Update README.md
Browse files
README.md
CHANGED
@@ -1,32 +1,49 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- Taxi-v3
|
4 |
-
- q-learning
|
5 |
-
- reinforcement-learning
|
6 |
-
- custom-implementation
|
7 |
-
model-index:
|
8 |
-
- name: q-Taxi-v3
|
9 |
-
results:
|
10 |
-
- task:
|
11 |
-
type: reinforcement-learning
|
12 |
-
name: reinforcement-learning
|
13 |
-
dataset:
|
14 |
-
name: Taxi-v3
|
15 |
-
type: Taxi-v3
|
16 |
-
metrics:
|
17 |
-
- type: mean_reward
|
18 |
-
value: 7.56 +/- 2.71
|
19 |
-
name: mean_reward
|
20 |
-
verified: false
|
21 |
-
---
|
22 |
-
|
23 |
-
# **Q-Learning** Agent playing1 **Taxi-v3**
|
24 |
-
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
|
25 |
-
|
26 |
-
## Usage
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- Taxi-v3
|
4 |
+
- q-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- custom-implementation
|
7 |
+
model-index:
|
8 |
+
- name: q-Taxi-v3
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: Taxi-v3
|
15 |
+
type: Taxi-v3
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 7.56 +/- 2.71
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
# **Q-Learning** Agent playing1 **Taxi-v3**
|
24 |
+
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
```python
|
28 |
+
import gymnasium as gym
|
29 |
+
from huggingface_sb3 import load_from_hub
|
30 |
+
import numpy as np
|
31 |
+
import pickle
|
32 |
+
|
33 |
+
# Load the model
|
34 |
+
env_name = "Taxi-v3"
|
35 |
+
model_name = "q-Taxi-v3"
|
36 |
+
model_path = load_from_hub(repo_id="ch-bz/" + model_name, filename="q-learning.pkl")
|
37 |
+
Qtable = pickle.load(open(model_path, "rb"))["qtable"]
|
38 |
+
env = gym.make("Taxi-v3", render_mode="human")
|
39 |
+
state, info = env.reset()
|
40 |
+
|
41 |
+
while True:
|
42 |
+
action = np.argmax(Qtable[state][:])
|
43 |
+
state, reward, terminated, truncated, info = env.step(action)
|
44 |
+
env.render()
|
45 |
+
|
46 |
+
if terminated or truncated:
|
47 |
+
state, info = env.reset()
|
48 |
+
```
|
49 |
+
|