Upload NeoBERTLMHead
Browse files- README.md +199 -0
- config.json +31 -0
- model.py +420 -0
- model.safetensors +3 -0
- rotary.py +61 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"NeoBERTLMHead"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "model.NeoBERTConfig",
|
7 |
+
"AutoModel": "model.NeoBERTLMHead"
|
8 |
+
},
|
9 |
+
"classifier_init_range": 0.02,
|
10 |
+
"decoder_init_range": 0.02,
|
11 |
+
"dim_head": 64,
|
12 |
+
"embedding_init_range": 0.02,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"kwargs": {
|
16 |
+
"classifier_init_range": 0.02,
|
17 |
+
"pretrained_model_name_or_path": "google-bert/bert-base-uncased",
|
18 |
+
"trust_remote_code": true
|
19 |
+
},
|
20 |
+
"max_length": 4096,
|
21 |
+
"model_type": "neobert",
|
22 |
+
"norm_eps": 1e-05,
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 28,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"pretrained_model_name_or_path": "google-bert/bert-base-uncased",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.48.2",
|
29 |
+
"trust_remote_code": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
model.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# From https://github.com/facebookresearch/llama/blob/main/llama/model.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
7 |
+
from torch.nn.functional import scaled_dot_product_attention
|
8 |
+
|
9 |
+
from typing import Optional
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from xformers.ops import SwiGLU
|
13 |
+
|
14 |
+
try:
|
15 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
16 |
+
|
17 |
+
FLASH_ATTN_AVAILABLE = True
|
18 |
+
except ImportError:
|
19 |
+
FLASH_ATTN_AVAILABLE = False
|
20 |
+
|
21 |
+
from transformers import (
|
22 |
+
PreTrainedModel,
|
23 |
+
PretrainedConfig,
|
24 |
+
DataCollatorForLanguageModeling,
|
25 |
+
)
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
MaskedLMOutput,
|
29 |
+
SequenceClassifierOutput,
|
30 |
+
)
|
31 |
+
|
32 |
+
from .rotary import precompute_freqs_cis, apply_rotary_emb
|
33 |
+
|
34 |
+
|
35 |
+
class DataCollatorWithPacking(DataCollatorForLanguageModeling):
|
36 |
+
def __init__(self, pack_sequences=False, **kwargs):
|
37 |
+
super().__init__(**kwargs)
|
38 |
+
self.pack_sequences = pack_sequences
|
39 |
+
|
40 |
+
def __call__(self, batch):
|
41 |
+
if self.pack_sequences:
|
42 |
+
# Add position_ids if not present
|
43 |
+
if "position_ids" not in batch[0]:
|
44 |
+
for item in batch:
|
45 |
+
item["position_ids"] = list(range(len(item["input_ids"])))
|
46 |
+
|
47 |
+
# Pack the sequences into a single list
|
48 |
+
input_ids_list = [item["input_ids"] for item in batch]
|
49 |
+
position_ids_list = [item["position_ids"] for item in batch]
|
50 |
+
seqlens = np.array([0] + [len(ids) for ids in input_ids_list])
|
51 |
+
|
52 |
+
packed_batch = {
|
53 |
+
"position_ids": np.concatenate(position_ids_list, axis=0),
|
54 |
+
"input_ids": np.concatenate(input_ids_list, axis=0),
|
55 |
+
"cu_seqlens": np.cumsum(seqlens),
|
56 |
+
"max_seqlen": max(seqlens),
|
57 |
+
}
|
58 |
+
|
59 |
+
batch = super().__call__([packed_batch])
|
60 |
+
batch["cu_seqlens"] = batch["cu_seqlens"].to(torch.int32).squeeze()
|
61 |
+
else:
|
62 |
+
batch = super().__call__(batch)
|
63 |
+
batch["attention_mask"] = batch["attention_mask"].to(torch.bool)
|
64 |
+
|
65 |
+
return batch
|
66 |
+
|
67 |
+
|
68 |
+
class NeoBERTConfig(PretrainedConfig):
|
69 |
+
model_type = "neobert"
|
70 |
+
|
71 |
+
# All config parameters must have a default value.
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
hidden_size: int = 768,
|
75 |
+
num_hidden_layers: int = 28,
|
76 |
+
num_attention_heads: int = 12,
|
77 |
+
intermediate_size: int = 3072,
|
78 |
+
embedding_init_range: float = 0.02,
|
79 |
+
decoder_init_range: float = 0.02,
|
80 |
+
norm_eps: float = 1e-06,
|
81 |
+
vocab_size: int = 30522,
|
82 |
+
pad_token_id: int = 0,
|
83 |
+
max_length: int = 1024,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
self.hidden_size = hidden_size
|
89 |
+
self.num_hidden_layers = num_hidden_layers
|
90 |
+
self.num_attention_heads = num_attention_heads
|
91 |
+
if hidden_size % num_attention_heads != 0:
|
92 |
+
raise ValueError("Hidden size must be divisible by the number of heads.")
