Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load the TensorFlow Lite model
|
8 |
+
interpreter = tf.lite.Interpreter(model_path="quote_model.tflite") # Use your model file name
|
9 |
+
interpreter.allocate_tensors()
|
10 |
+
|
11 |
+
# Get input & output details
|
12 |
+
input_details = interpreter.get_input_details()
|
13 |
+
output_details = interpreter.get_output_details()
|
14 |
+
|
15 |
+
@app.route("/predict", methods=["POST"])
|
16 |
+
def predict():
|
17 |
+
try:
|
18 |
+
data = request.json # Get input JSON
|
19 |
+
embedding = np.array([data["embedding"]], dtype=np.float32) # Convert to tensor
|
20 |
+
|
21 |
+
# Run inference
|
22 |
+
interpreter.set_tensor(input_details[0]['index'], embedding)
|
23 |
+
interpreter.invoke()
|
24 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
25 |
+
|
26 |
+
return jsonify({"predictions": output_data.tolist()})
|
27 |
+
|
28 |
+
except Exception as e:
|
29 |
+
return jsonify({"error": str(e)})
|
30 |
+
|
31 |
+
# Run the Flask server
|
32 |
+
if __name__ == "__main__":
|
33 |
+
app.run(host="0.0.0.0", port=7860)
|