cfalholt commited on
Commit
3d99311
1 Parent(s): 05c1674

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
A2C-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0ce36b23d8eb64ca487e977eb17543756abfdeb9b01baeeeb63030a1f3f73ed
3
+ size 129260
A2C-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
A2C-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f81ad1851f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81ad185280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81ad185310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81ad1853a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f81ad185430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f81ad1854c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f81ad185550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81ad1855e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f81ad185670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81ad185700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81ad185790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81ad185820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f81ad180540>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675932200695954998,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZuVj8H1AtA9rjtv28yt77fL4a/3Tp1P+ijqj5+E8e/HTc8P4xS/r5rokC/YkITPnLZp747c+c+lsKKPtB7lj5DsZo/iDgvQEq7Cz8ttHG/oD5IvyewBD6b/9g/Bn3iPoPdnb9FcPw+ITcAwA6/Wz92ZqC+PJwOvtSXED8R1Cm/Uc5jP60avT5gKDA/BPiOv1GiSz8wtWe8TiQFv95O7L/cZQk/5vGLP9HTQT/a53C6w9xkPyVs6T+JonQ/1S6LvqayJEATvUQ/9CWBP9PJvTyD3Z2/RXD8PuyR/z4Ov1s/ajPsPm2xBEDTDKe/SiEkP+JLB0Cwgdw+7GHCPr64qb3I6Eg/sKeyvogePr9HVaI9eza+PrIl3D8OG7O+1BQGvv0snj8ynEZA9AMCPpjcnj0fsN6+QMkevRsFnj6X/Pa9g92dv0Vw/D4hNwDADr9bP6Q00j7sbKK/t3yhvuNQjT88zyC/uSnDv8vyDD6eZ4q/k6BLP6aqPLyL64Y+ec0PwELnJr9yCKY/UZM5PnmeiD7M5q4815PbPw81Lz/sCW+/QNZEv8hH9jyQsFg/iatZQIPdnb9FcPw+ITcAwA4elb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADcTK42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAohWwvQAAAAC5se2/AAAAAOB4uD0AAAAASID1PwAAAADpuJS9AAAAAJL/+j8AAAAA2an7vQAAAABGGvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedYoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGP4wj0AAAAALEP1vwAAAAAg+uA9AAAAAKbh5D8AAAAAlcO3PQAAAAArjeo/AAAAADfUpDoAAAAAr53qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB02lrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnacu9AAAAAMWB2b8AAAAAryfCvQAAAAAivv4/AAAAAB95IL0AAAAAsh0BQAAAAACNQKg8AAAAAEbu8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3sK21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR2QSPQAAAAAJmPu/AAAAAD4AnL0AAAAAyTX6PwAAAAAn/Va9AAAAAK8s7D8AAAAAvA7hvQAAAAAFZO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaIcjLSuyOMAWyUTegDjAF0lEdArd76gCfYjHV9lChoBkdAlVn8MAmzB2gHTegDaAhHQK3sg34sVcl1fZQoaAZHQJffEBfa6BloB03oA2gIR0Ct7QhkiD/VdX2UKGgGR0CPYq8/2TPjaAdN6ANoCEdAre1dfkWAPXV9lChoBkdAlKusTWXkYGgHTegDaAhHQK3wGNtIkJN1fZQoaAZHQJOnT6CUX55oB03oA2gIR0Ct+Wo8yN4rdX2UKGgGR0CZl/y/9Hc2aAdN6ANoCEdArfnw1xbSqnV9lChoBkdAlG8Nl/Yra2gHTegDaAhHQK36R5BTn7p1fZQoaAZHQIYm905lvqFoB03oA2gIR0Ct/RaK1og3dX2UKGgGR0CbGsVbiZOSaAdN6ANoCEdArgqkcOskp3V9lChoBkdAmFVCLIgeR2gHTegDaAhHQK4LPVLi++N1fZQoaAZHQFebbWVeKKpoB03oA2gIR0CuC5XdbgTAdX2UKGgGR0CTPj5p8F6iaAdN6ANoCEdArg5ZzvJA+3V9lChoBkdAlIQli4J/omgHTegDaAhHQK4YGzP8hs91fZQoaAZHQJih39/BnBdoB03oA2gIR0CuGJdECvHMdX2UKGgGR0CahLmPo3aSaAdN6ANoCEdArhjyH/Lkj3V9lChoBkdAjOnCyhSLqGgHTegDaAhHQK4bpzFMqSZ1fZQoaAZHQJhPvmwJPZZoB03oA2gIR0CuKF078vVWdX2UKGgGR0CKuvTIeYD1aAdN6ANoCEdArikqgkC3gHV9lChoBkdAlrTHLaEi+2gHTegDaAhHQK4pu3EyckN1fZQoaAZHQJY1qAmReTpoB03oA2gIR0CuLMSRKYiQdX2UKGgGR0BziRq8DjioaAdN6ANoCEdArjZYIOYplXV9lChoBkdAkkWDd+G47WgHTegDaAhHQK420aisXBR1fZQoaAZHQJLXEwj+rENoB03oA2gIR0CuNyt7jT8YdX2UKGgGR0CAipn2ZiNLaAdN6ANoCEdArjn0+cH4XXV9lChoBkdAerMqbz9S/GgHTegDaAhHQK5GSNJe3QV1fZQoaAZHQIsEbFuNxVBoB03oA2gIR0CuRxZFPSDzdX2UKGgGR0CSls4VymygaAdN6ANoCEdArkefv+fh/HV9lChoBkdAht3i9AX2umgHTegDaAhHQK5LHlum78N1fZQoaAZHQJVdU21lXiloB03oA2gIR0CuVRWeQMhHdX2UKGgGR0Bo9SLKmsNlaAdN6ANoCEdArlWNlI3BHnV9lChoBkdAl3Ik8eS0SmgHTegDaAhHQK5V6274BWB1fZQoaAZHQIXMEq+ajN9oB03oA2gIR0CuWMoxYaHcdX2UKGgGR0CKyl69kBjnaAdN6ANoCEdArmTGY0EX+HV9lChoBkdAlxaQt8NQTGgHTegDaAhHQK5lkRvFWGR1fZQoaAZHQJBasQg9vCNoB03oA2gIR0CuZiMniNsFdX2UKGgGR0CG9ugdwNsnaAdN6ANoCEdArmnPE/B3zXV9lChoBkdAf477MgU1ymgHTegDaAhHQK5zKj9n9Nx1fZQoaAZHQJOKFQ0oBq9oB03oA2gIR0Cuc6AezUqhdX2UKGgGR0CWNkFA3T/iaAdN6ANoCEdArnP62MKkVXV9lChoBkdAmxXl+RYA82gHTegDaAhHQK53DJbMX8B1fZQoaAZHQJuEgw35vcdoB03oA2gIR0CuhxkLYwqRdX2UKGgGR0CXFRjU/fO2aAdN6ANoCEdArofej9GZu3V9lChoBkdAmOozXBguy2gHTegDaAhHQK6Iay8jAzp1fZQoaAZHQJpNosqaw2VoB03oA2gIR0CujPCQtBfKdX2UKGgGR0Ccm6SgoPTYaAdN6ANoCEdArpZh8neBQXV9lChoBkdAmbpnkT6BRWgHTegDaAhHQK6W5/cWTHN1fZQoaAZHQJazEsnRb8poB03oA2gIR0Culz3MQmNSdX2UKGgGR0CSRiNyYG+saAdN6ANoCEdArpoJ7PY4AHV9lChoBkdAZbqInjQzDWgHTegDaAhHQK6k761stTV