|
93 |
+
self.dim_head = hidden_size // num_attention_heads
|
94 |
+
self.intermediate_size = intermediate_size
|
95 |
+
self.embedding_init_range = embedding_init_range
|
96 |
+
self.decoder_init_range = decoder_init_range
|
97 |
+
self.norm_eps = norm_eps
|
98 |
+
self.vocab_size = vocab_size
|
99 |
+
self.pad_token_id = pad_token_id
|
100 |
+
self.max_length = max_length
|
101 |
+
self.kwargs = kwargs
|
102 |
+
|
103 |
+
|
104 |
+
class EncoderBlock(nn.Module):
|
105 |
+
"""Transformer encoder block."""
|
106 |
+
|
107 |
+
def __init__(self, config: NeoBERTConfig):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self.config = config
|
111 |
+
|
112 |
+
# Attention
|
113 |
+
self.qkv = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size * 3, bias=False)
|
114 |
+
self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=False)
|
115 |
+
|
116 |
+
# Feedforward network
|
117 |
+
multiple_of = 8
|
118 |
+
intermediate_size = int(2 * config.intermediate_size / 3)
|
119 |
+
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
|
120 |
+
self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=False)
|
121 |
+
|
122 |
+
# Layer norms
|
123 |
+
self.attention_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
|
124 |
+
self.ffn_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
|
125 |
+
|
126 |
+
def forward(
|
127 |
+
self,
|
128 |
+
x: torch.Tensor,
|
129 |
+
attention_mask: torch.Tensor,
|
130 |
+
freqs_cis: torch.Tensor,
|
131 |
+
output_attentions: bool,
|
132 |
+
max_seqlen: int = None,
|
133 |
+
cu_seqlens: torch.Tensor = None,
|
134 |
+
):
|
135 |
+
# Attention
|
136 |
+
attn_output, attn_weights = self._att_block(
|
137 |
+
self.attention_norm(x), attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens
|
138 |
+
)
|
139 |
+
|
140 |
+
# Residual
|
141 |
+
x = x + attn_output
|
142 |
+
|
143 |
+
# Feed-forward
|
144 |
+
x = x + self.ffn(self.ffn_norm(x))
|
145 |
+
|
146 |
+
return x, attn_weights
|
147 |
+
|
148 |
+
def _att_block(
|
149 |
+
self,
|
150 |
+
x: torch.Tensor,
|
151 |
+
attention_mask: torch.Tensor,
|
152 |
+
freqs_cis: torch.Tensor,
|
153 |
+
output_attentions: bool,
|
154 |
+
max_seqlen: int = None,
|
155 |
+
cu_seqlens: torch.Tensor = None,
|
156 |
+
):
|
157 |
+
batch_size, seq_len, _ = x.shape
|
158 |
+
|
159 |
+
xq, xk, xv = self.qkv(x).view(batch_size, seq_len, self.config.num_attention_heads, self.config.dim_head * 3).chunk(3, axis=-1)
|
160 |
+
|
161 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
|
162 |
+
|
163 |
+
# Attn block
|
164 |
+
attn_weights = None
|
165 |
+
|
166 |
+
# Flash attention if the tensors are packed
|
167 |
+
if cu_seqlens is not None:
|
168 |
+
attn = flash_attn_varlen_func(
|
169 |
+
q=xq.squeeze(0),
|
170 |
+
k=xk.squeeze(0),
|
171 |
+
v=xv.squeeze(0),
|
172 |
+
cu_seqlens_q=cu_seqlens,
|
173 |
+
cu_seqlens_k=cu_seqlens,
|
174 |
+
max_seqlen_q=max_seqlen,
|
175 |
+
max_seqlen_k=max_seqlen,
|
176 |
+
dropout_p=0.0,
|
177 |
+
causal=False,
|
178 |
+
)
|
179 |
+
# Eager attention if attention weights are needed in the output
|
180 |
+
elif output_attentions:
|
181 |
+
attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
|
182 |
+
if attention_mask is not None:
|
183 |
+
attn_weights = attn_weights * attention_mask
