flux-loras / app.py
charbel-malo's picture
Upload folder using huggingface_hub
e6dda2a verified
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from transformers.utils.hub import move_cache
# move_cache()
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
from diffusers import FluxPipeline
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
css = """
# gen_btn{height: 100%}
#gen_column{align-self: stretch}
.primary{background-color: #4C76FF !important}
#grower-label-span span{background-color: #4C76FF !important}
#grower-label-image label{background-color: #4C76FF !important}
"""
js_code = """
function createGradioAnimation() {
const emojis = ['โœจ', '๐Ÿค–', '๐Ÿ“ˆ', '๐ŸŽจ', '๐Ÿ”', '๐Ÿ“ฑ', '๐Ÿ”ฎ', '๐Ÿฅฐ', '๐ŸŒˆ', '๐Ÿ’–'];
const gravity = 0.5;
const bounceFactor = -0.7;
const friction = 0.9;
document.getElementById('gen_btn').addEventListener('click', (event) => {
const count = Math.floor(Math.random() * 6) + 10;
for (let i = 0; i < count; i++) {
createEmoji(event.clientX, event.clientY);
}
});
function createEmoji(x, y) {
const emojiElement = document.createElement('div');
emojiElement.textContent = emojis[Math.floor(Math.random() * emojis.length)];
emojiElement.style.position = 'absolute';
emojiElement.style.fontSize = '24px';
emojiElement.style.transition = 'opacity 0.1s ease-out';
document.body.appendChild(emojiElement);
const rect = emojiElement.getBoundingClientRect();
let posX = x - rect.width / 2;
let posY = y - rect.height / 2;
let velX = (Math.random() - 0.5) * 10;
let velY = (Math.random() - 0.5) * 10;
function update() {
if (posY + rect.height >= window.innerHeight) {
posY = window.innerHeight - rect.height;
velY *= bounceFactor;
} else {
velY += gravity;
}
if (posX <= 0 || posX + rect.width >= window.innerWidth) {
velX *= bounceFactor;
}
velX *= friction;
velY *= friction;
posX += velX;
posY += velY;
emojiElement.style.transform = `translate(${posX}px, ${posY}px)`;
if (Math.abs(velX) > 0.1 || Math.abs(velY) > 0.1) {
requestAnimationFrame(update);
} else {
emojiElement.style.opacity=0;
setTimeout(function(){
emojiElement.remove();}, 2000);
}
}
update();
}
return 'Animation created';
}
"""
with gr.Blocks(theme='charbel-malo/Crystal', js=js_code) as demo:
gr.Markdown(
"""
<div style="text-align: left;margin-top:20px">
<h1><img src="https://staging.the-grower.com/assets/images/grower_logo_dark.png" style="height:50px;object-fit:contain;"> GrowerAI VisionPRO</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">HyperFlux-based Image Generation Model 8Steps-Lora</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
base_prompt = gr.Textbox(
label="Base Prompt",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3,
elem_id="grower-label-span"
)
with gr.Accordion("Advanced Prompt Settings", open=False):
subject = gr.Textbox(label="Subject", placeholder="Enter the subject")
object_ = gr.Textbox(label="Object", placeholder="Enter the object")
style = gr.Textbox(label="Style", placeholder="Enter the style")
clothing = gr.Textbox(label="Clothing", placeholder="Enter the clothing")
objective = gr.Dropdown(
choices=["digital marketing post","website hero visual","Ad cover","Movie poster"],
value=None,
multiselect=False,
label="Objective",
info="Select an objective"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
generate_btn = gr.Button("Generate Image", variant="primary", scale=1, elem_id="gen_btn")
with gr.Column(scale=4):
output = gr.Image(label="Your Generated Image", elem_id="grower-label-image")
gr.Markdown(
"""
<div style="margin: 2rem auto; padding: 1rem; border-radius: 10px;">
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
<ol style="padding-left: 1.5rem;">
<li>Enter a detailed description of the image you want to create.</li>
<li>Adjust advanced settings if desired (tap to expand).</li>
<li>Tap "Generate Image" and wait for your creation!</li>
</ol>
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
</div>
"""
)
@spaces.GPU
def process_image(height, width, steps, scales, base_prompt, subject, object_, style, clothing, objective, seed):
# Build the advanced prompt
advanced_prompt_template = (
"Create a highly stylized digital avatar of {subject}, holding {object}. "
"joy, simplified {subject} avatar or emoji. , typical of 3D digital art :: "
"The overall style is {style}. {clothing}. and modern digital art style, "
"detailed shading, and dynamic positioning that makes it suitable for {objective}"
)
advanced_prompt = advanced_prompt_template.format(
subject=subject,
object=object_,
style=style,
clothing=clothing,
objective=objective
)
# Combine base prompt and advanced prompt
prompt = advanced_prompt
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[
height, width, steps, scales, base_prompt, subject, object_, style, clothing, objective, seed
],
outputs=output
)
if __name__ == "__main__":
demo.launch()