1fZQoaAZHQJcdN4QjD9BoB03oA2gIR0CupcB4D9wWdX2UKGgGR0CUeagjyFwlaAdN6ANoCEdArqZODjBEa3V9lChoBkdAjwRtQ0oBrGgHTegDaAhHQK6qx1A7gbZ1fZQoaAZHQJPIj/bTMJRoB03oA2gIR0CutKO2iL2pdX2UKGgGR0CU3vfmLcbjaAdN6ANoCEdArrUejXWe6XV9lChoBkdAlhruVs1sL2gHTegDaAhHQK61fqxkd3l1fZQoaAZHQJiHSgezUqhoB03oA2gIR0CuuD1feDWcdX2UKGgGR0CVS0XXiBGyaAdN6ANoCEdArsL4P07KaHV9lChoBkdAlM0hRVIZqGgHTegDaAhHQK7DvWUbDMx1fZQoaAZHQJsJOdd3SrpoB03oA2gIR0CuxEQizLOidX2UKGgGR0CWg6D1oQFtaAdN6ANoCEdArsj4ISlFdHV9lChoBkdAlhelXzUZvWgHTegDaAhHQK7TQRNh3JR1fZQoaAZHQJiyGwOe8PFoB03oA2gIR0Cu07sNc4YKdX2UKGgGR0CXdcsNlRP5aAdN6ANoCEdArtQW+0w8GXV9lChoBkdAlzefUnXummgHTegDaAhHQK7W1UcXFcZ1fZQoaAZHQHcuowIt16poB03oA2gIR0Cu4UGvfTCtdX2UKGgGR0CZSnKUmlZYaAdN6ANoCEdAruH6iblRxnV9lChoBkdAl/VFYuCf6GgHTegDaAhHQK7iinpjc211fZQoaAZHQJkDHXDm8uloB03oA2gIR0Cu5xLdvbXZdX2UKGgGR0CYPTju8brDaAdN6ANoCEdArvHBF7Uoa3V9lChoBkdAlaVnn6l+E2gHTegDaAhHQK7yOmD15B11fZQoaAZHQJZn9To+wC9oB03oA2gIR0Cu8prp7kXDdX2UKGgGR0CZ1uG0eEIxaAdN6ANoCEdArvVI7V8TjHV9lChoBkdAmKxUGzKLbmgHTegDaAhHQK7+75ZbILh1fZQoaAZHQJp+wNSZSeloB03oA2gIR0Cu/6M6JZW8dX2UKGgGR0CV0BFvQ4S6aAdN6ANoCEdArwApU1hsqXV9lChoBkdAmZ9gMtsen2gHTegDaAhHQK8EtZyuIRB1fZQoaAZHQJrmu3QUpNNoB03oA2gIR0CvEEXiiqQzdX2UKGgGR0Cfa4UONHYpaAdN6ANoCEdArxDBQ1rIo3V9lChoBkdAm5mRSgoPTWgHTegDaAhHQK8RJBj4Hop1fZQoaAZHQJwnzodMj/xoB03oA2gIR0CvE+RG2CumdX2UKGgGR0CZ9Wy0a6z3aAdN6ANoCEdArx1ke2d/a3V9lChoBkdAnFf6tDD0lWgHTegDaAhHQK8eF6TGHYZ1fZQoaAZHQJuZOyLQ5WBoB03oA2gIR0CvHqssQNCrdX2UKGgGR0CbVcEBbOeKaAdN6ANoCEdAryLdqi48U3V9lChoBkdAkhYbZJ04i2gHTegDaAhHQK8vDVuJk5J1fZQoaAZHQJGfPPPcBU9oB03oA2gIR0CvL4brC3w1dX2UKGgGR0CaVQTQVsUJaAdN6ANoCEdAry/pgCwKSnV9lChoBkdAhpeXlCCz1WgHTegDaAhHQK8yr1qWTot1fZQoaAZHQJroEzXSSeRoB03oA2gIR0CvO/bmlqJudX2UKGgGR0CcswbQkX1raAdN6ANoCEdArzx9RJmNBHV9lChoBkdAh5bNmDlHSWgHTegDaAhHQK880cx0uDl1fZQoaAZHQJvGSt5le4VoB03oA2gIR0CvQOOMuOCHdX2UKGgGR0CZql/gBLf2aAdN6ANoCEdAr01JSpBHC3V9lChoBkdAm6S7Pt2LYWgHTegDaAhHQK9Nxg4wRGt1fZQoaAZHQJPBsq9XcQBoB03oA2gIR0CvThouf29MdX2UKGgGR0CbBNyIpH7QaAdN6ANoCEdAr1DK0Y0l7nV9lChoBkdAlOste2NNrWgHTegDaAhHQK9Z/PhybQV1fZQoaAZHQJrZYF8ohIRoB03oA2gIR0CvWngymALBdX2UKGgGR0CU+gC4BmwraAdN6ANoCEdAr1rR9d/rjnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
A2C-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3c20fea8c1341de6e7040316fb9d699e3591dece8a161e14ea24c49aa12a3f8
3
+ size 56190
A2C-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:215ecdbae7254ae6b3aa108e4dc284ff48010b46e2a9553d16d60be248fd84d6