|
184 |
+
attn_weights = attn_weights.softmax(-1)
|
185 |
+
attn = attn_weights @ xv.permute(0, 2, 1, 3)
|
186 |
+
attn = attn.transpose(1, 2)
|
187 |
+
# Fall back to SDPA otherwise
|
188 |
+
else:
|
189 |
+
attn = scaled_dot_product_attention(
|
190 |
+
query=xq.transpose(1, 2),
|
191 |
+
key=xk.transpose(1, 2),
|
192 |
+
value=xv.transpose(1, 2),
|
193 |
+
attn_mask=attention_mask,
|
194 |
+
dropout_p=0,
|
195 |
+
).transpose(1, 2)
|
196 |
+
|
197 |
+
return self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.config.dim_head)), attn_weights
|
198 |
+
|
199 |
+
|
200 |
+
class NeoBERTPreTrainedModel(PreTrainedModel):
|
201 |
+
config_class = NeoBERTConfig
|
202 |
+
_supports_cache_class = True
|
203 |
+
|
204 |
+
def _init_weights(self, module):
|
205 |
+
if isinstance(module, nn.Linear):
|
206 |
+
module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
|
207 |
+
elif isinstance(module, nn.Embedding):
|
208 |
+
module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)
|
209 |
+
|
210 |
+
|
211 |
+
class NeoBERT(NeoBERTPreTrainedModel):
|
212 |
+
config_class = NeoBERTConfig
|
213 |
+
|
214 |
+
def __init__(self, config: NeoBERTConfig):
|
215 |
+
super().__init__(config)
|
216 |
+
|
217 |
+
self.config = config
|
218 |
+
|
219 |
+
self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
220 |
+
|
221 |
+
# Ensures freqs_cis is moved to the same devices as the model. Non-persistent buffers are not saved in the state_dict.
|
222 |
+
freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)
|
223 |
+
self.register_buffer("freqs_cis", freqs_cis, persistent=False)
|
224 |
+
|
225 |
+
self.transformer_encoder = nn.ModuleList()
|
226 |
+
for _ in range(config.num_hidden_layers):
|
227 |
+
self.transformer_encoder.append(EncoderBlock(config))
|
228 |
+
|
229 |
+
self.layer_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
|
230 |
+
|
231 |
+
# Initialize weights and apply final processing
|
232 |
+
self.post_init()
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
input_ids: torch.Tensor,
|
237 |
+
position_ids: torch.Tensor = None,
|
238 |
+
max_seqlen: int = None,
|
239 |
+
cu_seqlens: torch.Tensor = None,
|
240 |
+
attention_mask: torch.Tensor = None,
|
241 |
+
output_hidden_states: bool = False,
|
242 |
+
output_attentions: bool = False,
|
243 |
+
**kwargs,
|
244 |
+
):
|
245 |
+
# Initialize
|
246 |
+
hidden_states, attentions = [], []
|
247 |
+
|
248 |
+
# Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
|
249 |
+
if attention_mask is not None:
|
250 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, attention_mask.size(-1), 1)
|
251 |
+
|
252 |
+
# Checks to be done if inputs are packed sequences
|
253 |
+
if cu_seqlens is not None:
|
254 |
+
assert (
|
255 |
+
FLASH_ATTN_AVAILABLE
|
256 |
+
), "Flash-attention is not available. Please ''pip install flash_attn'', or provide un-packed sequences."
|
257 |
+
assert not output_attentions, "Output attentions is not supported when sequences are packed."
|
258 |
+
assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None."
|
259 |
+
assert input_ids.shape[0] == 1, "Cumulative sequence lengths are provided but input_ids are not packed."
|
260 |
+
assert input_ids.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU."
