percentage": 84.22, "elapsed_time": "5:25:22", "remaining_time": "1:00:57"} |
|
{"current_steps": 1430, "total_steps": 1686, "loss": 1.4895, "accuracy": 0.550000011920929, "learning_rate": 2.7910932038184487e-07, "epoch": 2.54278728606357, "percentage": 84.82, "elapsed_time": "5:28:23", "remaining_time": "0:58:47"} |
|
{"current_steps": 1440, "total_steps": 1686, "loss": 1.4769, "accuracy": 0.5, "learning_rate": 2.5810582770057325e-07, "epoch": 2.5605690153367417, "percentage": 85.41, "elapsed_time": "5:31:39", "remaining_time": "0:56:39"} |
|
{"current_steps": 1450, "total_steps": 1686, "loss": 1.5116, "accuracy": 0.45625001192092896, "learning_rate": 2.3788079925484402e-07, "epoch": 2.578350744609913, "percentage": 86.0, "elapsed_time": "5:34:57", "remaining_time": "0:54:31"} |
|
{"current_steps": 1460, "total_steps": 1686, "loss": 1.5064, "accuracy": 0.5249999761581421, "learning_rate": 2.1844125788342661e-07, "epoch": 2.596132473883085, "percentage": 86.6, "elapsed_time": "5:37:59", "remaining_time": "0:52:19"} |
|
{"current_steps": 1470, "total_steps": 1686, "loss": 1.4586, "accuracy": 0.512499988079071, "learning_rate": 1.9979395367644428e-07, "epoch": 2.613914203156257, "percentage": 87.19, "elapsed_time": "5:40:56", "remaining_time": "0:50:05"} |
|
{"current_steps": 1480, "total_steps": 1686, "loss": 1.5353, "accuracy": 0.518750011920929, "learning_rate": 1.81945361631512e-07, "epoch": 2.631695932429429, "percentage": 87.78, "elapsed_time": "5:44:07", "remaining_time": "0:47:53"} |
|
{"current_steps": 1490, "total_steps": 1686, "loss": 1.5003, "accuracy": 0.5062500238418579, "learning_rate": 1.6490167940538343e-07, "epoch": 2.6494776617026004, "percentage": 88.37, "elapsed_time": "5:47:26", "remaining_time": "0:45:42"} |
|
{"current_steps": 1500, "total_steps": 1686, "loss": 1.4914, "accuracy": 0.48124998807907104, "learning_rate": 1.4866882516191339e-07, "epoch": 2.6672593909757722, "percentage": 88.97, "elapsed_time": "5:50:45", "remaining_time": "0:43:29"} |
|
{"current_steps": 1500, "total_steps": 1686, "eval_loss": 1.5154520273208618, "epoch": 2.6672593909757722, "percentage": 88.97, "elapsed_time": "5:57:37", "remaining_time": "0:44:20"} |
|
{"current_steps": 1510, "total_steps": 1686, "loss": 1.5833, "accuracy": 0.550000011920929, "learning_rate": 1.3325243551706057e-07, "epoch": 2.685041120248944, "percentage": 89.56, "elapsed_time": "6:00:48", "remaining_time": "0:42:03"} |
|
{"current_steps": 1520, "total_steps": 1686, "loss": 1.4794, "accuracy": 0.4749999940395355, "learning_rate": 1.1865786358165737e-07, "epoch": 2.702822849522116, "percentage": 90.15, "elapsed_time": "6:03:55", "remaining_time": "0:39:44"} |
|
{"current_steps": 1530, "total_steps": 1686, "loss": 1.5615, "accuracy": 0.53125, "learning_rate": 1.0489017710262311e-07, "epoch": 2.720604578795288, "percentage": 90.75, "elapsed_time": "6:07:10", "remaining_time": "0:37:26"} |
|
{"current_steps": 1540, "total_steps": 1686, "loss": 1.4941, "accuracy": 0.48124998807907104, "learning_rate": 9.195415670326446e-08, "epoch": 2.73838630806846, "percentage": 91.34, "elapsed_time": "6:10:26", "remaining_time": "0:35:07"} |
|
{"current_steps": 1550, "total_steps": 1686, "loss": 1.4636, "accuracy": 0.4375, "learning_rate": 7.985429422327384e-08, "epoch": 2.7561680373416317, "percentage": 91.93, "elapsed_time": "6:13:32", "remaining_time": "0:32:46"} |