3
+ size 56958
A2C-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
A2C-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1438.89 +/- 433.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f81ad1851f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81ad185280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81ad185310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81ad1853a0>", "_build": "<function ActorCriticPolicy._build at 0x7f81ad185430>", "forward": "<function ActorCriticPolicy.forward at 0x7f81ad1854c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f81ad185550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81ad1855e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f81ad185670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81ad185700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81ad185790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81ad185820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f81ad180540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675932200695954998, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZuVj8H1AtA9rjtv28yt77fL4a/3Tp1P+ijqj5+E8e/HTc8P4xS/r5rokC/YkITPnLZp747c+c+lsKKPtB7lj5DsZo/iDgvQEq7Cz8ttHG/oD5IvyewBD6b/9g/Bn3iPoPdnb9FcPw+ITcAwA6/Wz92ZqC+PJwOvtSXED8R1Cm/Uc5jP60avT5gKDA/BPiOv1GiSz8wtWe8TiQFv95O7L/cZQk/5vGLP9HTQT/a53C6w9xkPyVs6T+JonQ/1S6LvqayJEATvUQ/9CWBP9PJvTyD3Z2/RXD8PuyR/z4Ov1s/ajPsPm2xBEDTDKe/SiEkP+JLB0Cwgdw+7GHCPr64qb3I6Eg/sKeyvogePr9HVaI9eza+PrIl3D8OG7O+1BQGvv0snj8ynEZA9AMCPpjcnj0fsN6+QMkevRsFnj6X/Pa9g92dv0Vw/D4hNwDADr9bP6Q00j7sbKK/t3yhvuNQjT88zyC/uSnDv8vyDD6eZ4q/k6BLP6aqPLyL64Y+ec0PwELnJr9yCKY/UZM5PnmeiD7M5q4815PbPw81Lz/sCW+/QNZEv8hH9jyQsFg/iatZQIPdnb9FcPw+ITcAwA4elb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADcTK42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAohWwvQAAAAC5se2/AAAAAOB4uD0AAAAASID1PwAAAADpuJS9AAAAAJL/+j8AAAAA2an7vQAAAABGGvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedYoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGP4wj0AAAAALEP1vwAAAAAg+uA9AAAAAKbh5D8AAAAAlcO3PQAAAAArjeo/AAAAADfUpDoAAAAAr53qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB02lrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnacu9AAAAAMWB2b8AAAAAryfCvQAAAAAivv4/AAAAAB95IL0AAAAAsh0BQAAAAACNQKg8AAAAAEbu8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3sK21