|
261 |
+
|
262 |
+
# RoPE
|
263 |
+
freqs_cis = self.freqs_cis[position_ids] if position_ids is not None else self.freqs_cis[: input_ids.shape[1]].unsqueeze(0)
|
264 |
+
|
265 |
+
# Embedding
|
266 |
+
x = self.encoder(input_ids)
|
267 |
+
|
268 |
+
# Transformer encoder
|
269 |
+
for layer in self.transformer_encoder:
|
270 |
+
x, attn = layer(x, attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
|
271 |
+
if output_hidden_states:
|
272 |
+
hidden_states.append(x)
|
273 |
+
if output_attentions:
|
274 |
+
attentions.append(attn)
|
275 |
+
|
276 |
+
# Final normalization layer
|
277 |
+
x = self.layer_norm(x)
|
278 |
+
|
279 |
+
# Return the output of the last hidden layer
|
280 |
+
return BaseModelOutput(
|
281 |
+
last_hidden_state=x,
|
282 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
283 |
+
attentions=attentions if output_attentions else None,
|
284 |
+
)
|
285 |
+
|
286 |
+
|
287 |
+
class NeoBERTLMHead(NeoBERTPreTrainedModel):
|
288 |
+
config_class = NeoBERTConfig
|
289 |
+
|
290 |
+
def __init__(self, config: NeoBERTConfig):
|
291 |
+
super().__init__(config)
|
292 |
+
|
293 |
+
self.config = config
|
294 |
+
|
295 |
+
self.model = NeoBERT(config)
|
296 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
297 |
+
|
298 |
+
self.post_init()
|
299 |
+
|
300 |
+
def forward(
|
301 |
+
self,
|
302 |
+
input_ids: torch.Tensor,
|
303 |
+
position_ids: torch.Tensor = None,
|
304 |
+
max_seqlen: int = None,
|
305 |
+
cu_seqlens: torch.Tensor = None,
|
306 |
+
attention_mask: torch.Tensor = None,
|
307 |
+
output_hidden_states: bool = False,
|
308 |
+
output_attentions: bool = False,
|
309 |
+
**kwargs,
|
310 |
+
):
|
311 |
+
|
312 |
+
output = self.model.forward(
|
313 |
+
input_ids,
|
314 |
+
position_ids,
|
315 |
+
max_seqlen,
|
316 |
+
cu_seqlens,
|
317 |
+
attention_mask,
|
318 |
+
output_hidden_states,
|
319 |
+
output_attentions,
|
320 |
+
)
|
321 |
+
logits = self.decoder(output.last_hidden_state)
|
322 |
+
|
323 |
+
return MaskedLMOutput(
|
324 |
+
hidden_states=output.hidden_states if output_hidden_states else None,
|
325 |
+
attentions=output.attentions if output_attentions else None,
|
326 |
+
logits=logits,
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
class NeoBERTForSequenceClassification(NeoBERTPreTrainedModel):
|
331 |
+
config_class = NeoBERTConfig
|
332 |
+
|
333 |
+
def __init__(self, config: NeoBERTConfig):
|
334 |
+
super().__init__(config)
|
335 |
+
|
336 |
+
self.config = config
|
337 |
+
|
338 |
+
self.num_labels = getattr(config, "num_labels", 2)
|
339 |
+
self.classifier_dropout = getattr(config, "classifier_dropout", 0.1)
|
340 |
+
self.classifier_init_range = getattr(config, "classifier_init_range", 0.02)
|
341 |
+
|
342 |
+
self.model = NeoBERT(config)
|
343 |
+
|
344 |
+
self.dense = nn.Linear(self.config.hidden_size, self.config.hidden_size)
|
345 |
+
self.dropout = nn.Dropout(self.classifier_dropout)
|
346 |
+
self.classifier = nn.Linear(self.config.hidden_size, self.num_labels)
|
347 |
+
|
348 |
+
self.post_init()
|
349 |
+
|
350 |
+
def _init_weights(self, module):
|
351 |
+
if isinstance(module, nn.Linear):
|
352 |
+
module.weight.data.normal_(mean=0.0, std=self.classifier_init_range)
|
353 |
+
if module.bias is not None:
|
354 |
+
module.bias.data.zero_()
|
355 |
+
|
356 |
+
def forward(
|
357 |
+
self,
|
358 |
+
input_ids: torch.Tensor,
|
359 |
+
position_ids: torch.Tensor = None,
|
360 |
+
max_seqlen: int = None,
|
361 |
+
cu_seqlens: torch.Tensor = None,
|
362 |
+
attention_mask: torch.Tensor = None,
|
363 |
+
output_hidden_states: bool = False,
|
364 |
+
output_attentions: bool = False,
|
365 |
+
labels: Optional[torch.Tensor] = None,
|
366 |
+
return_dict: Optional[bool] = None,
|
367 |
+
):
|
368 |
+
|
369 |
+
output = self.model.forward(
|
370 |
+
input_ids,
|
371 |
+
position_ids,
|
372 |
+
max_seqlen,
|
373 |
+
cu_seqlens,
|
374 |
+
attention_mask,
|
375 |
+
output_hidden_states,
|
376 |
+
output_attentions,
|
377 |
+
)
|
378 |
+
hidden_states = output.last_hidden_state
|
379 |
+
|
380 |
+
x = hidden_states[:, 0, :]
|
381 |
