ppo-sb3-LunarLander-v2 / config.json
chaowu's picture
Upload PPO LunarLander-v2 trained agent
8dea4f1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9729382dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9729382e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9729382ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9729382f80>", "_build": "<function ActorCriticPolicy._build at 0x7f9729383010>", "forward": "<function ActorCriticPolicy.forward at 0x7f97293830a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9729383130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f97293831c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9729383250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f97293832e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9729383370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9729383400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9729373200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688098761628942378, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozMj32BBe64kYHOtm2VTbrFCC6er8duQAAgD8AAIA/5gizvY8mbroBscI6kUmfNuSqJbq9OvO5AACAPwAAAAAAY8E9rpWcum5RGrnJCQK0XtTXupHfMTgAAIA/AACAPwBANLpIVYy6P7IluDq+ULM5Hw07KkY/NwAAgD8AAIA/0NyZPlyTdD9D2se9XaMtvt0ivT0015C8AAAAAAAAAAAa5SU+lfKQP+09Ez7uoYC+SrckPozCSToAAAAAAAAAABoiXD1co026MLNoO10+hzga20Y765MJugAAgD8AAIA/2kyevcMZBLrfkDy5bHamtFvovTroj144AACAPwAAgD9mrdU94USsuh7nirqpyUG1uiFRurianjkAAAAAAACAPzMc3Tzh2Ja6sLbPOWZaqzRmbZ26CLHvuAAAgD8AAIA/TX/iPSnoRroOsWa7Y0xaOFtroDpOyQI6AAAAAAAAgD8AcJQ8KQxEuo2+TDO63gawREoku/7KzrMAAIA/AACAP4DNNr2F6ms+02T2PFAEOb4N4YC8EFPQvQAAAAAAAAAAZnQ0POx5qbmWhJA5fMclNU8gDTwfHau4AACAPwAAgD9mxIs8KcBxuo6v2za334cxn5yGOvIWArYAAIA/AACAPzrbDj6DjB+8tLYUPV9fprtTEIu9H82VvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGA4c1n/T9eMAWyUTegDjAF0lEdAk0P3maH9FXV9lChoBkdAYnR2ys0YTGgHTegDaAhHQJNGEku6ErZ1fZQoaAZHQGLxHpr1uixoB03oA2gIR0CTRoOrhisodX2UKGgGR0BNwSnUDuBuaAdL9mgIR0CTT0fF72L6dX2UKGgGR0BxBII6bONYaAdNTQJoCEdAk1PDBVMmGHV9lChoBkdAYAsT37DVIGgHTegDaAhHQJNXaq2jO9p1fZQoaAZHQGBmmkvboKVoB03oA2gIR0CTWgoJiRW+dX2UKGgGR0BlOSTKT0QLaAdN6ANoCEdAk1pRpL26CnV9lChoBkdAXXmN5t3wC2gHTegDaAhHQJNdVe4TbnJ1fZQoaAZHQGJcnN5dGAloB03oA2gIR0CTXtU34sVddX2UKGgGR0BiZGUpuuRtaAdN6ANoCEdAk1+/f0mMO3V9lChoBkdAYH5MRHww02gHTegDaAhHQJNhl3bEgnt1fZQoaAZHQGR0GoR7JGRoB03oA2gIR0CTiMcNH6MzdX2UKGgGR0BoNvtMPBi1aAdN6ANoCEdAk4kzW9US7HV9lChoBkdAXjItK7I1cmgHTegDaAhHQJOQ6U+s5n11fZQoaAZHQGLIK2rn1WdoB03oA2gIR0CTmFpcHGCJdX2UKGgGR0BiYVJDmbLEaAdN6ANoCEdAk5nXHvMKTnV9lChoBkdAYfQJPZZjhGgHTegDaAhHQJOby+Cbtqp1fZQoaAZHQGfETrE9+w1oB03oA2gIR0CTnDUUO/cndX2UKGgGR0BkL1dHDrJKaAdN6ANoCEdAk6fBJiAlOXV9lChoBkdAYOZAUtZmqmgHTegDaAhHQJOt54A0bcZ1fZQoaAZHQGN11E3Kji5oB03oA2gIR0CTsg23rleXdX2UKGgGR0BihjFId2gWaAdN6ANoCEdAk7SwevIOpnV9lChoBkdAXj6KgqVhTmgHTegDaAhHQJO0+CoS+QF1fZQoaAZHQF5si++M6zVoB03oA2gIR0CTuDVJcxCZdX2UKGgGR0BcKpKjBVMmaAdN6ANoCEdAk7ngvDgqE3V9lChoBkdAZTbfE4vN/2gHTegDaAhHQJO63bBXS0B1fZQoaAZHQGAdQ3HaN+9oB03oA2gIR0CTvOW4EwFldX2UKGgGR0BCcaY/mknDaAdNPAFoCEdAk9jGcFyJbnV9lChoBkdAZPN/e+Eh7mgHTegDaAhHQJPjApLEk0J1fZQoaAZHQGBsFo11nuloB03oA2gIR0CT454hEBsAdX2UKGgGR0BcStxQzk6taAdN6ANoCEdAk+0uAuqWC3V9lChoBkdAWvXYjB2wFGgHTegDaAhHQJP0zeoDPnl1fZQoaAZHQGHXkDyOJchoB03oA2gIR0CT9o4S6DoRdX2UKGgGR0BiHo1NxlxwaAdN6ANoCEdAk/jWXb/OuHV9lChoBkdAYd2puMuOCGgHTegDaAhHQJP5RZeRgZ11fZQoaAZHQGIlccENe+poB03oA2gIR0CUAsipvP1MdX2UKGgGR0Bht9sBQvYfaAdN6ANoCEdAlAdgt4A0bnV9lChoBkdAZGHCF9KEnWgHTegDaAhHQJQLD6WPcSJ1fZQoaAZHQBWNOM2m52BoB00iAWgIR0CUDJbBoEjgdX2UKGgGR0BxWwZ4wAU+aAdNkgNoCEdAlA0K+FlCkXV9lChoBkdAX1VkWhysCGgHTegDaAhHQJQN0RSP2f11fZQoaAZHQGBIq/VRUFVoB03oA2gIR0CUEO+bExZddX2UKGgGR0BkoTrkbPyDaAdN6ANoCEdAlBOnJ9y93HV9lChoBkdAYKa0XP7emGgHTegDaAhHQJQWpuR9w3p1fZQoaAZHQGOMRGDtgKFoB03oA2gIR0CUN00WdmQKdX2UKGgGR0Bg7FPgvUSaaAdN6ANoCEdAlD63EqDsdHV9lChoBkdAZeTBGhEjPmgHTegDaAhHQJQ/KNo8IRh1fZQoaAZHQF3bVUMoc71oB03oA2gIR0CURkI7Njb0dX2UKGgGR0BjDqPIXCTEaAdN6ANoCEdAlEzg2l2vCHV9lChoBkdAZPuNKh+OO2gHTegDaAhHQJROWtYB/7V1fZQoaAZHQGLBMg+yJKtoB03oA2gIR0CUUW7FbVz7dX2UKGgGR0BsTFjEvTPTaAdNwwJoCEdAlFmvIGQjlnV9lChoBkdAYMv/Q0GeMGgHTegDaAhHQJRc150KZ2J1fZQoaAZHQGUN1/tpmEpoB03oA2gIR0CUYiRGMGX5dX2UKGgGR0Bg78t/WlMzaAdN6ANoCEdAlGUbTH80lHV9lChoBkdAYw3RvWH1vmgHTegDaAhHQJRmbtoi9qV1fZQoaAZHQGapyYoiLVFoB03oA2gIR0CUZs+glF+edX2UKGgGR0Bj2fqiXY16aAdN6ANoCEdAlGdp8OTaCnV9lChoBkdAY5Apw0fozWgHTegDaAhHQJRp9jSXt0F1fZQoaAZHQG4yf+jua4NoB03DAWgIR0CUa+dWhh6TdX2UKGgGR0BjD5Bu4wyqaAdN6ANoCEdAlG3zOPeYUnV9lChoBkfAHa1qnFYMfGgHTS4BaAhHQJRydXwLE1l1fZQoaAZHQGSO6unuRcNoB03oA2gIR0CUji+4b0e2dX2UKGgGR0BiCJSHdoFnaAdN6ANoCEdAlJcggcLjP3V9lChoBkdAZZm7SRbKR2gHTegDaAhHQJSXqKl54W11fZQoaAZHQGXLeC9RJmNoB03oA2gIR0CUoEPk7wKCdX2UKGgGR0Biimhwl0HRaAdN6ANoCEdAlKkMG9pRGnV9lChoBkdAb5Qgr6LwWmgHTdcBaAhHQJSqT3mFJxx1fZQoaAZHQGDmIBikO7RoB03oA2gIR0CUq5t5UtI1dX2UKGgGR0BdcEfkmx+saAdN6ANoCEdAlLHOvhZQpHV9lChoBkdAYaNZGKAJ9mgHTegDaAhHQJS0NdcB2fV1fZQoaAZHQGaOkxASnLtoB03oA2gIR0CUu4tnf2sadX2UKGgGR0BkKlEw35vcaAdN6ANoCEdAlLzi7K7qZHV9lChoBkdAYQfHMEA5rGgHTegDaAhHQJS9SVGCqZN1fZQoaAZHQGBIJ0fYBeZoB03oA2gIR0CUveVVghKUdX2UKGgGR0BjAaxzJZGKaAdN6ANoCEdAlMB98/lhgHV9lChoBkdAYyQ4XGff42gHTegDaAhHQJTCb69CeEt1fZQoaAZHQGSmyZ8a4tpoB03oA2gIR0CUxHVy3kPudX2UKGgGR0BwUXLU1AJLaAdNsgJoCEdAlMtCzLOiWXV9lChoBkdAMNug13t8eGgHTSMBaAhHQJTPrT4L1Ep1fZQoaAZHQGK3x0+1SfloB03oA2gIR0CU5Lev6j33dX2UKGgGR0BMBLt3OfNBaAdL2mgIR0CU5pFqzqrzdX2UKGgGR0BklrZ13dKvaAdN6ANoCEdAlOsXW8RL9XV9lChoBkdAZa/Ye1a4c2gHTegDaAhHQJTrbcAR02d1fZQoaAZHQGKIlaB7NStoB03oA2gIR0CU+e5HVf/ndX2UKGgGR0AvNlfZ26kJaAdL7mgIR0CU+fVAAyVOdX2UKGgGR0Bg+PboKUmlaAdN6ANoCEdAlPsN0Rvm5nV9lChoBkdAX/R4D9wWFmgHTegDaAhHQJT8Q+KTB691fZQoaAZHQHD0SYb83uNoB03GAWgIR0CVABE+PikwdX2UKGgGR0BjtOHi3ocJaAdN6ANoCEdAlQIpuyeI23V9lChoBkdAZVpzPrv9cmgHTegDaAhHQJUFGIznA7B1fZQoaAZHQHE1EovzvqloB01eA2gIR0CVBgKzAvcrdX2UKGgGR0Blw8HMUypJaAdN6ANoCEdAlQ5hlcyFf3V9lChoBkdAbjOgte2NN2gHTW8CaAhHQJUPD2QGOdZ1fZQoaAZHQGWpsjFAE+xoB03oA2gIR0CVEbajN6gNdX2UKGgGR0Bid61/lQuVaAdN6ANoCEdAlRVLc0tRN3V9lChoBkdAZSh0/W1+iWgHTegDaAhHQJUXbQSi/PB1fZQoaAZHQGWTmig00nBoB03oA2gIR0CVH5QuVX3hdX2UKGgGR0Bn5q6nR9gGaAdN6ANoCEdAlSL8TviLl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}