Initial commit
Browse files- .gitattributes +1 -0
- A2C-AntBulletEnv-v0.zip +3 -0
- A2C-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- A2C-AntBulletEnv-v0/data +106 -0
- A2C-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- A2C-AntBulletEnv-v0/policy.pth +3 -0
- A2C-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- A2C-AntBulletEnv-v0/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
A2C-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0ce36b23d8eb64ca487e977eb17543756abfdeb9b01baeeeb63030a1f3f73ed
|
3 |
+
size 129260
|
A2C-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
A2C-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f81ad1851f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81ad185280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81ad185310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81ad1853a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f81ad185430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f81ad1854c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f81ad185550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81ad1855e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f81ad185670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81ad185700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81ad185790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81ad185820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f81ad180540>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675932200695954998,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZuVj8H1AtA9rjtv28yt77fL4a/3Tp1P+ijqj5+E8e/HTc8P4xS/r5rokC/YkITPnLZp747c+c+lsKKPtB7lj5DsZo/iDgvQEq7Cz8ttHG/oD5IvyewBD6b/9g/Bn3iPoPdnb9FcPw+ITcAwA6/Wz92ZqC+PJwOvtSXED8R1Cm/Uc5jP60avT5gKDA/BPiOv1GiSz8wtWe8TiQFv95O7L/cZQk/5vGLP9HTQT/a53C6w9xkPyVs6T+JonQ/1S6LvqayJEATvUQ/9CWBP9PJvTyD3Z2/RXD8PuyR/z4Ov1s/ajPsPm2xBEDTDKe/SiEkP+JLB0Cwgdw+7GHCPr64qb3I6Eg/sKeyvogePr9HVaI9eza+PrIl3D8OG7O+1BQGvv0snj8ynEZA9AMCPpjcnj0fsN6+QMkevRsFnj6X/Pa9g92dv0Vw/D4hNwDADr9bP6Q00j7sbKK/t3yhvuNQjT88zyC/uSnDv8vyDD6eZ4q/k6BLP6aqPLyL64Y+ec0PwELnJr9yCKY/UZM5PnmeiD7M5q4815PbPw81Lz/sCW+/QNZEv8hH9jyQsFg/iatZQIPdnb9FcPw+ITcAwA4elb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADcTK42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAohWwvQAAAAC5se2/AAAAAOB4uD0AAAAASID1PwAAAADpuJS9AAAAAJL/+j8AAAAA2an7vQAAAABGGvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedYoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGP4wj0AAAAALEP1vwAAAAAg+uA9AAAAAKbh5D8AAAAAlcO3PQAAAAArjeo/AAAAADfUpDoAAAAAr53qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB02lrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnacu9AAAAAMWB2b8AAAAAryfCvQAAAAAivv4/AAAAAB95IL0AAAAAsh0BQAAAAACNQKg8AAAAAEbu8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3sK21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR2QSPQAAAAAJmPu/AAAAAD4AnL0AAAAAyTX6PwAAAAAn/Va9AAAAAK8s7D8AAAAAvA7hvQAAAAAFZO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaIcjLSuyOMAWyUTegDjAF0lEdArd76gCfYjHV9lChoBkdAlVn8MAmzB2gHTegDaAhHQK3sg34sVcl1fZQoaAZHQJffEBfa6BloB03oA2gIR0Ct7QhkiD/VdX2UKGgGR0CPYq8/2TPjaAdN6ANoCEdAre1dfkWAPXV9lChoBkdAlKusTWXkYGgHTegDaAhHQK3wGNtIkJN1fZQoaAZHQJOnT6CUX55oB03oA2gIR0Ct+Wo8yN4rdX2UKGgGR0CZl/y/9Hc2aAdN6ANoCEdArfnw1xbSqnV9lChoBkdAlG8Nl/Yra2gHTegDaAhHQK36R5BTn7p1fZQoaAZHQIYm905lvqFoB03oA2gIR0Ct/RaK1og3dX2UKGgGR0CbGsVbiZOSaAdN6ANoCEdArgqkcOskp3V9lChoBkdAmFVCLIgeR2gHTegDaAhHQK4LPVLi++N1fZQoaAZHQFebbWVeKKpoB03oA2gIR0CuC5XdbgTAdX2UKGgGR0CTPj5p8F6iaAdN6ANoCEdArg5ZzvJA+3V9lChoBkdAlIQli4J/omgHTegDaAhHQK4YGzP8hs91fZQoaAZHQJih39/BnBdoB03oA2gIR0CuGJdECvHMdX2UKGgGR0CahLmPo3aSaAdN6ANoCEdArhjyH/Lkj3V9lChoBkdAjOnCyhSLqGgHTegDaAhHQK4bpzFMqSZ1fZQoaAZHQJhPvmwJPZZoB03oA2gIR0CuKF078vVWdX2UKGgGR0CKuvTIeYD1aAdN6ANoCEdArikqgkC3gHV9lChoBkdAlrTHLaEi+2gHTegDaAhHQK4pu3EyckN1fZQoaAZHQJY1qAmReTpoB03oA2gIR0CuLMSRKYiQdX2UKGgGR0BziRq8DjioaAdN6ANoCEdArjZYIOYplXV9lChoBkdAkkWDd+G47WgHTegDaAhHQK420aisXBR1fZQoaAZHQJLXEwj+rENoB03oA2gIR0CuNyt7jT8YdX2UKGgGR0CAipn2ZiNLaAdN6ANoCEdArjn0+cH4XXV9lChoBkdAerMqbz9S/GgHTegDaAhHQK5GSNJe3QV1fZQoaAZHQIsEbFuNxVBoB03oA2gIR0CuRxZFPSDzdX2UKGgGR0CSls4VymygaAdN6ANoCEdArkefv+fh/HV9lChoBkdAht3i9AX2umgHTegDaAhHQK5LHlum78N1fZQoaAZHQJVdU21lXiloB03oA2gIR0CuVRWeQMhHdX2UKGgGR0Bo9SLKmsNlaAdN6ANoCEdArlWNlI3BHnV9lChoBkdAl3Ik8eS0SmgHTegDaAhHQK5V6274BWB1fZQoaAZHQIXMEq+ajN9oB03oA2gIR0CuWMoxYaHcdX2UKGgGR0CKyl69kBjnaAdN6ANoCEdArmTGY0EX+HV9lChoBkdAlxaQt8NQTGgHTegDaAhHQK5lkRvFWGR1fZQoaAZHQJBasQg9vCNoB03oA2gIR0CuZiMniNsFdX2UKGgGR0CG9ugdwNsnaAdN6ANoCEdArmnPE/B3zXV9lChoBkdAf477MgU1ymgHTegDaAhHQK5zKj9n9Nx1fZQoaAZHQJOKFQ0oBq9oB03oA2gIR0Cuc6AezUqhdX2UKGgGR0CWNkFA3T/iaAdN6ANoCEdArnP62MKkVXV9lChoBkdAmxXl+RYA82gHTegDaAhHQK53DJbMX8B1fZQoaAZHQJuEgw35vcdoB03oA2gIR0CuhxkLYwqRdX2UKGgGR0CXFRjU/fO2aAdN6ANoCEdArofej9GZu3V9lChoBkdAmOozXBguy2gHTegDaAhHQK6Iay8jAzp1fZQoaAZHQJpNosqaw2VoB03oA2gIR0CujPCQtBfKdX2UKGgGR0Ccm6SgoPTYaAdN6ANoCEdArpZh8neBQXV9lChoBkdAmbpnkT6BRWgHTegDaAhHQK6W5/cWTHN1fZQoaAZHQJazEsnRb8poB03oA2gIR0Culz3MQmNSdX2UKGgGR0CSRiNyYG+saAdN6ANoCEdArpoJ7PY4AHV9lChoBkdAZbqInjQzDWgHTegDaAhHQK6k761stTV1fZQoaAZHQJcdN4QjD9BoB03oA2gIR0CupcB4D9wWdX2UKGgGR0CUeagjyFwlaAdN6ANoCEdArqZODjBEa3V9lChoBkdAjwRtQ0oBrGgHTegDaAhHQK6qx1A7gbZ1fZQoaAZHQJPIj/bTMJRoB03oA2gIR0CutKO2iL2pdX2UKGgGR0CU3vfmLcbjaAdN6ANoCEdArrUejXWe6XV9lChoBkdAlhruVs1sL2gHTegDaAhHQK61fqxkd3l1fZQoaAZHQJiHSgezUqhoB03oA2gIR0CuuD1feDWcdX2UKGgGR0CVS0XXiBGyaAdN6ANoCEdArsL4P07KaHV9lChoBkdAlM0hRVIZqGgHTegDaAhHQK7DvWUbDMx1fZQoaAZHQJsJOdd3SrpoB03oA2gIR0CuxEQizLOidX2UKGgGR0CWg6D1oQFtaAdN6ANoCEdArsj4ISlFdHV9lChoBkdAlhelXzUZvWgHTegDaAhHQK7TQRNh3JR1fZQoaAZHQJiyGwOe8PFoB03oA2gIR0Cu07sNc4YKdX2UKGgGR0CXdcsNlRP5aAdN6ANoCEdArtQW+0w8GXV9lChoBkdAlzefUnXummgHTegDaAhHQK7W1UcXFcZ1fZQoaAZHQHcuowIt16poB03oA2gIR0Cu4UGvfTCtdX2UKGgGR0CZSnKUmlZYaAdN6ANoCEdAruH6iblRxnV9lChoBkdAl/VFYuCf6GgHTegDaAhHQK7iinpjc211fZQoaAZHQJkDHXDm8uloB03oA2gIR0Cu5xLdvbXZdX2UKGgGR0CYPTju8brDaAdN6ANoCEdArvHBF7Uoa3V9lChoBkdAlaVnn6l+E2gHTegDaAhHQK7yOmD15B11fZQoaAZHQJZn9To+wC9oB03oA2gIR0Cu8prp7kXDdX2UKGgGR0CZ1uG0eEIxaAdN6ANoCEdArvVI7V8TjHV9lChoBkdAmKxUGzKLbmgHTegDaAhHQK7+75ZbILh1fZQoaAZHQJp+wNSZSeloB03oA2gIR0Cu/6M6JZW8dX2UKGgGR0CV0BFvQ4S6aAdN6ANoCEdArwApU1hsqXV9lChoBkdAmZ9gMtsen2gHTegDaAhHQK8EtZyuIRB1fZQoaAZHQJrmu3QUpNNoB03oA2gIR0CvEEXiiqQzdX2UKGgGR0Cfa4UONHYpaAdN6ANoCEdArxDBQ1rIo3V9lChoBkdAm5mRSgoPTWgHTegDaAhHQK8RJBj4Hop1fZQoaAZHQJwnzodMj/xoB03oA2gIR0CvE+RG2CumdX2UKGgGR0CZ9Wy0a6z3aAdN6ANoCEdArx1ke2d/a3V9lChoBkdAnFf6tDD0lWgHTegDaAhHQK8eF6TGHYZ1fZQoaAZHQJuZOyLQ5WBoB03oA2gIR0CvHqssQNCrdX2UKGgGR0CbVcEBbOeKaAdN6ANoCEdAryLdqi48U3V9lChoBkdAkhYbZJ04i2gHTegDaAhHQK8vDVuJk5J1fZQoaAZHQJGfPPPcBU9oB03oA2gIR0CvL4brC3w1dX2UKGgGR0CaVQTQVsUJaAdN6ANoCEdAry/pgCwKSnV9lChoBkdAhpeXlCCz1WgHTegDaAhHQK8yr1qWTot1fZQoaAZHQJroEzXSSeRoB03oA2gIR0CvO/bmlqJudX2UKGgGR0CcswbQkX1raAdN6ANoCEdArzx9RJmNBHV9lChoBkdAh5bNmDlHSWgHTegDaAhHQK880cx0uDl1fZQoaAZHQJvGSt5le4VoB03oA2gIR0CvQOOMuOCHdX2UKGgGR0CZql/gBLf2aAdN6ANoCEdAr01JSpBHC3V9lChoBkdAm6S7Pt2LYWgHTegDaAhHQK9Nxg4wRGt1fZQoaAZHQJPBsq9XcQBoB03oA2gIR0CvThouf29MdX2UKGgGR0CbBNyIpH7QaAdN6ANoCEdAr1DK0Y0l7nV9lChoBkdAlOste2NNrWgHTegDaAhHQK9Z/PhybQV1fZQoaAZHQJrZYF8ohIRoB03oA2gIR0CvWngymALBdX2UKGgGR0CU+gC4BmwraAdN6ANoCEdAr1rR9d/rjnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
A2C-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3c20fea8c1341de6e7040316fb9d699e3591dece8a161e14ea24c49aa12a3f8
