cgallegoan
commited on
Commit
•
2120a18
1
Parent(s):
e3669c4
update model card README.md
Browse files
README.md
CHANGED
@@ -14,10 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Rouge2 Precision: 0.
|
19 |
-
- Rouge2 Recall: 0.
|
20 |
-
- Rouge2 Fmeasure: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -37,8 +37,8 @@ More information needed
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 5e-05
|
40 |
-
- train_batch_size:
|
41 |
-
- eval_batch_size:
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
@@ -48,16 +48,16 @@ The following hyperparameters were used during training:
|
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0699
|
18 |
+
- Rouge2 Precision: 0.6901
|
19 |
+
- Rouge2 Recall: 0.2546
|
20 |
+
- Rouge2 Fmeasure: 0.3639
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
|
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
51 |
+
| 0.7623 | 1.0 | 155 | 0.3883 | 0.3621 | 0.1411 | 0.1985 |
|
52 |
+
| 0.3774 | 2.0 | 310 | 0.2040 | 0.5116 | 0.1845 | 0.2672 |
|
53 |
+
| 0.2693 | 3.0 | 465 | 0.1461 | 0.5462 | 0.1958 | 0.2847 |
|
54 |
+
| 0.2129 | 4.0 | 620 | 0.1147 | 0.5799 | 0.2135 | 0.3067 |
|
55 |
+
| 0.1807 | 5.0 | 775 | 0.0948 | 0.6145 | 0.2264 | 0.3242 |
|
56 |
+
| 0.1441 | 6.0 | 930 | 0.0847 | 0.6158 | 0.2298 | 0.3284 |
|
57 |
+
| 0.1361 | 7.0 | 1085 | 0.0785 | 0.6389 | 0.2358 | 0.3371 |
|
58 |
+
| 0.1268 | 8.0 | 1240 | 0.0733 | 0.6867 | 0.254 | 0.3628 |
|
59 |
+
| 0.1259 | 9.0 | 1395 | 0.0709 | 0.6875 | 0.2538 | 0.3626 |
|
60 |
+
| 0.1199 | 10.0 | 1550 | 0.0699 | 0.6901 | 0.2546 | 0.3639 |
|
61 |
|
62 |
|
63 |
### Framework versions
|