cgallegoan commited on
Commit
2120a18
1 Parent(s): e3669c4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -14,10 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.1089
18
- - Rouge2 Precision: 0.5759
19
- - Rouge2 Recall: 0.2135
20
- - Rouge2 Fmeasure: 0.306
21
 
22
  ## Model description
23
 
@@ -37,8 +37,8 @@ More information needed
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
- - train_batch_size: 16
41
- - eval_batch_size: 16
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
@@ -48,16 +48,16 @@ The following hyperparameters were used during training:
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
50
  |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
51
- | No log | 1.0 | 79 | 0.3504 | 0.3762 | 0.1435 | 0.2038 |
52
- | No log | 2.0 | 158 | 0.2444 | 0.4303 | 0.1587 | 0.2278 |
53
- | No log | 3.0 | 237 | 0.1943 | 0.4982 | 0.1802 | 0.2612 |
54
- | No log | 4.0 | 316 | 0.1622 | 0.5267 | 0.1882 | 0.2741 |
55
- | No log | 5.0 | 395 | 0.1423 | 0.5596 | 0.2042 | 0.2946 |
56
- | No log | 6.0 | 474 | 0.1284 | 0.5718 | 0.2118 | 0.3038 |
57
- | 0.365 | 7.0 | 553 | 0.1199 | 0.574 | 0.2119 | 0.3042 |
58
- | 0.365 | 8.0 | 632 | 0.1139 | 0.5761 | 0.2135 | 0.3059 |
59
- | 0.365 | 9.0 | 711 | 0.1100 | 0.5757 | 0.2134 | 0.3057 |
60
- | 0.365 | 10.0 | 790 | 0.1089 | 0.5759 | 0.2135 | 0.306 |
61
 
62
 
63
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.0699
18
+ - Rouge2 Precision: 0.6901
19
+ - Rouge2 Recall: 0.2546
20
+ - Rouge2 Fmeasure: 0.3639
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
 
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
50
  |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
51
+ | 0.7623 | 1.0 | 155 | 0.3883 | 0.3621 | 0.1411 | 0.1985 |
52
+ | 0.3774 | 2.0 | 310 | 0.2040 | 0.5116 | 0.1845 | 0.2672 |
53
+ | 0.2693 | 3.0 | 465 | 0.1461 | 0.5462 | 0.1958 | 0.2847 |
54
+ | 0.2129 | 4.0 | 620 | 0.1147 | 0.5799 | 0.2135 | 0.3067 |
55
+ | 0.1807 | 5.0 | 775 | 0.0948 | 0.6145 | 0.2264 | 0.3242 |
56
+ | 0.1441 | 6.0 | 930 | 0.0847 | 0.6158 | 0.2298 | 0.3284 |
57
+ | 0.1361 | 7.0 | 1085 | 0.0785 | 0.6389 | 0.2358 | 0.3371 |
58
+ | 0.1268 | 8.0 | 1240 | 0.0733 | 0.6867 | 0.254 | 0.3628 |
59
+ | 0.1259 | 9.0 | 1395 | 0.0709 | 0.6875 | 0.2538 | 0.3626 |
60
+ | 0.1199 | 10.0 | 1550 | 0.0699 | 0.6901 | 0.2546 | 0.3639 |
61
 
62
 
63
  ### Framework versions