|
{"current_steps": 1560, "total_steps": 1686, "loss": 1.5068, "accuracy": 0.518750011920929, "learning_rate": 6.859479115900818e-08, "epoch": 2.773949766614803, "percentage": 92.53, "elapsed_time": "6:16:42", "remaining_time": "0:30:25"} |
|
{"current_steps": 1570, "total_steps": 1686, "loss": 1.5361, "accuracy": 0.48124998807907104, "learning_rate": 5.817955720457902e-08, "epoch": 2.791731495887975, "percentage": 93.12, "elapsed_time": "6:19:54", "remaining_time": "0:28:04"} |
|
{"current_steps": 1580, "total_steps": 1686, "loss": 1.5329, "accuracy": 0.4749999940395355, "learning_rate": 4.861220889427199e-08, "epoch": 2.809513225161147, "percentage": 93.71, "elapsed_time": "6:22:54", "remaining_time": "0:25:41"} |
|
{"current_steps": 1590, "total_steps": 1686, "loss": 1.519, "accuracy": 0.46875, "learning_rate": 3.9896068346758074e-08, "epoch": 2.827294954434319, "percentage": 94.31, "elapsed_time": "6:26:02", "remaining_time": "0:23:18"} |
|
{"current_steps": 1600, "total_steps": 1686, "loss": 1.491, "accuracy": 0.44999998807907104, "learning_rate": 3.203416211153832e-08, "epoch": 2.8450766837074903, "percentage": 94.9, "elapsed_time": "6:29:14", "remaining_time": "0:20:55"} |
|
{"current_steps": 1610, "total_steps": 1686, "loss": 1.6535, "accuracy": 0.39375001192092896, "learning_rate": 2.5029220118019393e-08, "epoch": 2.8628584129806622, "percentage": 95.49, "elapsed_time": "6:32:31", "remaining_time": "0:18:31"} |
|
{"current_steps": 1620, "total_steps": 1686, "loss": 1.4464, "accuracy": 0.5687500238418579, "learning_rate": 1.8883674727586122e-08, "epoch": 2.880640142253834, "percentage": 96.09, "elapsed_time": "6:35:36", "remaining_time": "0:16:07"} |
|
{"current_steps": 1630, "total_steps": 1686, "loss": 1.5093, "accuracy": 0.46875, "learning_rate": 1.3599659889000639e-08, "epoch": 2.898421871527006, "percentage": 96.68, "elapsed_time": "6:38:52", "remaining_time": "0:13:42"} |
|
{"current_steps": 1640, "total_steps": 1686, "loss": 1.5439, "accuracy": 0.4625000059604645, "learning_rate": 9.179010397421528e-09, "epoch": 2.916203600800178, "percentage": 97.27, "elapsed_time": "6:42:20", "remaining_time": "0:11:17"} |
|
{"current_steps": 1650, "total_steps": 1686, "loss": 1.461, "accuracy": 0.53125, "learning_rate": 5.623261257296509e-09, "epoch": 2.93398533007335, "percentage": 97.86, "elapsed_time": "6:45:30", "remaining_time": "0:08:50"} |
|
{"current_steps": 1660, "total_steps": 1686, "loss": 1.4361, "accuracy": 0.48124998807907104, "learning_rate": 2.933647149357122e-09, "epoch": 2.9517670593465217, "percentage": 98.46, "elapsed_time": "6:48:39", "remaining_time": "0:06:24"} |
|
{"current_steps": 1670, "total_steps": 1686, "loss": 1.5006, "accuracy": 0.40625, "learning_rate": 1.1111020018930717e-09, "epoch": 2.969548788619693, "percentage": 99.05, "elapsed_time": "6:51:52", "remaining_time": "0:03:56"} |
|
{"current_steps": 1680, "total_steps": 1686, "loss": 1.4799, "accuracy": 0.550000011920929, "learning_rate": 1.5625866646051813e-10, "epoch": 2.987330517892865, "percentage": 99.64, "elapsed_time": "6:54:58", "remaining_time": "0:01:28"} |
|
{"current_steps": 1686, "total_steps": 1686, "epoch": 2.997999555456768, "percentage": 100.0, "elapsed_time": "6:57:00", "remaining_time": "0:00:00"} |
|
|