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR2QSPQAAAAAJmPu/AAAAAD4AnL0AAAAAyTX6PwAAAAAn/Va9AAAAAK8s7D8AAAAAvA7hvQAAAAAFZO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaIcjLSuyOMAWyUTegDjAF0lEdArd76gCfYjHV9lChoBkdAlVn8MAmzB2gHTegDaAhHQK3sg34sVcl1fZQoaAZHQJffEBfa6BloB03oA2gIR0Ct7QhkiD/VdX2UKGgGR0CPYq8/2TPjaAdN6ANoCEdAre1dfkWAPXV9lChoBkdAlKusTWXkYGgHTegDaAhHQK3wGNtIkJN1fZQoaAZHQJOnT6CUX55oB03oA2gIR0Ct+Wo8yN4rdX2UKGgGR0CZl/y/9Hc2aAdN6ANoCEdArfnw1xbSqnV9lChoBkdAlG8Nl/Yra2gHTegDaAhHQK36R5BTn7p1fZQoaAZHQIYm905lvqFoB03oA2gIR0Ct/RaK1og3dX2UKGgGR0CbGsVbiZOSaAdN6ANoCEdArgqkcOskp3V9lChoBkdAmFVCLIgeR2gHTegDaAhHQK4LPVLi++N1fZQoaAZHQFebbWVeKKpoB03oA2gIR0CuC5XdbgTAdX2UKGgGR0CTPj5p8F6iaAdN6ANoCEdArg5ZzvJA+3V9lChoBkdAlIQli4J/omgHTegDaAhHQK4YGzP8hs91fZQoaAZHQJih39/BnBdoB03oA2gIR0CuGJdECvHMdX2UKGgGR0CahLmPo3aSaAdN6ANoCEdArhjyH/Lkj3V9lChoBkdAjOnCyhSLqGgHTegDaAhHQK4bpzFMqSZ1fZQoaAZHQJhPvmwJPZZoB03oA2gIR0CuKF078vVWdX2UKGgGR0CKuvTIeYD1aAdN6ANoCEdArikqgkC3gHV9lChoBkdAlrTHLaEi+2gHTegDaAhHQK4pu3EyckN1fZQoaAZHQJY1qAmReTpoB03oA2gIR0CuLMSRKYiQdX2UKGgGR0BziRq8DjioaAdN6ANoCEdArjZYIOYplXV9lChoBkdAkkWDd+G47WgHTegDaAhHQK420aisXBR1fZQoaAZHQJLXEwj+rENoB03oA2gIR0CuNyt7jT8YdX2UKGgGR0CAipn2ZiNLaAdN6ANoCEdArjn0+cH4XXV9lChoBkdAerMqbz9S/GgHTegDaAhHQK5GSNJe3QV1fZQoaAZHQIsEbFuNxVBoB03oA2gIR0CuRxZFPSDzdX2UKGgGR0CSls4VymygaAdN6ANoCEdArkefv+fh/HV9lChoBkdAht3i9AX2umgHTegDaAhHQK5LHlum78N1fZQoaAZHQJVdU21lXiloB03oA2gIR0CuVRWeQMhHdX2UKGgGR0Bo9SLKmsNlaAdN6ANoCEdArlWNlI3BHnV9lChoBkdAl3Ik8eS0SmgHTegDaAhHQK5V6274BWB1fZQoaAZHQIXMEq+ajN9oB03oA2gIR0CuWMoxYaHcdX2UKGgGR0CKyl69kBjnaAdN6ANoCEdArmTGY0EX+HV9lChoBkdAlxaQt8NQTGgHTegDaAhHQK5lkRvFWGR1fZQoaAZHQJBasQg9vCNoB03oA2gIR0CuZiMniNsFdX2UKGgGR0CG9ugdwNsnaAdN6ANoCEdArmnPE/B3zXV9lChoBkdAf477MgU1ymgHTegDaAhHQK5zKj9n9Nx1fZQoaAZHQJOKFQ0oBq9oB03oA2gIR0Cuc6AezUqhdX2UKGgGR0CWNkFA3T/iaAdN6ANoCEdArnP62MKkVXV9lChoBkdAmxXl+RYA82gHTegDaAhHQK53DJbMX8B1fZQoaAZHQJuEgw35vcdoB03oA2gIR0CuhxkLYwqRdX2UKGgGR0CXFRjU/fO2aAdN6ANoCEdArofej9GZu3V9lChoBkdAmOozXBguy2gHTegDaAhHQK6Iay8jAzp1fZQoaAZHQJpNosqaw2VoB03oA2gIR0CujPCQtBfKdX2UKGgGR0Ccm6SgoPTYaAdN6ANoCEdArpZh8neBQXV9lChoBkdAmbpnkT6BRWgHTegDaAhHQK6W5/cWTHN1fZQoaAZHQJazEsnRb8poB03oA2gIR0Culz3MQmNSdX2UKGgGR0CSRiNyYG+saAdN6ANoCEdArpoJ7PY4AHV9lChoBkdAZbqInjQzDWgHTegDaAhHQK6k761stTV1fZQoaAZHQJcdN4QjD9BoB03oA2gIR0CupcB4D9wWdX2UKGgGR0CUeagjyFwlaAdN6ANoCEdArqZODjBEa3V9lChoBkdAjwRtQ0oBrGgHTegDaAhHQK6qx1A7gbZ1fZQoaAZHQJPIj/bTMJRoB03oA2gIR0CutKO2iL2pdX2UKGgGR0CU3vfmLcbjaAdN6ANoCEdArrUejXWe6XV9lChoBkdAlhruVs1sL2gHTegDaAhHQK61fqxkd3l1fZQoaAZHQJiHSgezUqhoB03oA2gIR0CuuD1feDWcdX2UKGgGR0CVS0XXiBGyaAdN6ANoCEdArsL4P07KaHV9lChoBkdAlM0hRVIZqGgHTegDaAhHQK7DvWUbDMx1fZQoaAZHQJsJOdd3SrpoB03oA2gIR0CuxEQizLOidX2UKGgGR0CWg6D1oQFtaAdN6ANoCEdArsj4ISlFdHV9lChoBkdAlhelXzUZvWgHTegDaAhHQK7TQRNh3JR1fZQoaAZHQJiyGwOe8PFoB03oA2gIR0Cu07sNc4YKdX2UKGgGR0CXdcsNlRP5aAdN6ANoCEdArtQW+0w8GXV9lChoBkdAlzefUnXummgHTegDaAhHQK7W1UcXFcZ1fZQoaAZHQHcuowIt16poB03oA2gIR0Cu4UGvfTCtdX2UKGgGR0CZSnKUmlZYaAdN6ANoCEdAruH6iblRxnV9lChoBkdAl/VFYuCf6GgHTegDaAhHQK7iinpjc211fZQoaAZHQJkDHXDm8uloB03oA2gIR0Cu5xLdvbXZdX2UKGgGR0CYPTju8brDaAdN6ANoCEdArvHBF7Uoa3V9lChoBkdAlaVnn6l+E2gHTegDaAhHQK7yOmD15B11fZQoaAZHQJZn9To+wC9oB03oA2gIR0Cu8prp7kXDdX2UKGgGR0CZ1uG0eEIxaAdN6ANoCEdArvVI7V8TjHV9lChoBkdAmKxUGzKLbmgHTegDaAhHQK7+75ZbILh1fZQoaAZHQJp+wNSZSeloB03oA2gIR0Cu/6M6JZW8dX2UKGgGR0CV0BFvQ4S6aAdN6ANoCEdArwApU1hsqXV9lChoBkdAmZ9gMtsen2gHTegDaAhHQK8EtZyuIRB1fZQoaAZHQJrmu3QUpNNoB03oA2gIR0CvEEXiiqQzdX2UKGgGR0Cfa4UONHYpaAdN6ANoCEdArxDBQ1rIo3V9lChoBkdAm5mRSgoPTWgHTegDaAhHQK8RJBj4Hop1fZQoaAZHQJwnzodMj/xoB03oA2gIR0CvE+RG2CumdX2UKGgGR0CZ9Wy0a6z3aAdN6ANoCEdArx1ke2d/a3V9lChoBkdAnFf6tDD0lWgHTegDaAhHQK8eF6TGHYZ1fZQoaAZHQJuZOyLQ5WBoB03oA2gIR0CvHqssQNCrdX2UKGgGR0CbVcEBbOeKaAdN6ANoCEdAryLdqi48U3V9lChoBkdAkhYbZJ04i2gHTegDaAhHQK8vDVuJk5J1fZQoaAZHQJGfPPPcBU9oB03oA2gIR0CvL4brC3w1dX2UKGgGR0CaVQTQVsUJaAdN6ANoCEdAry/pgCwKSnV9lChoBkdAhpeXlCCz1WgHTegDaAhHQK8yr1qWTot1fZQoaAZHQJroEzXSSeRoB03oA2gIR0CvO/bmlqJudX2UKGgGR0CcswbQkX1raAdN6ANoCEdArzx9RJmNBHV9lChoBkdAh5bNmDlHSWgHTegDaAhHQK880cx0uDl1fZQoaAZHQJvGSt5le4VoB03oA2gIR0CvQOOMuOCHdX2UKGgGR0CZql/gBLf2aAdN6ANoCEdAr01JSpBHC3V9lChoBkdAm6S7Pt2LYWgHTegDaAhHQK9Nxg4wRGt1fZQoaAZHQJPBsq9XcQBoB03oA2gIR0CvThouf29MdX2UKGgGR0CbBNyIpH7QaAdN6ANoCEdAr1DK0Y0l7nV9lChoBkdAlOste2NNrWgHTegDaAhHQK9Z/PhybQV1fZQoaAZHQJrZYF8ohIRoB03oA2gIR0CvWngymALBdX2UKGgGR0CU+gC4BmwraAdN6ANoCEdAr1rR9d/rjnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d4e0848b4593fb9a483549e041bdfe7e8700bd51b2bc8ec26aae0b4f3c3062a
3
+ size 1103599
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1438.8913788004, "std_reward": 433.51396096196765, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T10:04:24.082795"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58f228c64046467b4052cd8fde11f43b2a9e3245819ddbf6df0906c710508745
3
+ size 2136