|
3 |
+
size 56190
|
A2C-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:215ecdbae7254ae6b3aa108e4dc284ff48010b46e2a9553d16d60be248fd84d6
|
3 |
+
size 56958
|
A2C-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
A2C-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1438.89 +/- 433.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f81ad1851f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81ad185280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81ad185310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81ad1853a0>", "_build": "<function ActorCriticPolicy._build at 0x7f81ad185430>", "forward": "<function ActorCriticPolicy.forward at 0x7f81ad1854c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f81ad185550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81ad1855e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f81ad185670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81ad185700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81ad185790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81ad185820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f81ad180540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675932200695954998, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZuVj8H1AtA9rjtv28yt77fL4a/3Tp1P+ijqj5+E8e/HTc8P4xS/r5rokC/YkITPnLZp747c+c+lsKKPtB7lj5DsZo/iDgvQEq7Cz8ttHG/oD5IvyewBD6b/9g/Bn3iPoPdnb9FcPw+ITcAwA6/Wz92ZqC+PJwOvtSXED8R1Cm/Uc5jP60avT5gKDA/BPiOv1GiSz8wtWe8TiQFv95O7L/cZQk/5vGLP9HTQT/a53C6w9xkPyVs6T+JonQ/1S6LvqayJEATvUQ/9CWBP9PJvTyD3Z2/RXD8PuyR/z4Ov1s/ajPsPm2xBEDTDKe/SiEkP+JLB0Cwgdw+7GHCPr64qb3I6Eg/sKeyvogePr9HVaI9eza+PrIl3D8OG7O+1BQGvv0snj8ynEZA9AMCPpjcnj0fsN6+QMkevRsFnj6X/Pa9g92dv0Vw/D4hNwDADr9bP6Q00j7sbKK/t3yhvuNQjT88zyC/uSnDv8vyDD6eZ4q/k6BLP6aqPLyL64Y+ec0PwELnJr9yCKY/UZM5PnmeiD7M5q4815PbPw81Lz/sCW+/QNZEv8hH9jyQsFg/iatZQIPdnb9FcPw+ITcAwA4elb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADcTK42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAohWwvQAAAAC5se2/AAAAAOB4uD0AAAAASID1PwAAAADpuJS9AAAAAJL/+j8AAAAA2an7vQAAAABGGvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedYoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGP4wj0AAAAALEP1vwAAAAAg+uA9AAAAAKbh5D8AAAAAlcO3PQAAAAArjeo/AAAAADfUpDoAAAAAr53qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB02lrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnacu9AAAAAMWB2b8AAAAAryfCvQAAAAAivv4/AAAAAB95IL0AAAAAsh0BQAAAAACNQKg8AAAAAEbu8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3sK21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR2QSPQAAAAAJmPu/AAAAAD4AnL0AAAAAyTX6PwAAAAAn/Va9AAAAAK8s7D8AAAAAvA7hvQAAAAAFZO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaIcjLSuyOMAWyUTegDjAF0lEdArd76gCfYjHV9lChoBkdAlVn8MAmzB2gHTegDaAhHQK3sg34sVcl1fZQoaAZHQJffEBfa6BloB03oA2gIR0Ct7QhkiD/VdX2UKGgGR0CPYq8/2TPjaAdN6ANoCEdAre1dfkWAPXV9lChoBkdAlKusTWXkYGgHTegDaAhHQK3wGNtIkJN1fZQoaAZHQJOnT6CUX55oB03oA2gIR0Ct+Wo8yN4rdX2UKGgGR0CZl/y/9Hc2aAdN6ANoCEdArfnw1xbSqnV9lChoBkdAlG8Nl/Yra2gHTegDaAhHQK36R5BTn7p1fZQoaAZHQIYm905lvqFoB03oA2gIR0Ct/RaK1og3dX2UKGgGR0CbGsVbiZOSaAdN6ANoCEdArgqkcOskp3V9lChoBkdAmFVCLIgeR2gHTegDaAhHQK4LPVLi++N1fZQoaAZHQFebbWVeKKpoB03oA2gIR0CuC5XdbgTAdX2UKGgGR0CTPj5p8F6iaAdN6ANoCEdArg5ZzvJA+3V9lChoBkdAlIQli4J/omgHTegDaAhHQK4YGzP8hs91fZQoaAZHQJih39/BnBdoB03oA2gIR0CuGJdECvHMdX2UKGgGR0CahLmPo3aSaAdN6ANoCEdArhjyH/Lkj3V9lChoBkdAjOnCyhSLqGgHTegDaAhHQK4bpzFMqSZ1fZQoaAZHQJhPvmwJPZZoB03oA2gIR0CuKF078vVWdX2UKGgGR0CKuvTIeYD1aAdN6ANoCEdArikqgkC3gHV9lChoBkdAlrTHLaEi+2gHTegDaAhHQK4pu3EyckN1fZQoaAZHQJY1qAmReTpoB03oA2gIR0CuLMSRKYiQdX2UKGgGR0BziRq8DjioaAdN6ANoCEdArjZYIOYplXV9lChoBkdAkkWDd+G47WgHTegDaAhHQK420aisXBR1fZQoaAZHQJLXEwj+rENoB03oA2gIR0CuNyt7jT8YdX2UKGgGR0CAipn2ZiNLaAdN6ANoCEdArjn0+cH4XXV9lChoBkdAerMqbz9S/GgHTegDaAhHQK5GSNJe3QV1fZQoaAZHQIsEbFuNxVBoB03oA2gIR0CuRxZFPSDzdX2UKGgGR0CSls4VymygaAdN6ANoCEdArkefv+fh/HV9lChoBkdAht3i9AX2umgHTegDaAhHQK5LHlum78N1fZQoaAZHQJVdU21lXiloB03oA2gIR0CuVRWeQMhHdX2UKGgGR0Bo9SLKmsNlaAdN6ANoCEdArlWNlI3BHnV9lChoBkdAl3Ik8eS0SmgHTegDaAhHQK5V6274BWB1fZQoaAZHQIXMEq+ajN9oB03oA2gIR0CuWMoxYaHcdX2UKGgGR0CKyl69kBjnaAdN6ANoCEdArmTGY0EX+HV9lChoBkdAlxaQt8NQTGgHTegDaAhHQK5lkRvFWGR1fZQoaAZHQJBasQg9vCNoB03oA2gIR0CuZiMniNsFdX2UKGgGR0CG9ugdwNsnaAdN6ANoCEdArmnPE/B3zXV9lChoBkdAf477MgU1ymgHTegDaAhHQK5zKj9n9Nx1fZQoaAZHQJOKFQ0oBq9oB03oA2gIR0Cuc6AezUqhdX2UKGgGR0CWNkFA3T/iaAdN6ANoCEdArnP62MKkVXV9lChoBkdAmxXl+RYA82gHTegDaAhHQK53DJbMX8B1fZQoaAZHQJuEgw35vcdoB03oA2gIR0CuhxkLYwqRdX2UKGgGR0CXFRjU/fO2aAdN6ANoCEdArofej9GZu3V9lChoBkdAmOozXBguy2gHTegDaAhHQK6Iay8jAzp1fZQoaAZHQJpNosqaw2VoB03oA2gIR0CujPCQtBfKdX2UKGgGR0Ccm6SgoPTYaAdN6ANoCEdArpZh8neBQXV9lChoBkdAmbpnkT6BRWgHTegDaAhHQK6W5/cWTHN1fZQoaAZHQJazEsnRb8poB03oA2gIR0Culz3MQmNSdX2UKGgGR0CSRiNyYG+saAdN6ANoCEdArpoJ7PY4AHV9lChoBkdAZbqInjQzDWgHTegDaAhHQK6k761stTV1fZQoaAZHQJcdN4QjD9BoB03oA2gIR0CupcB4D9wWdX2UKGgGR0CUeagjyFwlaAdN6ANoCEdArqZODjBEa3V9lChoBkdAjwRtQ0oBrGgHTegDaAhHQK6qx1A7gbZ1fZQoaAZHQJPIj/bTMJRoB03oA2gIR0CutKO2iL2pdX2UKGgGR0CU3vfmLcbjaAdN6ANoCEdArrUejXWe6XV9lChoBkdAlhruVs1sL2gHTegDaAhHQK61fqxkd3l1fZQoaAZHQJiHSgezUqhoB03oA2gIR0CuuD1feDWcdX2UKGgGR0CVS0XXiBGyaAdN6ANoCEdArsL4P07KaHV9lChoBkdAlM0hRVIZqGgHTegDaAhHQK7DvWUbDMx1fZQoaAZHQJsJOdd3SrpoB03oA2gIR0CuxEQizLOidX2UKGgGR0CWg6D1oQFtaAdN6ANoCEdArsj4ISlFdHV9lChoBkdAlhelXzUZvWgHTegDaAhHQK7TQRNh3JR1fZQoaAZHQJiyGwOe8PFoB03oA2gIR0Cu07sNc4YKdX2UKGgGR0CXdcsNlRP5aAdN6ANoCEdArtQW+0w8GXV9lChoBkdAlzefUnXummgHTegDaAhHQK7W1UcXFcZ1fZQoaAZHQHcuowIt16poB03oA2gIR0Cu4UGvfTCtdX2UKGgGR0CZSnKUmlZYaAdN6ANoCEdAruH6iblRxnV9lChoBkdAl/VFYuCf6GgHTegDaAhHQK7iinpjc211fZQoaAZHQJkDHXDm8uloB03oA2gIR0Cu5xLdvbXZdX2UKGgGR0CYPTju8brDaAdN6ANoCEdArvHBF7Uoa3V9lChoBkdAlaVnn6l+E2gHTegDaAhHQK7yOmD15B11fZQoaAZHQJZn9To+wC9oB03oA2gIR0Cu8prp7kXDdX2UKGgGR0CZ1uG0eEIxaAdN6ANoCEdArvVI7V8TjHV9lChoBkdAmKxUGzKLbmgHTegDaAhHQK7+75ZbILh1fZQoaAZHQJp+wNSZSeloB03oA2gIR0Cu/6M6JZW8dX2UKGgGR0CV0BFvQ4S6aAdN6ANoCEdArwApU1hsqXV9lChoBkdAmZ9gMtsen2gHTegDaAhHQK8EtZyuIRB1fZQoaAZHQJrmu3QUpNNoB03oA2gIR0CvEEXiiqQzdX2UKGgGR0Cfa4UONHYpaAdN6ANoCEdArxDBQ1rIo3V9lChoBkdAm5mRSgoPTWgHTegDaAhHQK8RJBj4Hop1fZQoaAZHQJwnzodMj/xoB03oA2gIR0CvE+RG2CumdX2UKGgGR0CZ9Wy0a6z3aAdN6ANoCEdArx1ke2d/a3V9lChoBkdAnFf6tDD0lWgHTegDaAhHQK8eF6TGHYZ1fZQoaAZHQJuZOyLQ5WBoB03oA2gIR0CvHqssQNCrdX2UKGgGR0CbVcEBbOeKaAdN6ANoCEdAryLdqi48U3V9lChoBkdAkhYbZJ04i2gHTegDaAhHQK8vDVuJk5J1fZQoaAZHQJGfPPPcBU9oB03oA2gIR0CvL4brC3w1dX2UKGgGR0CaVQTQVsUJaAdN6ANoCEdAry/pgCwKSnV9lChoBkdAhpeXlCCz1WgHTegDaAhHQK8yr1qWTot1fZQoaAZHQJroEzXSSeRoB03oA2gIR0CvO/bmlqJudX2UKGgGR0CcswbQkX1raAdN6ANoCEdArzx9RJmNBHV9lChoBkdAh5bNmDlHSWgHTegDaAhHQK880cx0uDl1fZQoaAZHQJvGSt5le4VoB03oA2gIR0CvQOOMuOCHdX2UKGgGR0CZql/gBLf2aAdN6ANoCEdAr01JSpBHC3V9lChoBkdAm6S7Pt2LYWgHTegDaAhHQK9Nxg4wRGt1fZQoaAZHQJPBsq9XcQBoB03oA2gIR0CvThouf29MdX2UKGgGR0CbBNyIpH7QaAdN6ANoCEdAr1DK0Y0l7nV9lChoBkdAlOste2NNrWgHTegDaAhHQK9Z/PhybQV1fZQoaAZHQJrZYF8ohIRoB03oA2gIR0CvWngymALBdX2UKGgGR0CU+gC4BmwraAdN6ANoCEdAr1rR9d/rjnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d4e0848b4593fb9a483549e041bdfe7e8700bd51b2bc8ec26aae0b4f3c3062a
|
3 |
+
size 1103599
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1438.8913788004, "std_reward": 433.51396096196765, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T10:04:24.082795"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f228c64046467b4052cd8fde11f43b2a9e3245819ddbf6df0906c710508745
|
3 |
+
size 2136
|