+
x = self.dropout(x)
|
382 |
+
x = self.dense(x)
|
383 |
+
x = torch.tanh(x)
|
384 |
+
x = self.dropout(x)
|
385 |
+
|
386 |
+
logits = self.classifier(x)
|
387 |
+
|
388 |
+
loss = None
|
389 |
+
if labels is not None:
|
390 |
+
if self.config.problem_type is None:
|
391 |
+
if self.num_labels == 1:
|
392 |
+
self.config.problem_type = "regression"
|
393 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
394 |
+
self.config.problem_type = "single_label_classification"
|
395 |
+
else:
|
396 |
+
self.config.problem_type = "multi_label_classification"
|
397 |
+
|
398 |
+
if self.config.problem_type == "regression":
|
399 |
+
loss_fct = MSELoss()
|
400 |
+
if self.num_labels == 1:
|
401 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
402 |
+
else:
|
403 |
+
loss = loss_fct(logits, labels)
|
404 |
+
elif self.config.problem_type == "single_label_classification":
|
405 |
+
loss_fct = CrossEntropyLoss()
|
406 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
407 |
+
elif self.config.problem_type == "multi_label_classification":
|
408 |
+
loss_fct = BCEWithLogitsLoss()
|
409 |
+
loss = loss_fct(logits, labels)
|
410 |
+
|
411 |
+
if not return_dict:
|
412 |
+
result = (logits,)
|
413 |
+
return ((loss,) + result) if loss is not None else result
|
414 |
+
|
415 |
+
return SequenceClassifierOutput(
|
416 |
+
loss=loss,
|
417 |
+
logits=logits,
|
418 |
+
hidden_states=output.hidden_states if output_hidden_states else None,
|
419 |
+
attentions=output.attentions if output_attentions else None,
|
420 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b547ae956c4ef7024a444d93464a9028cc6594cf36830fd5069a7ef9a53d799f
|
3 |
+
size 980567608
|
rotary.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# From https://github.com/facebookresearch/llama/blob/main/llama/model.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from typing import Tuple
|
5 |
+
|
6 |
+
|
7 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
8 |
+
"""
|
9 |
+
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
10 |
+
|
11 |
+
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
12 |
+
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
13 |
+
The returned tensor contains complex values in complex64 data type.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
dim (int): Dimension of the frequency tensor.
|
17 |
+
end (int): End index for precomputing frequencies.
|
18 |
+
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
torch.Tensor: Precomputed frequency tensor with complex exponentials.
|
22 |
+
"""
|
23 |
+
|
24 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
25 |
+
t = torch.arange(end, device=freqs.device)
|
26 |
+
freqs = torch.outer(t, freqs).float()
|
27 |
+
return torch.polar(torch.ones_like(freqs), freqs)
|
28 |
+
|
29 |
+
|
30 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
31 |
+
assert freqs_cis.shape[1:] == (x.shape[1], x.shape[-1])
|
32 |
+
return freqs_cis.contiguous().unsqueeze(2)
|
33 |
+
|
34 |
+
|
35 |
+
def apply_rotary_emb(
|
36 |
+
xq: torch.Tensor,
|
37 |
+
xk: torch.Tensor,
|
38 |
+
freqs_cis: torch.Tensor,
|
39 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
40 |
+
"""
|
41 |
+
Apply rotary embeddings to input tensors using the given frequency tensor.
|
42 |
+
|
43 |
+
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
44 |
+
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
45 |
+
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
46 |
+
returned as real tensors.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
xq (torch.Tensor): Query tensor to apply rotary embeddings.
|
50 |
+
xk (torch.Tensor): Key tensor to apply rotary embeddings.
|
51 |
+
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
55 |
+
"""
|
56 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
57 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
58 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
59 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
60 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
61 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|